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Abstract A domain decomposition approach for the par-
allelization of the Wigner Monte Carlo method allows
the huge memory requirements to be distributed amongst
many computational units, thereby making large multi-
dimensional simulations feasible. Two domain decomposi-
tion techniques—a uniform slab and uniform block decom-
position—are compared and the design and implementation
of the block decomposition approach, using the message
passing interface, is discussed. The parallel performance of
the two approaches is evaluated by simulating a representa-
tive physical problem. Our results show that the presumably
inferior slab decomposition method is in fact superior to the
block decomposition approach, due to the additional over-
head incurred by the block decomposition method to set up
its communication layer.

Keywords Wigner · Monte Carlo · Domain
decomposition ·Message passing interface

1 Introduction

The Wigner formalism [1] provides an attractive alterna-
tive to the non-equilibrium Green’s function formalism, as
it provides a reformulation of quantum mechanics—usually
defined through operators and wave functions—in the phase
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space using functions and variables [2]. Thereby, the Wigner
formalism gives a more intuitive description, which also
facilitates the reuse of many classical concepts and notions.
The biggest advantages of using a phase space formulation
are that open boundary conditions, transients, and decoher-
ence effects can be considered and are easily implemented
from a computational point of view. It is the coherent evo-
lution which presents the computational challenge when
solving the Wigner(-Boltzmann) transport equation.

Both stochastic and deterministic methods have been
applied to solve the one-dimensionalWigner equation. How-
ever, only the Wigner Monte Carlo method, using the
signed-particle technique [3,4], has made multi-dimensional
Wigner simulations viable thus far [5,6]; amulti-dimensional
approach is essential for the simulation of realistic semicon-
ductor devices.

The signed-particle technique is based on the generation
of (numerical) particles with + and − signs (weighting), as
determined by the Wigner potential, to solve the coherent
evolution problem. The number of particles increases expo-
nentially due to particle generation, which occurs at a rate
depending on the potential differences present in the spatial
domain. This dramatic increase of particles (and the associ-
ated computational load) is counteracted by the concept of
particle annihilation: particles with opposite signs, within the
same cell of the phase space, annihilate each other since they
have the same probabilistic future, but their contributions
to physical quantities computed from the Wigner function
cancel each other. Indeed, it is the annihilation step that has
made the signed-particle Wigner Monte Carlo simulations
computationally feasible.

The annihilation algorithm [7] requires the entire phase
space to be represented by an arraywhose size is proportional
to the dimensionality and resolution of the phase space—this
quickly results in exorbitant memory requirements, which
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easily exceed the limitedmemory of a single workstation [8].
The following (conservative) example clarifies this aspect:
a simulation setup is given by a two-dimensional spatial
domain of 100 nm×100 nm with a resolution ofΔx = 1 nm
and a three-dimensional k-space with 100 k-values per direc-
tion. The associated phase-space gridwould therefore consist
of 1002 × 1003 cells, each represented by an integer of (at
least) 2 bytes. This would demand a total memory consump-
tion of O (

210
)
bytes, i.e. approximately 20GB. Each MPI

process is assigned to a single CPU core. A supercomputer
node typically consists of 16 cores and 32–64GBofmemory;
each core has 2–4GB of memory available, which is insuffi-
cient for a domain replication in each process. Although the
available node memory is expected to increase in the future,
so is the number of computing cores, essentially keeping the
memory-per-core-ratio constant. Due to this fact—in addi-
tion to the already significant computational demands—an
efficient distributed parallel computation approach (limiting
the memory demand to a maximum of around 2–4GB per
MPI process) is crucial to facilitate the use of Wigner simu-
lations for realistic, multi-dimensional device structures.

Conventional parallelization approaches for Monte Carlo
methods split the particle ensemble amongst computational
units, where each subensemble can be treated completely
independently and is therefore termed embarrassingly par-
allel [9]. This approach offers excellent parallel efficiency,
but necessitates domain replication when working in a
distributed-memory context via the message passing inter-
face (MPI)—the de facto standard for large-scale paral-
lel computations—to avoid additional communication. An
approach that requires domain replication is not feasible for
the Wigner Monte Carlo method due to the huge memory
demands associated with the annihilation algorithm. The
necessity for domain replication is avoided by a spatial
domain-decomposition approach and has been introduced for
theWignerMonteCarlomethod in an one-dimensional simu-
lation setting [8] and successfully applied to two-dimensional
simulations [10]. The implementations use MPI and are
based on theWigner EnsembleMonteCarlo simulator,which
is part of the free open source ViennaWD simulation pack-
age [11].

