Evaluation of Mobile ARM-Based SoCs
for High Performance Computing

Andreas Selinger Karl Rupp Siegfried Selberherr
Institute for Microelectronics Institute for Microelectronics Institute for Microelectronics
TU Wien TU Wien TU Wien

GuBhausstrale 27-29/E360
A-1040 Wien, Austria
selinger @iue.tuwien.ac.at

ABSTRACT

The electrical power consumption of current supercomputers
has become the key limiting factor to successfully reach exas-
cale. To further increase energy efficiency, the use of mobile
system-on-chips (SoCs) has been proposed in the past. In
this work we investigate four development boards equipped
with different SoCs with respect to their suitability for HPC.
Each of the boards is carefully benchmarked for high floating
point computing performance, high memory bandwidth, low
latencies, and power consumption, all of which we identified
as key properties for successful HPC systems. In contrast to
earlier work, we also include OpenCL-capable graphics pro-
cessing units integrated in the SoC in our benchmarks.

Our benchmark results show that mobile SoCs are not ready
for a successful adoption in HPC yet. While theoretical peak
compute performance and memory bandwidth suggest SoCs
to be a competitive with existing HPC systems, practical val-
ues are most of the time much lower. Therefore, none of the
SoCs provides an attractive option for HPC in terms of lower
acquisition costs or higher energy efficiency.

Author Keywords
ARM; System on Chip; Linear Algebra; HPC

ACM Classification Keywords
C.4 PERFORMANCE OF SYSTEMS

1. INTRODUCTION

The high performance computing (HPC) landscape was dom-
inated by special-purpose vector and single instruction multi-
ple data (SIMD) architectures in the early 1990s. In the mid-
to late 1990s, microprocessors such as DEC Alpha, SPARC,
and MIPS, which were used in workstations during that time,
started to take over HPC. About ten years later, these reduced
instruction set computers (RISC) computing processors were,
in turn replaced by the x86 complex instruction set computing
(CISC) architecture in commodity computers [10].

SpringSim-HPC 2016 April 3-6 Pasadena, CA, USA
(©2016 Society for Modeling & Simulation International (SCS)

GuBhausstral3e 27-29/E360
A-1040 Wien, Austria
rupp @iue.tuwien.ac.at

GuBhausstral3e 27-29/E360
A-1040 Wien, Austria
selberherr @jue.tuwien.ac.at

Each of these transitions was fueled by the higher cost-
effectiveness of the higher-volume markets. The design, veri-
fication, and fabrication of increasingly complicated, custom-
made processors for HPC and for the mass market require
comparable resources. However, units sold in mass markets
allow for a much better cost amortization, thinning out the
per-processor cost for the design, verification, and fabrica-
tion in proportion to the difference in market size. One of the
most prominent inflection points was ASCI Red, the first su-
percomputer to provide more than one trillion (tera) floating
point operations per second (TFLOPS) [8]. ASCI Red was
deployed in 1997 and consisted of Pentium Pro x86 proces-
sors, the first to provide integrated double precision floating
point units. Since then, x86 systems expanded their share of
systems in the TOP500 list! of supercomputers up to 90 per-
cent by the end of 2015.

Today, x86 systems are possibly facing a similar threat of be-
coming replaced in the HPC landscape by the higher-volume
architecture in mobile system-on-chips (SoCs). One such
sign is that the market for commodity personal computers
is currently on the decline, while the market for mobile de-
vices is growing fast. Moreover, with the stagnation of clock
frequencies due to power dissipation issues, power-efficient
mobile SoCs appear to be the perfect fit for further increasing
performance within a given power budget.

Former evaluations demonstrated the feasibility of HPC
workloads on small clusters based on mobile SoCs [4, 7]. One
of the most prominent examples is the European Mont-Blanc
project with the aim of designing an exascale-architecture
based on ARM cores [10, 11]. At the same time, however,
these earlier studies also identified challenges yet to over-
come, most notably better support for double precision arith-
metic, support for error-correcting memory, and the limita-
tions of a 32-bit address space in terms of total memory ca-
pacity. The purpose of this work is to revisit currently avail-
able SoCs for their suitability in HPC. In contrast to ear-
lier works, we not only consider the central processing units
on SoCs, but also the attached graphics processing units for
general purpose computations. With the broader availabil-
ity of the cross-platform heterogeneous programming model
OpenCL, these units become now accessible for general HPC
workloads.

