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Abstract An analysis of the possible formulations of the
Wigner equation under a general gauge for the electric field
is presented with an emphasis on the computational aspects
of the problem. The numerical peculiarities of those formu-
lations enable alternative computational strategies based on
existing numericalmethods applied in theWigner formalism,
such as finite difference or stochastic particle methods. The
phase space formulation of the problem along with certain
relations to classical mechanics offers an insight about the
role of the gauge transforms in quantum mechanics.

Keywords Wigner function · Electromagnetic potentials ·
Gauge transform

1 Introduction

Themotion of classical particles is governed by forces,which
at any instant act locally causing acceleration overNewtonian
trajectories. A charged particle, moving in an electromag-
netic medium experiences the Lorentz force, comprised by
the joint action of the electric and magnetic fields. Locally
means that the value of the force is determined by the phase
space position of the particle, i.e., the force and the particle
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share the same phase space location. Electric and magnetic
fields E and B are described by Maxwell’s equations, which
under certain initial/boundary conditions provide the six
unknown components of the two three-dimensional vector-
fields. The description of electromagnetic phenomena can be
simplified by the introduction of electromagnetic scalar and
vector potentials, A and φ, respectively, which reduce the
number of the unknown components to four.

B = ∇ × A; E = −∇φ − ∂A
∂t

(1)

In his seminal work [1] Lorenz begins with the equations
for the scalar and vector potentials and derives Maxwell’s
equations from these equations. Alternatively the derivation
begins from theMaxwell equations written in a general form
and yields electromagnetic potentials, which obey certain
relations, called gauges, which may be imposed addition-
ally, and in particular the Lorenz and Coulomb gauges. The
existence of such a freedom in determining the electromag-
netic potential reveals an important property of the Maxwell
equations: They are invariant under a gauge transform with
a given function χ :

A′ = A + ∇χ; φ′ = φ − ∂χ

∂t
(2)

From a classical point of view these potentials are a math-
ematical construct, aiming to simplify calculations, that is,
they contain no physical significance.

With the development of quantum mechanics this view-
point had to be changed. The Schrödinger equation, usually
formulated in terms of the potential energy V (r) = eφ(r)
(e refers to the elementary charge) prompts that not only the
first derivative, but all terms in the Taylor expansion of the
potential take part in the quantumevolution. The Schrödinger
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equation is based on the Hamilton function, which explicitly
depends on the vector potential via the kinetic momentum
p − eA, where p is the conjugate variable to the position,
that is the conjugate momentum. The transition to quantum
mechanics is established by replacing p with −i h̄∇. With
the help of a gauge transform (2), the Schrödinger equation
can be formulated explicitly in terms of the vector potential
A, even in the case of a zero magnetic field. We limit our
considerations to this case: B = 0 is assumed in the sequel.

An emblematic example about the importance of the gen-
eral gauge picture is related to the theoretical models for
analysis of Bloch electrons moving in solids under the influ-
ence of a homogeneous electric field F [2]. Those models are
relevant for the electron dynamics in superlattices and com-
prise effects related to the periodic potential and the electron
acceleration. The two possible ways of description, using
Wannier-Stark localized states [3] and accelerated Bloch
states (Houston states) [4] polarized the scientific society
into two parts, speculating about the correctness of the for-
mer or the latter approach. These are indeed very different:
The former is characterized by a discrete energy spectrum
accounting for the translational crystal symmetry (Wannier-
Stark ladder), while the latter by the continuous acceleration
of the wave vector in the crystal band structure, gives rise
to a periodic electron motion (Bloch oscillations). Finally
it has been shown that the Wannier-Stark picture (com-
pleted by interband Zener tunneling) is linked by an unitary
transform (and thus completely equivalent) to the Bloch rep-
resentation. An excellent analysis based on a Schrödinger
equation/density matrix approach is presented in [5]. In par-
ticular, the two pictures are related to a vector or a scalar
potential gauge respectively:

A = −Et; φ = 0; A = 0, φ = −E · r (3)

It is thus important to maintain quantummechanical descrip-
tions in the presence of scalar and vector potentials. From a
theoretical point of view the problem is particularly solved
for pure states: The solution of the Schrödinger equationwith
a vector potential can be related to the solution of the equation
without a vector potential by an exponential phase function
which is expressed as a line integral of A. Such a function
can be defined as it does not depend on the path of integration
if the magnetic field is zero.

The inclusion of the vector potential in more general,
mixed state approaches, as is the Wigner representation of
quantum mechanics, has a long tradition [6,7]; in partic-
ular a gauge-invariant Wigner function based on a unitary
transform was suggested decades ago [8]. The transform,
which can be viewed as amodification of the definition of the
Wigner function [9], actually eliminates the vector potential
term from the Wigner equation. The conjugate momentum
p used for the Wigner-Weyl transform now coincides with

the kinetic momentum, thus recovering the standard scalar
potential gauge Wigner picture [10]. Since also operators
must be modified accordingly, the approach gives an advan-
tage, if gauge-invariant operators are considered.

