A Systematic Study of Charge Trapping in Single-Layer Double-Gated GFETs

Yu. Yu. Illarionov^{1,2}, G. Rzepa¹, M. Waltl¹, H. Pandey³, S. Kataria³, V. Passi³, M.C. Lemme³, and T. Grasser¹

¹Institute for Microelectronics (TU Wien), Gusshausstrasse 27–29, 1040 Vienna, Austria ² Ioffe Physical-Technical Institute, Polytechnicheskaya 26, 194021 St-Petersburg, Russia ³University of Siegen, Holderlinstrasse 3, 57076 Siegen, Germany Email: illarionov@iue.tuwien.ac.at/Phone: +4315880136035

ing/discharging of oxide traps.

Devices: In our single-layer double-gated GFETs (L = $3-6 \mu m$) the CVD graphene channel [10] is sandwiched between thermally oxidized SiO₂ as a back gate oxide $(t_{ox} = 85 \text{ nm})$ and e-beam evaporated SiO₂ as a top gate oxide ($t_{ox} = 12 \text{ nm}$), see Fig. 1. The source/drain pads are made of a thermally evaporated Cr(20nm)/Au(80nm) stack and the top gate contact is 120nm thick Al.

Experiment: In the spirit of [5], our measurements were performed in a vacuum ($\sim 5 \times 10^{-6}$ torr). The hysteresis was investigated by measuring the back gate transfer $(I_{\rm d}$ - $V_{\rm bg})$ characteristics at $V_{\rm d}$ = 0.1 V. By using different step voltages V_{step} and sampling times t_{step} , we have varied the measurement frequency $f=1/(N \cdot t_{\text{step}})$ with $N=2((V_{\text{bgmax}} - t_{\text{bgmax}}))$ V_{bgmin})/ V_{step} +1) between 10⁻⁴ and 10² Hz. This allowed us to demonstrate that the dependence of the Dirac point voltage shift $\Delta V_D = V_D^+ - V_D^-$ versus f presents a unique fingerprint of the hysteresis dynamics. For a reliable determination of the hysteresis origin, we have measured the $\Delta V_{\rm D}(f)$ at $T = 85^{\circ}$ C and $T = 165^{\circ}$ C.

Fig. 4 we show that the I_d - V_{bg} characteristics exhibit a ther evidences the contribution of top gate defects. clockwise hysteresis for low and high f, while a counterfor different devices. Namely, $\Delta N_{\rm T}$ becomes positive and is dominated by thermally activated oxide traps.

Introduction: Graphene is a honeycomb carbon mareaches a maximum at $f \sim 10^{-3}$ – 10^{-2} Hz. In Fig. 6 we terial which is now successfully applied as a channel in demonstrate that at higher T the $\Delta N_{\rm T}(f)$ dependence is graphene FETs (GFETs) [1–5]. However, stability of shifted towards higher f, which is consistent with thermodern GFETs is limited by a considerable hysteresis on mally activated charging/discharging processes. Namely, the gate transfer characteristics [3]. Although several stud- at low f discharging of back gate oxide defects is domiies on this issue have been reported [3,6–9], different phys-nant, leading to a negative ΔN_T , an effect which becomes ical explanations have been put forward. Here we intro- larger at higher T and decreases for higher f. Although duce an experimental technique allowing for a systematic for very fast sweeps ΔN_T should simply reach zero, we study of the hysteresis in GFETs and show that in our de- observe a change of the ΔN_T sign while passing through a vices this issue is dominated by thermally activated charg-maximum. This is likely due to thermally activated charging of the defects situated in the top gate oxide, which introduces additional positive charges. Interestingly, in some cases at $T = 85^{\circ}$ C there is a second reversal of the trend of the hysteresis at very high f, which suggests a charging of the top gate defects with smaller time constants.