1http: //top500.0rg/

http://top500.org/

A mobile SoC is optimized for low power consumption and
hence provides smaller peak performance than a typical pro-
cessor in conventional supercomputers. Therefore, a super-
computer based on mobile SoCs requires a higher number
of nodes to achieve the same overall performance. Depend-
ing on the actual configuration, the difference in the num-
ber of nodes can be up to an order of magnitude. The addi-
tional networking hardware required in such a case must be
accounted for when considering the total power budget of a
supercomputer. Consequently, there has to be a clear advan-
tage in terms of performance per Watt for mobile SoCs on the
node level to be attractive for HPC. However, our study does
not find such an advantage of mobile SoCs in terms of per-
formance per Watt on the node level. Thus, even though our
study focuses on a comparison on the node-level, its findings
are also relevant for large-scale supercomputers with thou-
sands of nodes.

The remainder of this work is organized as follows: In Sec-
tion 2 we discuss and identify key requirements for HPC sys-
tems. The hardware and software setups used for the bench-
marks in our study are sketched in Section 3. Section 4
presents our benchmark results which are then followed by
a discussion in Section 5. In the conclusions in Section 6
we argue that based on our results it is unlikely that mobile
SoCs will play a significant role in the HPC landscape before
reaching exascale.

2. REQUIREMENTS ON HPC SYSTEMS

Modern general purpose HPC systems require a careful bal-
ance of hardware features as well as a mature software stack.
If suitability for general purpose workloads is not a design
goal, specialized systems such as Anton [13, 14] for molec-
ular dynamics simulation can be designed to achieve higher,
yet problem-specific, efficiency [20]. Such specialized sys-
tems, however, serve only a relatively small community,
hence we will focus on general purpose systems in the fol-
lowing.

HPC systems have almost fully converged with respect to the
operating system and hence large parts of the software stack.
The November 2015 update of the TOPS00 list of supercom-
puters reported 494 out of 500 systems to be run on Linux;
the remaining six systems run on the AIX operating system.
As a consequence, certain HPC-centric software packages no
longer need to support a variety of different operating sys-
tems, but can instead focus their resources on a single plat-
form. Conversely, the dominance of Linux in HPC mandates
that any new HPC hardware architecture must ensure good
support by Linux distributions. This is the case for com-
mon mobile SoCs with ARM-based central processing units
as well as x86-based mobile SoCs.

Since mobile SoCs are clearly ready for HPC from the soft-
ware stack perspective, closer inspection is required on hard-
ware details. The three key characteristics we consider in
this work, namely high FLOPs for compute-intensive appli-
cations, high bandwidth for applications with low arithmetic
intensity, and the necessity of low latency for good strong
scaling properties, are discussed in the following.

2.1 Requirement 1: High FLOPS

The most prominent benchmark for measuring the perfor-
mance of current supercomputers is the HPLinpack bench-
mark used for the TOP500. While HPLinpack is a formal
specification of the computations to be measured, HPL? is
the most commonly used implementation of the HPLinpack
benchmark. The benchmark describes the Gaussian elimina-
tion process for solving a dense linear system and thus re-
quires O(N?3) FLOP:s for a system requiring O(NN?) bytes of
memory. Consequently, the benchmark has high arithmetic
intensity and is ultimately compute-limited provided that the
caches are large enough.

The fastest system in the November 2015 edition of the
TOP500 provides a HPLinpack performance of 34 Peta-
FLOPS (PFLOPS) while drawing 18 MW of electrical power.
On the other hand, the power consumption for a machine
with one Exa-FLOPS is targeted to be 20 MW, so a 25-
fold improvement in power efficiency is needed. Therefore,
FLOPS/Watt rather than FLOPS is a better metric for evalu-
ating the performance of mobile SoCs.

2.2 Requirement 2: High Memory Bandwidth

It has even been argued that the use of HPLinpack for
the TOP500 encourages organizations to make poor sys-
tem choices and that the TOP500 ranking consequently does
not give an indication of system value [5]. Alternative
benchmarks such as High-Performance Geometric Multigrid
(HPGMG) [1] and High-Performance Conjugate Gradients
(HPCG) [3] were proposed to provide a better overall pic-
ture of HPC system performance. Both rely on the solution
of sparse systems of equations by means of iterative meth-
ods: HPGMG applies full geometric multigrid, while HPCG
uses a conjugate gradient method accelerated by a geometric
multigrid preconditioner.

