A Systematic Study of Charge Trapping in Single-Layer Double-Gated GFET's
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Introduction: Graphene is a honeycomb carbon ma-
terial which is now successfully applied as a channel in
graphene FETs (GFETs) [1-5]. However, stability of
modern GFETs is limited by a considerable hysteresis on
the gate transfer characteristics [3]. Although several stud-
ies on this issue have been reported [3,6-9], different phys-
ical explanations have been put forward. Here we intro-
duce an experimental technique allowing for a systematic
study of the hysteresis in GFETs and show that in our de-
vices this issue is dominated by thermally activated charg-
ing/discharging of oxide traps.

Devices: In our single-layer double-gated GFETSs (L =
3—6 um) the CVD graphene channel [10] is sandwiched
between thermally oxidized SiO, as a back gate oxide
(tox =85nm) and e-beam evaporated SiO, as a top gate
oxide (fox =12nm), see Fig. 1. The source/drain pads
are made of a thermally evaporated Cr(20nm)/Au(80nm)
stack and the top gate contact is 120nm thick Al.

Experiment: In the spirit of [5], our measurements
were performed in a vacuum (~ 5x 10~ torr). The hystere-
sis was investigated by measuring the back gate transfer
(14-Vog) characteristics at Vg =0.1V. By using different step
voltages Viep and sampling times 7., wWe have varied the
measurement frequency f=1/(N-tgep) With N=2((Vogmax-
Vbemin)/Vsiep+1) between 10~* and 107 Hz. This allowed us
to demonstrate that the dependence of the Dirac point volt-
age shift AVp = V; —V|J versus f presents a unique finger-
print of the hysteresis dynamics. For a reliable determina-
tion of the hysteresis origin, we have measured the AVp(f)
dependences using different sweep ranges Vhgmin. - - Vogmax
atT =85°Cand T = 165°C.

Results and Discussions: The output (Z3-Vy) charac-
teristics of our GFETs (Fig. 2) show some signs of sat-
uration for larger Vy and V. At the same time, the Iy-
Vb characteristics (Fig. 3) exhibit an improvement after
the 13-Vy sweeps. The latter is attributed to self-annealing
of graphene at high I [11], which allowed us to achieve
a better reproducibility of all further measurements. In
Fig. 4 we show that the I3-W, characteristics exhibit a
clockwise hysteresis for low and high f, while a counter-
clockwise hysteresis is observed for moderate f (cf. [6,7]).
As shown in Fig. 5, the resulting charged trap density
shift ANt = GygAVp/q versus f is qualitatively similar
for different devices. Namely, ANT becomes positive and
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reaches a maximum at f ~ 1073-10"2Hz. In Fig. 6 we
demonstrate that at higher 7' the ANt(f) dependence is
shifted towards higher f, which is consistent with ther-
mally activated charging/discharging processes. Namely,
at low f discharging of back gate oxide defects is domi-
nant, leading to a negative ANt, an effect which becomes
larger at higher 7" and decreases for higher f. Although
for very fast sweeps ANt should simply reach zero, we
observe a change of the ANt sign while passing through a
maximum. This is likely due to thermally activated charg-
ing of the defects situated in the top gate oxide, which in-
troduces additional positive charges. Interestingly, in some
cases at 7' = 85°C there is a second reversal of the trend of
the hysteresis at very high f, which suggests a charging of
the top gate defects with smaller time constants.

In Fig. 7 we show that the AVp(f) dependences are af-
fected by the sweep range in their low f branch, especially
atT = 165°C. This behaviour can be understood based on
Fig. 8. At Vogmin = —40'V the Fermi level EF is close to the
back gate oxide valence band. Hence, for low f most of
the defects are charged before Vpg = Vg is reached. Then,
a significant fraction of them is either discharged when
Vbgmax = 40V is reached or continue to discharge during
the reversed sweep. As a result, the amount of charged
traps at Vg = Vy is much smaller than it was at Vg = Vg
(Fig. 8a), leading to a large clockwise hysteresis. How-
ever, if Vogmin = =20V, the initial Ef lies higher and the
time spent in the hole conduction region is smaller. Hence,
the concentration of charged defects at Vyg = V3 is reduced
(Fig. 8b). Thus, although sweeping till Vhgmax =40V and
back to Vpe = Vo discharges most of them, the observed
hysteresis is smaller. Finally, for Vg =-40...20V (Fig. 8c)
the amount of charged defects at Vy; = V;J is only insignif-
icantly larger than at Vg = Vi, since a low Vhgmax does not
allow for efficient discharging. Hence, only a very small
hysteresis is visible. Obviously, at lower T both charging
and discharging are less efficient, making the difference
smaller (Fig. 7a). At the same time, a weak impact of the
Vbg sweep range on AVp(f) right from the maximum fur-
ther evidences the contribution of top gate defects.

Conclusions: We have suggested an experimental
technique allowing for a simple and systematic bench-
marking of the hysteresis in GFETs. Using this technique
allowed us to demonstrate that in our GFETs the hysteresis
is dominated by thermally activated oxide traps.
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Fig. 1: Schematic layout of our Fig. 2: Output (I3-Vy) characteristics Fig. 3: The back gate transfer (I3-
single-layer double gated GFETs. measured at different back gate volt- V) characteristics dramatically im-
S/D pads are made of Au/Cr and ages exhibit a linear region and some prove after /4-Vy sweeps. This is due to

the top gate contact of Al signs of saturation for large Vy and Vpg. self-annealing of graphene at high /.
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Fig. 4: The I4-WV, characteris- Fig. 5: The hysteresis width versus the Fig. 6: At higher T the maximum is
tics exhibit a hysteresis which re- measurement frequency f=1/(N-fgep) shifted towards higher f, i.e. the time
verses at moderate measurement obtained for different devices exhibits constants of both charging/discharging
frequency f. We express the hys- a maximum, around which the hystere- of traps in the back gate oxide and

teresis width as a Dirac voltage si

s changes sign. This is likely due to charging of their counterparts in the

shift AVp = Vg — V5 =qANt/Cyg.  charging of top gate defects. top gate oxide become smaller.
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Fig. 7: The AVWp(f) dependences
measured at 7 = 85°C (a) and 165°C
(b) using different sweep ranges. At
higher T the low f part is more sen-
sitive to the sweep range, since charg-
ing/discharging of the back gate oxide
traps is more efficient.
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Fig. 8: The hysteresis dynamics at 7 = 165°C and f = 10~ Hz. (a) For Vog =
-40...40V the time constants of most defects are small compared to the total
sweep time. Hence, they can be charged/discharged and the hysteresis is large.
(b) For Wz =-20...40V only a limited number of traps will be charged in
the hole conduction region. Hence, their discharging will lead to a smaller
hysteresis. (c) Finally, for Vpg =-40...20V the amount of charged traps is
large, but most of them will not discharge, leading to the smallest hysteresis.
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