In Fig. 7 we show that the $\Delta V_D(f)$ dependences are affected by the sweep range in their low f branch, especially at T = 165°C. This behaviour can be understood based on Fig. 8. At $V_{\text{bgmin}} = -40 \text{ V}$ the Fermi level E_{F} is close to the back gate oxide valence band. Hence, for low f most of the defects are charged before $V_{\text{bg}} = V_{\text{D}}^{+}$ is reached. Then, a significant fraction of them is either discharged when $V_{\text{bgmax}} = 40 \,\text{V}$ is reached or continue to discharge during the reversed sweep. As a result, the amount of charged traps at $V_{\text{bg}} = V_{\text{D}}^{-}$ is much smaller than it was at $V_{\text{bg}} = V_{\text{D}}^{+}$ (Fig. 8a), leading to a large clockwise hysteresis. However, if $V_{\text{bgmin}} = -20 \,\text{V}$, the initial E_{F} lies higher and the time spent in the hole conduction region is smaller. Hence, the concentration of charged defects at $V_{\text{bg}} = V_{\text{D}}^{+}$ is reduced (Fig. 8b). Thus, although sweeping till $V_{bgmax} = 40 \,\mathrm{V}$ and dependences using different sweep ranges $V_{\text{bgmin}} \dots V_{\text{bgmax}}$ back to $V_{\text{bg}} = V_{\text{D}}^-$ discharges most of them, the observed hysteresis is smaller. Finally, for $V_{\text{bg}} = -40...20 \text{ V}$ (Fig. 8c) **Results and Discussions:** The output (I_d-V_d) charact the amount of charged defects at $V_{bg} = V_D^+$ is only insignifteristics of our GFETs (Fig. 2) show some signs of saticantly larger than at $V_{\text{bg}} = V_{\text{D}}^{-}$, since a low V_{bgmax} does not uration for larger V_d and V_{bg} . At the same time, the I_d - allow for efficient discharging. Hence, only a very small $V_{\rm bg}$ characteristics (Fig. 3) exhibit an improvement after hysteresis is visible. Obviously, at lower T both charging the $I_{\rm d}$ - $V_{\rm d}$ sweeps. The latter is attributed to self-annealing and discharging are less efficient, making the difference of graphene at high I_d [11], which allowed us to achieve smaller (Fig. 7a). At the same time, a weak impact of the a better reproducibility of all further measurements. In $V_{\rm bg}$ sweep range on $\Delta V_{\rm D}(f)$ right from the maximum fur-

Conclusions: We have suggested an experimental clockwise hysteresis is observed for moderate f (cf. [6,7]), technique allowing for a simple and systematic bench-As shown in Fig. 5, the resulting charged trap density marking of the hysteresis in GFETs. Using this technique shift $\Delta N_{\rm T} = C_{\rm bg} \Delta V_{\rm D}/q$ versus f is qualitatively similar allowed us to demonstrate that in our GFETs the hysteresis

[1] M. Lemme et al., EDL 28, 282 (2007). [2] J. Moon et al., T-ED 30, 650 (2009). [3] S. Imam et al., Micro & Nano Lett. 5, 37 (2010). [4] M. Engel et al., Nat. Commun. 3, 906 (2012). [5] W. Liu et al., T-ED 60, 2682 (2013). [6] H. Wang et al., ACS Nano 4, 7221 (2010). [7] Z.-M. Liao et al., JCP 133, 044703 (2010). [8] Y. Lee et al., APL 98, 183508 (2011). [9] M. Winters et al., JAP 117, 074501 (2015). [10] S. Kataria et al., Phys.SS(RRL) 211, 2439 (2014). [11] J. Moser et al., APL 91, 163513 (2007).

Fig. 1: Schematic layout of our single-layer double gated GFETs. S/D pads are made of Au/Cr and the top gate contact of Al.

Fig. 4: The $I_{\rm d}$ - $V_{\rm bg}$ characteristics exhibit a hysteresis which reverses at moderate measurement frequency f. We express the hysteresis width as a Dirac voltage shift $\Delta V_{\rm D} = V_{\rm D}^+ - V_{\rm D}^- = q \Delta N_{\rm T}/C_{\rm bg}$.

Fig. 7: The $\Delta V_{\rm D}(f)$ dependences measured at $T=85^{\circ}{\rm C}$ (a) and $165^{\circ}{\rm C}$ (b) using different sweep ranges. At higher T the low f part is more sensitive to the sweep range, since charging/discharging of the back gate oxide traps is more efficient.

Fig. 2: Output (I_d-V_d) characteristics measured at different back gate voltages exhibit a linear region and some signs of saturation for large V_d and V_{bg} .

Fig. 5: The hysteresis width versus the measurement frequency $f = 1/(N \cdot t_{\text{step}})$ obtained for different devices exhibits a maximum, around which the hysteresis changes sign. This is likely due to charging of top gate defects.

Fig. 3: The back gate transfer ($I_{\rm d}$ - $V_{\rm bg}$) characteristics dramatically improve after $I_{\rm d}$ - $V_{\rm d}$ sweeps. This is due to self-annealing of graphene at high $I_{\rm d}$.

Fig. 6: At higher T the maximum is shifted towards higher f, i.e. the time constants of both charging/discharging of traps in the back gate oxide and charging of their counterparts in the top gate oxide become smaller.

Fig. 8: The hysteresis dynamics at $T = 165^{\circ}\text{C}$ and $f = 10^{-3}\,\text{Hz}$. (a) For $V_{\text{bg}} = -40...40\,\text{V}$ the time constants of most defects are small compared to the total sweep time. Hence, they can be charged/discharged and the hysteresis is large. (b) For $V_{\text{bg}} = -20...40\,\text{V}$ only a limited number of traps will be charged in the hole conduction region. Hence, their discharging will lead to a smaller hysteresis. (c) Finally, for $V_{\text{bg}} = -40...20\,\text{V}$ the amount of charged traps is large, but most of them will not discharge, leading to the smallest hysteresis.