HPCG achieves the goal of measuring system performance
without relying on raw compute power only. As first results
have shown, the peak performance for HPCG on current sys-
tems is primarily determined by the available memory band-
width [6] and thus can be equally well measured using the
STREAM benchmark [9]. Therefore, we select high memory
bandwidth as our second figure of merit for HPC systems.
Instead of using the HPCG benchmark, however, we use the
much simpler and equally appropriate STREAM benchmark
for assessing memory bandwidth.

2.3 Requirement 3: Low Latency

Good HPC clusters behave favorably in the weak scaling and
the strong scaling limit. In the weak scaling limit, the work
size per process is kept constant and the number of processes
(and hence the problem size) is increased. Usually, best weak
scalability is obtained by selecting the work size per pro-
cess as large as possible, because any latency effects are sup-
pressed. In the strong scaling limit, the total problem size is
kept fixed and the number of processes is increased. Conse-
quently, the work size per process decreases so that latencies
ultimately limit the strong scalability.

2http ://www.netlib.org/benchmark/hpl/

http://www.netlib.org/benchmark/hpl/

Jetson TK1 Odroid XU3-Lite Parallella Wandboard Quad
Vendor NVIDIA Hardkernel Adapteva Community
CPU Architecture | Cortex-Al15 Cortex-A15/A7 Cortex-A9 Cortex-A9
SoC Tegra K1 Exynos 5422 Octa Zynq 72010 CPU i.MX6 Quad
CPU Cores 4 444 2 4
GPU/FPGA Name | NVIDIA Kepler GK 20a ARM Mali-T628 Epiphany III Vivante GC 2000
Main Memory 2 GB DDR3 2 GB DDR3 1 GB DDR3 2 GB DDR3

Table 1. Overview of mobile hardware used for the benchmarks in this work.

Latency is inherent to all components in a system: On the
lowest level, latencies in loading data from cache or global
memory are observed. Also, the synchronization of threads
or processes through mechanisms such as locks or mutexes
induces latency. The primary source of latency beyond a sin-
gle node is due to the network communication, which is in-
herently limited by the speed of light.

In this work we only consider latency within a single node,
as network-induced latencies are independent of the node ar-
chitecture. The most important OpenMP constructs are com-
pared, covering a wide application range: The time to enter
an OpenMP parallel region, the time for entering a parallel
for-loop, the overhead of an OpenMP barrier, the time for
OpenMP single and critical sections, the overhead of
locking and unlocking of shared resources, ordered access,
atomic operations, and reductions. The latency of mobile
SoCs must be competitive with current x86 processors, if they
want to be attractive for HPC.

3. BENCHMARK SETUP

In the following we define the hardware and software used
for obtaining the benchmark results in Section 4. Because a
plethora of different hardware and software is available for
ARM-based mobile SoCs, the hardware and software chosen
is such that it covers a broad range of central processing units
(CPUs), graphics processors or co-processors, and software
used in HPC. To better compare the results, we also include
results obtained on a laptop equipped with an Intel Core i3-
32170 CPU (17 Watt thermal design power) to better com-
pare with the performance provided by an x86-based plat-
form. The laptop display was powered off during the mea-
surements to provide a fair comparison of power consump-
tion. A detailed description of the mobile hardware boards is
given in the following.

3.1 Hardware

Mobile SoCs fabricated at high volume include good graphics
processing units (GPUs). Consequently, we chose products
where general purpose computations can be carried out using
an OpenCL framework [15] in order to maximize the overall
system’s performance. An exception is the Jetson TK1 which
provides a CUDA toolchain for programming the GPU. Be-
cause only some applications can take benefit from GPU ac-
celeration, we benchmark the CPU and the GPU of each SoC
separately.

An overview of the devices selected for our benchmarks is
given in Table 1. The Jetson TK1 and the Odroid XU3-
Lite are equipped with high-performance Cortex-A15-based
CPUs [17], the latter implementing ARM’s big. LITTLE con-
cept by pairing the faster Cortex-A15-based CPUs with low-
power Cortex-A7 CPUs. However, only the Cortex-Al5
cores are benchmarked due to their higher performance. We
note that the hardware on the Odroid XU3-Lite is very simi-
lar to the hardware used in the Mont-Blanc project mentioned
in the introduction. The Parallella board and the Wandboard
Quad board are equipped with Cortex-A9 CPUs, which rep-
resent a compromise between faster Cortex-A15 and lower-
power Cortex-A7.