In this paper we analyze the choice of the gauge in the
Wigner picture from a different perspective: We focus on
the computational aspects of the problem. From our point
of view two gauge representations are equivalent, provided
that they involve comparable computational efforts. In this
sense an equation, where the action of the Wigner potential
is presented as a series expansion (cf. [10]), does not favor
numerical solution approaches and is thus primarily of aca-
demic interest.

An approach is suggested, which maintains the Wigner-
Weyl transform. We follow the standard way of derivation
of the Wigner formalism from the von-Neumann equation
for the density matrix [11]. The vector potential equation
for the density matrix in Sect. 2 is reformulated to derive
a unitary transform based on a general function G̃, which
is discussed in Sect. 2.1. The unitary transform provides an
educated guess for the density matrix suggested in Sect. 2.2.
The calculations in this section give rise to an equation
which is numerically solvable, i.e., the developed numerical
approaches to the standard Wigner equation can be formally
applied to this equation. Until this point, the approach is very
general, since it does not depend on the particular proper-
ties of G̃. A line integral particularization of G̃, presented in
Sect. 3, resembles some expressions known from the litera-
ture.

2 Vector potential evolution equations

We consider the evolution of a charged particle driven by
electric andmagnetic fields described by the vector and scalar
potentials A(r) and φ(r) = V (r)/e. The Hamiltonian is

H = 1

2m

(
p̂ − eA(r)

)2 + V (r) (4)

with p̂ = −i h̄∇r is the adjoined (to the position operator r̂)
momentum operator and m is the mass.

We pursue a phase space equation of motion in terms of
a Wigner function. The starting equation is the evolution
equation for the density operator ρ, which is obtained by
the commutator with the Hamiltonian, and has the operator
form:

i h̄
∂

∂t
ρ = [H, ρ]− = Hρ − ρH (5)

In a coordinate representation, the equation is expressed in
terms of the density matrix 〈r′|ρ|r′′〉 by applying 〈r′| to the
left and |r′′〉 to the right of (5):
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1

2m

[
∑

l

(
i h̄

∂

∂r ′
l

+ eAl
(
r′)

)2

−
∑

l

(
i h̄

∂

∂r ′′
l

− eAl
(
r′′)

)2
]

ρ
(
r′, r′′)

+ (
V

(
r′) − V

(
r′′)) ρ

(
r′, r′′) = i h̄

∂ρ
(
r′, r′′)

∂t
, (6)

where for convenience the index t has been skipped.
Equation (6) describes the evolution of a charged parti-

cle subject to interaction with scalar and vector potentials.
The equation holds for both pure and mixed states and thus
may include other operators acting on the density matrix,
accounting for alternative processes of interaction with the
environment, e.g., with phonons. We change the variables
r and r′ to the center of mass variables x = x1, x2, x3 and
s = s1, s2, s3, needed for the Wigner-Weyl transform:

x = r′ + r′′

2
, s = r′ −r′′ ↔ r′ = x+ s

2
, r′′ = x− s

2
(7)

Based on this new set of variables, Eq. (6) is formulated as
follows:

∂ρ
(
x + s

2 , x − s
2

)

∂t

= 1

2mih̄

[
∑

l

{
−2h̄2

∂

∂sl

∂

∂xl

+ ieh̄

(
∂

2∂xl
Al

(
x + s

2

)
+ ∂

∂sl
Al

(
x + s

2

)

+ Al

(
x + s

2

) ∂

∂2xl
+ Al

(
x + s

2

) ∂

∂sl

)

+ ieh̄

(
∂

2∂xl
Al

(
x − s

2

)
− ∂

∂sl
Al

(
x − s

2

)

+ Al

(
x − s

2

) ∂

∂2xl
− Al

(
x − s

2

) ∂

∂sl

)

+ e2A2
l

(
x + s

2

)
− e2A2

l

(
x − s

2

)}

+ 2m
(
V

(
x + s

2

)
− V

(
x − s

2

))]
ρ

(
x + s

2
, x − s

2

)

(8)

We further assume the existence of the functionsGl such that

∂Gl(y)
∂yl

= e

h̄
Al(y) . (9)

It is important to note that Gl are in general three inde-
pendent functions, namely they may be bound into a relation
only via the gauge obeyed by Al . In this way the definition of

the functions Gl introduces additional - to any gauge trans-
form - degrees of freedom. In the particular case of Gl = G
∀l we obtain the electromagnetic vector potential expressed
as a gradient of the function G. This corresponds to the con-
sidered case of a zero magnetic filed, so that it is consistent
to continue with such a definition ofG. However, it is impor-
tant to keep the general definition which may give a deeper
insight in the properties of the derived equations.