In this work we investigate the feasibility of a block
domain decomposition for two-dimensional problems and
evaluate its performance relative to the slab domain decom-
position approach used in [10] and provide guidance towhich
domain decomposition approach is best suited for highly
memory-intensive, two-dimensional Wigner Monte Carlo
quantum simulations. The slab decomposition approach is
first summarized in Sect. 2, whereafter the block decomposi-
tion approach is introduced in Sect. 3. The parallel efficiency
is evaluated based on the execution times of a representative,
two-dimensional, physical example in Sect. 4 upon which
our conclusions are drawn.

2 Slab decompositioning

The so-called slabor one-dimensional decompositionmethod
partitions the simulation domain in one direction, whereas
the second direction (in a two-dimensional setting) is kept
untouched (Fig. 1). This method has been successfully
applied to one- and two-dimensional Wigner simulations [8,
10].

This slab decomposition approach has two principal lim-
itations: Firstly, the maximum number of subdomains/pro-
cesses that can be used is limited by the number of mesh
points in the (single) direction of decompositioning—each
slab has to be at least one mesh cell wide. Secondly, memory
intensive applications are more likely to hit a memory-per-
process limitwith a slab decomposition approach, as only one
dimension is partitioned. This memory limitation becomes
more relevant for three-dimensional simulation cases, due to
the drastic increase in memory demands. Despite these limi-
tations, the slab decomposition approach has proven to be an
attractive domain decomposition technique providing excel-
lent parallel scalability for two-dimensional problems [10].
This especially holds true in cases where the decomposi-
tioning is aligned with the (dominant) direction of particle
propagation,meaning that themajority of particles propagate
in the unpartitioned direction. This minimizes the amount of
data to be communicated, which is advantageous to parallel
scalability.

To enable particles to seamlessly propagate through
the decomposed spatial domain, a communication layer is
required to enable the transfer of incoming and outgoing
particles at every time step between neighboring subdomains

Fig. 1 A uniform slab decomposition approach uses overlap areas
(blue) to identify and transmit cross-subdomain (red) particles. n refers
to the MPI rank, which also identifies the subdomain (Color figure
online)
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(each assigned to one MPI process). A slab decomposition,
using N subdomains, requires Tslab MPI communication
channels (i.e. send and receive operations), to be established
during each time step and is given by Tslab = 4 · (N − 1);
each interior subdomain has to deal with two incoming
and two outgoing connections and the two boundary sub-
domains have to handle only one incoming and one outgoing
connection each. Utilizing, for instance, 32 MPI processes
(N = 32) requires a total number of Tslab = 124 point-
to-point communications for each time step. Although these
communication channels are not collective communications
(i.e. N × N )—each MPI process only has to communicate
with its immediate neighbors andnot all other processes—the
overhead introduced to first establish these communication
channels is unavoidable and potentially limits scalability. The
impact of the communication setup overhead is felt even
more, if the transmitted data volume is small as the commu-
nication is primarily limited by latency instead of bandwidth.

3 Block decompositioning

The logical next step to advance a slab decomposition
approach is to also partition the second dimension, extend-
ing the method to a block or two-dimensional decomposition
approach. A block decomposition approach promises an
improved per-process communication volume over a slab
decomposition approach [12], making it an interesting can-

Fig. 2 A uniform block decomposition approach uses overlap areas
(blue) to identify and transmit cross-subdomain (red) particles. n refers
to the subdomain identifier, i.e., the MPI process rank, and Xparts
denotes the number of subdomains in x-direction (Color figure online)

Fig. 3 Sixteen (non-identical) acceptor dopants forming a potential
profile with peaks between 0.3 and 0.4 eV

Fig. 4 The particle generation rate (γ [s−1]) of the associated poten-
tial profile (Fig. 3). The generation is concentrated around the placed
dopants

didate for a parallel signed particle Wigner Monte Carlo
method.

The partitioning of the second dimension requires addi-
tional logic to handle the communication for the exchange
of particles moving between the subdomains. Aside from the
obvious communication channels in the cardinal directions,
the movement of particles in the diagonal directions must
also be accounted for (Fig. 2).

The decomposition scheme assigns the rank (process ID)
of theMPI processes in an incremental fashion, starting from
the bottom left, increasing from left to right and from bottom
to top. Due to this specific assignment scheme, each process
can identify its direct neighbors by using its own rank and
the number of subdomains in the x- and/or y-direction. For
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Fig. 5 Normalized density (i.e. probability) at 0 fs, showing threewave
packets located in the upper left area, serving as the initial condition.
White circles denote locations of dopants

Fig. 6 Normalized density (i.e. probability) at 10 fs, showing the wave
packets being warped by the (non-local) influence of the acceptor
dopants. White circles denote locations of dopants

instance, the top neighbor MPI process can be identified by
adding the number of subdomains in the x-direction (Xparts)
to the rank of the considered process. The other neighbors
can be computed analogously.