The Jetson TK1 integrates 192 NVIDIA CUDA cores (Ke-
pler), providing 326 GFLOPS of theoretical single precision
compute power. Double precision performance, however,
is restricted to only 13 GFLOPS. The Mali-T628 GPU in
the Odroid XU3-Lite is capable of a theoretical peak perfor-
mance of 142 GFLOPS in single precision and 42 GFLOPS in
double precision. The field-programmable gate array (FPGA)
Epiphany III on the Parallella board provides 32 GFLOPS of
theoretical peak floating point performance in single preci-
sion (no double precision capabilities). Similarly, the Vivante
GC 2000 on the Wandboard Quad is able to provide a theo-
retical peak of 32 GFLOPS of floating point performance in
single precision. However, currently only an OpenCL SDK
supporting the embedded profile is available for the Vivante
GC 2000, hence GPU benchmark results could not be col-
lected for the Wandboard Quad.

All four boards provide a single DDR3 memory channel. The
theoretical peak memory bandwidth of the Jetson TK1 and
the Odroid XU3-lite is 14.9 GB/sec. On the Parallella board
and the Wandboard the theoretical peak memory bandwidth
is 12.8 GB/sec. The Parallella board provides one Gigabyte
of main memory, while the other three boards provide two Gi-
gabytes. Because all four boards implement a 32-bit CPU mi-
croarchitecture (ARMvV7-A), the upper limit for main mem-
ory capacity is 4 GB.

We measured the power consumption at the wall outlet using
an ELV Energy Master Basic 2 with an accuracy of one per-
cent and 0.1 Watt in the range 0.1 to 100 Watt. To mimic the
use in an actual HPC system as closely as possible, the boards
were operated in headless mode without additional external
connectors other than a Gigabit network connection.

3.2 Software

Vendor-provided (community-provided for the Wandboard
Quad) customized versions of Ubuntu 14.04 were used on all
four boards for running the benchmarks. By using a common
operating system base, any deviations in the performance re-
sults due to differences in the software stack are minimized.

To quantify the performance of the GPUs as well as the FPGA
on the boards, we used the OpenCL-based auto-tuning frame-
work for linear algebra kernels available in ViennaCL [12,
16]. For the Jetson TK1 we compared with the performance
of the vendor-provided cuBLAS library.

The compute performance of the CPU cores was evalu-
ated using OpenBLAS [19] for the FLOP-intensive matrix-
matrix multiplication kernel. We used the vector triad in the
STREAM benchmark for measuring memory bandwidth. For
measuring the power draw at different arithmetic intensities
we used a custom code in which three double precision val-
ues are loaded from main memory and then the necessary
number of floating point operations were carried out to ob-
tain the specified arithmetic intensity. We measured latency
of different OpenMP features with the EPCC OpenMP micro-
benchmark suite® [2]. The GNU compiler collection was used
on all systems to minimize the effect of compiler-specific dif-
ferences in the benchmarks. Reported values are median val-
ues of 10 benchmark runs, within which each result is the
average of 20 repeated measurements.

4. RESULTS

The performances obtained for dense matrix-matrix multipli-
cation for the CPUs and GPUs of the SoCs from Table 1 as
well as the x86-based laptop are given in Figure 1. For the
Vivante GC 2000 GPU on the Wandboard Quad we could not
obtain measurement results because support for the OpenCL
Full Profile is currently not available. Similarly, the OpenCL
SDK on the Parallella board resulted in extremely low per-
formance and could not compile the automatically generated
kernels. The performances obtained on the CPUs are almost
constant for matrices larger than 200-by-200. In contrast, the
performance degrades for matrices with a size above 1200-
by-1200 on the GPUs of both the Jetson TK1 and the Odroid
XU3-Lite.

