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Introduction: Graphene is a honeycomb carbon ma-

terial which is now successfully applied as a channel in

graphene FETs (GFETs) [1–5]. However, stability of

modern GFETs is limited by a considerable hysteresis on

the gate transfer characteristics [3]. Although several stud-

ies on this issue have been reported [3,6–9], different phys-

ical explanations have been put forward. Here we intro-

duce an experimental technique allowing for a systematic

study of the hysteresis in GFETs and show that in our de-

vices this issue is dominated by thermally activated charg-

ing/discharging of oxide traps.

Devices: In our single-layer double-gated GFETs (L =

3–6 µm) the CVD graphene channel [10] is sandwiched

between thermally oxidized SiO2 as a back gate oxide

(tox = 85nm) and e-beam evaporated SiO2 as a top gate

oxide (tox = 12nm), see Fig. 1. The source/drain pads

are made of a thermally evaporated Cr(20nm)/Au(80nm)

stack and the top gate contact is 120nm thick Al.

Experiment: In the spirit of [5], our measurements

were performed in a vacuum (∼5×10−6 torr). The hystere-

sis was investigated by measuring the back gate transfer

(Id-Vbg) characteristics at Vd=0.1V. By using different step

voltages Vstep and sampling times tstep, we have varied the

measurement frequency f=1/(N ·tstep) with N=2((Vbgmax-

Vbgmin)/Vstep+1) between 10−4 and 102 Hz. This allowed us

to demonstrate that the dependence of the Dirac point volt-

age shift ∆VD =V+
D
−V−

D
versus f presents a unique finger-

print of the hysteresis dynamics. For a reliable determina-

tion of the hysteresis origin, we have measured the ∆VD( f )

dependences using different sweep ranges Vbgmin. . .Vbgmax

at T = 85◦C and T = 165◦C.

Results and Discussions: The output (Id-Vd) charac-

teristics of our GFETs (Fig. 2) show some signs of sat-

uration for larger Vd and Vbg. At the same time, the Id-

Vbg characteristics (Fig. 3) exhibit an improvement after

the Id-Vd sweeps. The latter is attributed to self-annealing

of graphene at high Id [11], which allowed us to achieve

a better reproducibility of all further measurements. In

Fig. 4 we show that the Id-Vbg characteristics exhibit a

clockwise hysteresis for low and high f , while a counter-

clockwise hysteresis is observed for moderate f (cf. [6,7]).

As shown in Fig. 5, the resulting charged trap density

shift ∆NT = Cbg∆VD/q versus f is qualitatively similar

for different devices. Namely, ∆NT becomes positive and

reaches a maximum at f ∼ 10−3–10−2 Hz. In Fig. 6 we

demonstrate that at higher T the ∆NT( f ) dependence is

shifted towards higher f , which is consistent with ther-

mally activated charging/discharging processes. Namely,

at low f discharging of back gate oxide defects is domi-

nant, leading to a negative ∆NT, an effect which becomes

larger at higher T and decreases for higher f . Although

for very fast sweeps ∆NT should simply reach zero, we

observe a change of the ∆NT sign while passing through a

maximum. This is likely due to thermally activated charg-

ing of the defects situated in the top gate oxide, which in-

troduces additional positive charges. Interestingly, in some

cases at T = 85◦C there is a second reversal of the trend of

the hysteresis at very high f , which suggests a charging of

the top gate defects with smaller time constants.

In Fig. 7 we show that the ∆VD( f ) dependences are af-

fected by the sweep range in their low f branch, especially

at T = 165◦C. This behaviour can be understood based on

Fig. 8. At Vbgmin = −40V the Fermi level EF is close to the

back gate oxide valence band. Hence, for low f most of

the defects are charged before Vbg = V+
D

is reached. Then,

a significant fraction of them is either discharged when

Vbgmax = 40V is reached or continue to discharge during

the reversed sweep. As a result, the amount of charged

traps at Vbg = V−
D

is much smaller than it was at Vbg = V+
D

(Fig. 8a), leading to a large clockwise hysteresis. How-

ever, if Vbgmin = −20V, the initial EF lies higher and the

time spent in the hole conduction region is smaller. Hence,

the concentration of charged defects at Vbg =V+
D

is reduced

(Fig. 8b). Thus, although sweeping till Vbgmax = 40V and

back to Vbg = V−
D

discharges most of them, the observed

hysteresis is smaller. Finally, for Vbg =-40. . .20V (Fig. 8c)

the amount of charged defects at Vbg =V+
D

is only insignif-

icantly larger than at Vbg =V−
D

, since a low Vbgmax does not

allow for efficient discharging. Hence, only a very small

hysteresis is visible. Obviously, at lower T both charging

and discharging are less efficient, making the difference

smaller (Fig. 7a). At the same time, a weak impact of the

Vbg sweep range on ∆VD( f ) right from the maximum fur-

ther evidences the contribution of top gate defects.

Conclusions: We have suggested an experimental

technique allowing for a simple and systematic bench-

marking of the hysteresis in GFETs. Using this technique

allowed us to demonstrate that in our GFETs the hysteresis

is dominated by thermally activated oxide traps.
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Fig. 1: Schematic layout of our

single-layer double gated GFETs.

S/D pads are made of Au/Cr and

the top gate contact of Al.

Fig. 2: Output (Id-Vd) characteristics

measured at different back gate volt-

ages exhibit a linear region and some

signs of saturation for large Vd and Vbg.

Fig. 3: The back gate transfer (Id-

Vbg) characteristics dramatically im-

prove after Id-Vd sweeps. This is due to

self-annealing of graphene at high Id.

Fig. 4: The Id-Vbg characteris-

tics exhibit a hysteresis which re-

verses at moderate measurement

frequency f . We express the hys-

teresis width as a Dirac voltage

shift ∆VD = V+
D
−V−

D
= q∆NT/Cbg.

Fig. 5: The hysteresis width versus the

measurement frequency f =1/(N ·tstep)

obtained for different devices exhibits

a maximum, around which the hystere-

sis changes sign. This is likely due to

charging of top gate defects.

Fig. 6: At higher T the maximum is

shifted towards higher f , i.e. the time

constants of both charging/discharging

of traps in the back gate oxide and

charging of their counterparts in the

top gate oxide become smaller.

Fig. 7: The ∆VD( f ) dependences

measured at T = 85◦C (a) and 165◦C

(b) using different sweep ranges. At

higher T the low f part is more sen-

sitive to the sweep range, since charg-

ing/discharging of the back gate oxide

traps is more efficient.

Fig. 8: The hysteresis dynamics at T = 165◦C and f = 10−3 Hz. (a) For Vbg =

-40. . .40V the time constants of most defects are small compared to the total

sweep time. Hence, they can be charged/discharged and the hysteresis is large.

(b) For Vbg = -20. . .40V only a limited number of traps will be charged in

the hole conduction region. Hence, their discharging will lead to a smaller

hysteresis. (c) Finally, for Vbg = -40. . .20V the amount of charged traps is

large, but most of them will not discharge, leading to the smallest hysteresis.
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