After each time step, everyMPI process evaluates all of its
transfer boundaries, i.e., boundaries which are in the interior
of the simulation domain and require incoming and outgo-
ing communication to facilitate particle movement between
processes. EachMPI process identifies particles in its particle
subsetwhichwill leave its subdomain in the next time step(s):
particles must be located within a predetermined transfer
overlap area (blue region in Fig. 2) and have a momentum
directed towards a neighboring subdomain. Every bound-

Fig. 7 Normalized density (i.e. probability) at 50 fs, showing a sig-
nificant change in the shape of the wave packet; interference patterns
become evident. White circles denote locations of dopants

Fig. 8 Normalized density (i.e. probability) at 300 fs, showing a com-
plete diffusion of the wave packets across the entire domain. White
circles denote locations of dopants

ary of the subdomain is checked by each MPI process: four
transfer boundaries for the interior subdomains, three at the
vertical or horizontal domain boundaries, and two at the
corner subdomains. Non-blocking point-to-point communi-
cations are used to potentially overlap communication with
computation for increased efficiency.

A block decomposition, using N subdomains, requires
Tblock MPI communication channels to be established during
each time step: Tblock = 16 ·Ninner +10 ·Nbnd +6 ·Ncorner ;
each interior subdomain (inner) has to deal with a total of
16 connections (4 in cardinal and 4 in diagonal directions
for both send and receive operations), each domain bound-
ary subdomain (bnd) has to handle a total of 10 connections
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Fig. 9 Total number of particles at 0 fs.White circles denote locations
of dopants

Fig. 10 Total number of particles at 10 fs. White circles denote loca-
tions of dopants

(3 in cardinal and 2 in diagonal directions for both send and
receive operations), and each corner subdomain (corner)
has to process 6 connections (2 in cardinal and 1 in diag-
onal directions for both send and receive operations). The
number of interior, boundary, and corner subdomain can be
computed by Ninner = N −2(Xparts+Yparts−2), Nbnd =
2(Xparts + Yparts − 4), and Ncorner = 4, where Yparts
represents the number of subdomains in the y-direction. As
an example: a simulation utilizing 32 MPI processes and a
8 × 4 (Xparts = 8,Yparts = 4) decompositioning scheme
requires Tblock = 376 point-to-point communications for
each time step. Tblock is approximately three times larger
than Tslab for this particular scenario, i.e. three times as
many communication channels need to be set up at every
time step, incurring a considerable additional communication

Fig. 11 Total number of particles at 50 fs. White circles denote loca-
tions of dopants

Fig. 12 Total number of particles at 300 fs.White circles denote loca-
tions of dopants

overhead. Furthermore, considering strong scaling (i.e. the
number ofMPI processes and thus the number of subdomains
increases for a given problem), the majority of subdomains
are interior subdomains and therefore the number of com-
munication channels increases significantly.

Aside from the communication overhead, the logic identi-
fying the particles leaving a particular subdomain introduces
substantial additional overhead, as the overlap areas have to
be specialized to cover diagonal cases and the second cardi-
nal direction as compared to the simpler slab decomposition
approach.

All in all, block decomposition reduces the requiredmem-
ory per MPI process and drastically increases the number of
MPI processes that can (potentially) be used, albeit at the
cost of introducing significant overhead, both for the MPI
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communication backend and the logic to drive the commu-
nication.

4 Results

This section evaluates the parallel execution performance
of the spatial decomposition approaches, presented in the
preceding sections, by considering the physical problem of
the evolution of three minimum-uncertainty wave packages
within a two-dimensional domain. Sixteen acceptor dopants
(positive charge) are spread over a 128 nm× 128 nm spatial
domain, which yields the potential profile shown in Fig. 3.
The particle generation rate γ is proportional to potential dif-
ferences (through the definition of the Wigner potential) and
is depicted in Fig. 4. The particle generation is concentrated
around each dopant within the region corresponding to the
coherence length. Here, a coherence length of 30 nm is used
throughout, resulting in a discrete k-space with a resolution
of Δk = π

30 nm . Reflective boundary conditions are used,
therefore, no particles leave the simulation domain.