The performance for matrix-matrix multiplication on the Par-
allella board can be estimated from prior work [18]: Each
core is capable of achieving about 1 GFLOPS for local matri-
ces of size 32-by-32, provided that the data is already avail-
able on the chip. For the 16-core Epiphany III FPGA this
results in about 16 GFLOPS for matrices of size 128-by-
128. Larger matrices, however, are multiplied with much
lower performance, because memory transfers to and from
the Epiphany III chip suffer from a low memory bandwidth
of only 0.15 GB/sec. This results in floating point rates below
10 GB/sec for matrices larger than 128-by-128.

The memory bandwidth obtained with the CPUs as well as
the GPUs for the different SoCs is depicted in Figure 2.

3https ://www.epcc.ed.ac.uk/research/computing/
performance-characterisation-and-benchmarking/
epcc-openmp-micro-benchmark-suite

The peak bandwidth on the CPU is obtained for vectors with
less than 100 000 elements, indicating beneficial caching ef-
fects. This caching effect is particularly pronounced on the
x86 CPU, where the effective bandwidth increases up to 25
GB/sec. On GPUs, however, the kernel launch latency re-
sults in peak bandwidth to be attained for vectors with more
than a million entries. On the Epiphany III FPGA the ex-
ternal memory bandwidth to DRAM was reported to be only
0.15 GB/sec [18], which could not be verified because of sta-
bility problems with the OpenCL SDK.

In order to better evaluate the contribution of memory trans-
fers to and from main memory to the total power consump-
tion, we used synthetic workloads and recorded the respective
power draw, cf. Figure 3. For simplicity we only measured a
load on the CPU. This is sufficient because GPUs on SoCs
share the same memory with the CPU. The benchmark re-
sults identify the highest power consumption at an arithmetic
intensity of about 1 FLOPS/Byte. At higher arithmetic inten-
sity the transactions to and from main memory become less
frequent, which is reflected by a reduced power consumption
of one to two Watt. In other words, the largest share of the
total power consumption can be attributed to the SoCs rather
than the main memory.

The time required for OpenMP thread synchronization is
given in Table 2. Timings span from only 0.02 to 8.6 mi-
croseconds for the different OpenMP features. Overall, there
is no clear winner in terms of OpenMP overhead: The Wand-
board provides low overhead for parallel regions, barriers,
single as well as critical regions. On the other hand, the Jet-
son TK1 provides the fastest times for locking, ordered and
atomic operations as well as reductions, but shows the largest
overheads when entering parallel regions.

5. DISCUSSION

A successful HPC machine based on mobile SoCs must out-
perform existing clusters in at least one category out of energy
efficiency for compute-intensive tasks, energy efficiency for
memory-intensive tasks, or acquisition cost. In the follow-
ing we discuss these options in light of the benchmark results
from Section 4.

The CPUs on the four boards provide about 1 GFLOPS
of raw compute performance per Watt in double precision
(cf. Figure 1). Up to 10 GFLOPS/Watt are obtained in
single precision on the Jetson TKI1, but the performance
degrades for larger matrices. Somewhat ironically, the
good ratio is obtained on the GK 20a GPU, which is a
scaled-down version of graphics processors already used for
HPC. With 1 GFLOPS/Watt mobile SoCs are not attractive
for current supercomputers; the x86-based laptop achieves
2 GFLOPS/Watt in single precision, whereas the best systems
in the TOP500 achieve about 2 GFLOPS per Watt in double
precision.

Mobile SOCs are not attractive for HPC from an acquisi-
tion point of view either: All four boards were priced be-
tween 100 and 200 USD at the time of purchase. Current
HPC processors carry a price tag of about 1000 to 10000
USD, but also provide a factor of 10 to 50 higher perfor-

https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite

Matrix-Matrix Multiplications on CPU, float

100

GFLOPS

0.1

0.01

Tideornansbunnnnnnnndisnnnnnibonnsnnnade

Jetson TK1 (6.8 W) 1
Odroid XU3-Lite (13.8 W) ========== -
Parallella (5.1 W) =reeeereeees E
Wandboard Quad (7.1 W) ==i=i=:=]
Larl)top, Corle i3—321|7U (19.3I W) m—— 1

100

500 1000 1500 2000 2500 3000 3500

Matrix Size
Matrix-Matrix Multiplications on CPU, double

GFLOPS

0.1

' Jetson TK1 (7.7 W) =———— |
Odroid XU3-Lite (13.4 W) =========- -
Parallella (5.1 W) =reeeereeees E