With the help of (9) it is shown that the second and the
third term on the right of (8) give rise to the equalities:

i2h̄2
(

∂2

∂sl∂xl
Gl

(
x ± s

2

)
− Gl

(
x ± s

2

) ∂2

∂sl∂xl

)

= ±i2h̄2
[

∂2

∂sl∂xl
,Gl

(
x ± s

2

)]

−

By denoting

G̃l

(
x + s

2
, x − s

2

)
= Gl

(
x + s

2

)
− Gl

(
x − s

2

)
, (10)

we can rewrite Eq. (8) as follows:

∂ρ
(
x + s

2 , x − s
2

)

∂t

= 1

2mih̄

[
∑

l

{
− 2h̄2∂2

∂sl∂xl

+
[
i2h̄2∂2

∂sl∂xl
, G̃l

(
x + s

2
, x − s

2

)]

−
+ e2

(
A2
l

(
x + s

2

)
− A2

l

(
x − s

2

))}

+ 2m
(
V

(
x + s

2

)
− V

(
x − s

2

))]
ρ

(
x + s

2
, x − s

2

)

(11)

An application of the Wigner–Weyl transform to this equa-
tion provides the corresponding vector-potential Wigner
equation. The first and the last terms to the right give rise
to the diffusion component in the Liouville operator and the
Wigner potential operator. Interestingly, the third term has
the same structure as the subsequent potential term. Thus,
the the two terms can be associated and processed together.
More details about this procedure are discussed in the next
section.

Novel from a computational point of view is the commu-
tator term, based on the second mixed derivatives ∂2/∂xl∂sl
and the three components of the vector functionGl . This for-
mulation already allows to apply theWigner–Weyl transform
and thus enables to solve the obtained equation via numerical
solution schemes, such as the finite difference method. How-
ever, this commutator term triggers further reformulations of
the task as discussed in the next section.
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2.1 Unitary transform

The commutator corresponds to a mapping of the differential
operator ∂2/∂xl∂sl subject to a canonical transform pro-
vided by the element G̃ of the dynamical algebra of quantum
operators. The transform U (α) is introduced by the unitary
operator eiαG̃ , where α is a real parameter. We recall that the
mapping of any given operator b̂ is

b̂(α) = U (α)b̂ = e−iαG̃ b̂eiαG̃ , (12)

which is defined as the series:

b̂(α) = b̂ + (iα)
[
b̂, G̃

]

− + (iα)2

2!
[[

b̂, G̃
]

− , G̃

]

−

+ (iα)3

3!
[[[

b̂, G̃
]

− , G̃

]

−
, G̃

]

−
+ · · · (13)

By taking the derivative of this series with respect to α one
obtains:

˙̂b(α) = i
[
b̂, G̃

]

− ,

which is in accordance with (12). We recall that such a
commutator defines an automorphism of the algebra D of
the quantum operators - a mapping of D into itself, which
preserves the algebraic structure, namely if b̂ = f (q̂, p̂),
q̂(α) = U (α)q̂ and p̂(α) = U (α) p̂ then

b̂(α) = U (α)b̂ = U (α) f
(
q̂, p̂

) = f
(
q̂(α), p̂(α)

)
.

This prompts that the appearances of the commutator ele-
ments in the differential part of (11) is a result of such a
transform, which gives rise to the following approach.

2.2 Approach for the density matrix

We assume that

α = 1; G̃
(
x + s

2
, x − s

2

)
=

∑

m

G̃m

(
x + s

2
, x − s

2

)

so that the density matrix contains the factor:

ρ
(
x + s

2
, x − s

2

)
= eiG̃(x+ s

2 ,x− s
2 )ρ′ (x + s

2
, x − s

2

)
(14)

Replacing (14) in (11), after lengthy calculations eval-
uating the action of the consecutive terms, we obtain the
following equation for the primed density matrix:

[
i h̄

m

∑

l

∂

∂sl

∂

∂xl
+ i h̄

2m

∑

l; k,m �=l

(
∂G̃m

∂xl

∂G̃k

∂xl

(
x + s

2

)

−∂G̃m

∂xl

∂G̃k

∂xl

(
x − s

2

))

+ 1

i h̄

(
V

(
x + s

2

)

−V
(
x − s

2

)) ]
ρ′ (x + s

2
, x − s

2

)

= e−i G̃ ∂eiG̃ρ′ (x + s
2 , x − s

2

)

∂t
(15)

We achieved to a large extend our goal to reformulate the
equation into a convenient form for numerical treatment.
Indeed, both, the second term in the first line of (15) and the
time derivative of G̃, have the same structure as the potential
term and can formally be associated to it:

V ′ = V − h̄2

2m

∑

l; k,m �=l

∂G̃m

∂xl

∂G̃k

∂xl
+ h̄

∑

m

∂Gm

∂t
(16)

Now the Wigner–Weyl transform of V ′ provides the Wigner
potential. Fromanumerical point of view the assignment (16)
demonstrates the full computational equivalence between the
derived equation and the standard Wigner equation. Any
particular numerical technique used to solve the standard
equation can be applied for finding the solution of (15).
Moreover this holds true for a generic solution of Eq. (9).
The analysis of this equation and the analysis of the vector
function G is beyond the scope of this work. We continue
by specifying the concrete form of G in (9) with the help
of a line integral. This allows to derive a well known for-
mulation of the Wigner picture in the presence of a vector
potential, which in particular demonstrates the correctness
of the proposed approach.

3 The line integral formulation of G̃

We consider the standard formulation of G in terms of a line
integral defined by the curve y = y(ξ), ξ ∈ R:

Gm(r) = e

h̄

b∫

a

Am(y1(ξ), y2(ξ), y3(ξ))
dym
dξ

dξ ;

y(a) = o arbitrary point; y(b) = r (17)

Defined in such a way by a stationary vector potential
A �= A(t), G satisfies (9):

∇G(r) = e

h̄
A(r); or

∂Gm(r)
∂rk

= e

h̄
δmk Ak(r) (18)
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Furthermore, with the help of (10), G̃ can be expressed
as:

G̃ = e

h̄

∫ r+ s
2

r− s
2

A(y) · dy = e

h̄

∫ 1/2

−1/2
A(r + sτ) · sdτ (19)

We note that A must be a rotationless quantity in order for
the definition to be independent of the line path, which is in
accordance with the considered case of a zero magnetic field.
As asserted by (18), the derivative of Gm with respect to a
differential increment along the k direction is zero.

Accordingly, the second term in (15) becomes zero. In
particular, after the Wigner–Weyl transform we obtain the
zero vector potential gauge Wigner picture:

f ′
w(x,k) = 1

(2π)3

∫
dse−ik·sρ′ (x + s

2
, x − s

2

)
; (20)

∂ f ′
w(x,k)

∂t
+ − h̄

m
k · ∇x f

′
w(x,k)

=
∫

dk′Vw

(
x,k − k′) f ′

w

(
x,k′) ; (21)

Vw(x,k) = 1

i h̄(2π)3

∫
dse−is·(k−k′)

(
V

(
x + s

2

)

−V
(
x − s

2

))
(22)

This links the vector potentialWigner function to the solution
of the standard (scalar potential)Wigner equationby aunitary
transform defined by the particular G̃ (19). This equation is
well known from a computational point of view. A variety of
stochastic and deterministic techniques for finding f ′

w have
been developed in the last three decades [12–16].

Finally, we rewrite Eq. (20) by using (14) and take the con-
crete form of G̃ in (19) into account to obtain the following
definition of the Wigner function:

f ′
w(x,k) = 1

(2π)3

∫
dse

−is·
(

k+ e
h̄

1/2∫

−1/2
A(x+sτ)dτ

)

×ρ
(
x + s

2
, x − s

2

)
(23)

This result is equivalent to the transform giving rise to a
gauge invariant Wigner function suggested sixty years ago
by Stratonovich [8] and represents the main expression in
theories considered by Serimaa et al. [10] and Haas et al. [9].
It has the following meaning: The unitary transform e−i G̃ as
applied to the vector potential density matrix ρ on the left
of (14) gives rise to a transition to f ′, which is the gauge
invariant Wigner function due to the lack of dependence on
the vector potential. As imposed by the trace operation, in
the transition from wave to phase space quantum mechan-
ics, the phase space functions corresponding to the physical

quantities are also modified in this transition. This is espe-
cially convenient, if expectation values of gauge-invariant
operators must be evaluated. Such operators, e.g., functions
of kinetic momentum, transfer into the well known counter-
parts of the scalar potential Wigner picture.

4 Summary

Thepresented analysis of theWigner equation in the presence
of electromagnetic potentials enables three computational
strategies: (i) To develop numerical approaches for the solu-
tion of (11), where most concepts of the existing numerical
techniques to the Wigner equation can be reused; (ii) To use
the existing numerical approaches to solve (15), which, with
the help of (16), formally resembles the standard Wigner
theory. Here, a generic function G̃, solution of (9) may be
considered. (iii) To specify G̃ as a line integral and to use
(23). The phase space formulation of the problem offers an
insight about the role of the gauge transforms in quantum
mechanics. Indeed, one can see that V ′ (16) appears in the
same way for the two gauges (3). Then, by using the fact
that for up to quadratic potentials the action of the Wigner
potential is equivalent to the action of a force term, usually
known as the classical limit of the Wigner equation [11]. We
conclude about the equivalence of the two gauge approaches.
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