The initial condition, shown in Fig. 5, is specified by three
minimumuncertaintywave packets placed at (50nm, 50nm),
(50nm, 110nm), and (70nm, 50nm), having thewavevectors
(6Δk, 3Δk), (−4Δk,−6Δk), and (5Δk,−4Δk), respec-
tively. Each wave packet is initialized using 5×106 particles.
The evolution of the wave packets over 300 fs, using a 0.1 fs
time step, is shown in Figs. 5, 6, 7, and 8. The wave packets
get split up by the potential peaks; interference patterns also
become visible.

The total number of particles gives an indication of the
computational load and also its distribution in the domain.
The maximum number of particles for the entire domain is
limited to 64 × 107 particles; the local maximum for each
process depends on the total number of processes used.

Figures 9, 10, 11, and 12 depicts the total number of par-
ticles (the sum of positively and negatively signed particles)
for different time steps as computed by 64 processes. Over
time, the entire simulation domain is filledwith particleswith
local maxima occurring around each dopant, according to the
generation rate γ (cf. Fig. 4).

A comparison between the density in Figs. 5, 6, 7, and
8 and the corresponding number of particles in Figs. 9, 10,
11, and 12 reveals that there can be a significant number of
particles in regions with a very low density since positive and
negative particles can compensate each other when calculat-
ing physical quantities, like the density.

All simulations presented were performed on the VSC-
3 supercomputer [13], which consists of 2020 nodes. Each
node provides 16 cores (two 8-core Intel Xeon IvyBridge-EP
E5-2650v2, 2.6GHz, Hyperthreading) and 64GB of system
memory; the nodes are connected via an Intel QDR-80 dual-
link high-speed InfiniBand fabric.
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Fig. 13 Comparison of the execution times between the slab and the
block decomposition approaches
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Fig. 14 Load balance of the slab decomposition approach for 64
processes at 100 fs. Horizontal line denotes the mean number of parti-
cles

The simulation was benchmarked using 16, 32, 64, and
128 MPI processes. Figure 13 depicts the parallel execu-
tion performance for the slab and the block decomposition
approach. The slab decomposition technique offers a signif-
icantly better parallel execution performance. As discussed
in Sect. 3, the block decomposition method introduces sig-
nificant overhead, resulting in inferior performance relative
to the slab decomposition approach. Especially for 128 MPI
processes, the overhead triggers a stagnation of the scalabil-
ity as the number of particles (work load) per process is too
small relative to the additional communication overhead.

Figures 14, 15, 16, 17, 18, and 19 show the load balance of
the slab and the block decomposition approach at 100, 200,
and 300 fs. The load balance between the processes shows a
variation over time, which is due to the annihilation process.
Typically, an annihilation step improves the load balance as
the processeswith the largest number of particles also experi-
ence the strongest reduction, effectively leveling the number
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Fig. 15 Load balance of the slab decomposition approach for 64
processes at 200 fs. Horizontal line denotes the mean number of parti-
cles
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Fig. 16 Load balance of the slab decomposition approach for 64
processes at 300 fs. Horizontal line denotes the mean number of parti-
cles
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Fig. 17 Load balance of the block decomposition approach for 64
processes at 100 fs. Horizontal line denotes the mean number of parti-
cles
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Fig. 18 Load balance of the block decomposition approach for 64
processes at 200 fs. Horizontal line denotes the mean number of parti-
cles
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Fig. 19 Load balance of the block decomposition approach for 64
processes at 300 fs. Horizontal line denotes the mean number of parti-
cles

of particles between the processes. The annihilation inter-
vals for the two decomposition approaches are not the same,
which can result in different dynamics of the load balance,
but neither one of the two decomposition approaches can be
singled out as having a superior load balancing, compared
to the other. However, the logic required to drive the block-
based communication as well as the communication itself
takes about 1.5–4 times longer for the given problem than
with the slab decomposition technique.

5 Conclusion

We have investigated the potentially promising uniform
block decomposition approach for two-dimensional Wigner
Monte Carlo quantum simulations and compared it with our
uniform slab decomposition technique. The results show that
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the overhead introduced by the block-based communication
layer significantly limits parallel performance. For the type
of simulation problem considered here, the block decompo-
sition method shows inferior performance when compared
to the conventional slab decomposition technique, which, on
the other hand, again confirmed its excellent parallel per-
formance. This result is especially interesting, as it shows
that the much simpler to implement slab decomposition
method is an excellent method for parallelizing highly mem-
ory intensive two-dimensionalWignerMonte Carlo quantum
simulations based on the signed particlemethod. Futurework
will focus on load-balancing approaches, specifically aiming
towards three-dimensional problems.
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