Wandboard Quad (7.5 W) ==r=im=i= 1
Larl)top, Corle i3—321|7U (19.1I W) mm—— 1

0.01

500 1000 1500 2000 2500 3000 3500
Matrix Size

GFLOPS

GFLOPS

Matrix-Matrix Multiplications on GPU, float

100 ¢

0.01
0 500 1000 1500 2000 2500 3000
Matrix Size
Matrix-Matrix Multiplications on GPU, double
100 T T T T
E ' Jetson TK1 (12.5 W) E
Odroid XU3-Lite (8.4 W) =========x]

001 L i i i i i
0 500 1000 1500 2000 2500
Matrix Size

3000

Figure 1. Performance for dense matrix-matrix multiplication in single precision (top) and double precision (bottom) for CPUs (left) and GPUs (right). The
power draw during each of the runs is given in parenthesis.

Memory Bandwidth on CPU

30
25 7y
N |}
i
20 fr-
o]
3
& 1’5F -
O]
10F----

1
Jetson TK1 (10.7 W)
Odroid XU3-Lite (12.4 W) =========s
Parallella (5.0 W) «reveevenes
Wandboard Quad (6.8 W) =i=i=im=i=:
_, Laptop, Core i3-3217U (17.2 W) r=imnmnm=s i
MRS ' :

(Y

'
‘:m“m.-.v-..-..-..-.._,._..-..u,._..-..—
))

.
T T T awsd - - -
ST L T e
mmm

108
Vector Size

GB/sec

Memory Bandwidth on GPU

14 r r r
12 e .
[l TR S
gf---------- /- e
) S A ;';,g»r'f ,,,,,,,,,,,,,,,,,,,,,,
b /o ‘;;,xff ,,,,,,,,,,,,,,,,,,,,,,,,,,
2 Jetson TK1 (10.9 W) e 7
- QdroidXUSLite O6 W) semeemie
0104 10° 108 107
Vector Size

Figure 2. Memory bandwidth obtained for the STREAM benchmark using the CPU (left) and the GPU (right). The power draw during each of the runs is given

in parenthesis.

OpenMP Benchmark | Jetson TK1 Odroid XU3-Lite Parallella Wandboard Quad Core i3-3217U
PARALLEL 8.6 5.0 33 2.3 25
FOR 4.5 1.9 0.9 0.7 1.3
PARALLEL FOR 8.8 5.1 3.5 2.8 2.5
BARRIER 4.4 1.9 0.9 0.6 1.2
SINGLE 5.1 23 0.9 0.6 1.2
CRITICAL 0.9 0.5 0.29 0.19 0.3
LOCK/UNLOCK 0.07 0.6 0.28 0.19 0.3
ORDERED 0.02 1.0 0.7 0.5 1.3
ATOMIC 0.04 0.29 0.09 0.08 0.13
REDUCTION 0.7 5.1 34 23 2.6

Table 2. Time in microseconds for OpenMP thread synchronization for entering and leaving parallel regions as well as short reductions. The shortest execution

time for each benchmark is printed in bold.

20 ————rrrry . T
Jetson TK1 ;
---------- Odroid XU3-Lite
------------ Parallella ‘
15 | == Wandboard Quad . . _ ___]
b Tr—
8 I S
S 10 : :
5F
0 " PR SR | " PR arare | " PR Y
0.01 0.1 1 10

FLOPS/Byte

Figure 3. Power drain for CPU loads with different arithmetic intensities.

mance as well as other useful features for HPC. Even ultra
low-cost boards such as the Raspberry Pi Zero for 5 USD do
not offer a substantially better GFLOPS/USD ratio than cur-
rent CPUs used in HPC. The new NEON vector unit in the
new ARMvS instruction set will improve energy efficiency in
terms of GFLOPS/Watt, but this may not be enough to excel
in HPC.

HPC clusters for applications limited by memory bandwidth
may benefit from many SoCs with one memory channel each.
Dual-, triple-, or quad-channel configurations in desktop and
workstation machines come at a higher price tag than two,
three, or four low-cost boards equipped with SoCs. However,
current SoCs are unable to use the full memory bandwidth
with their CPU. Instead, at most half of the bandwidth is
obtained with Cortex-A15-based CPUs, whereas Cortex-A9-
based CPUs only provide about a tenth of the theoretical peak
performance. GPUs on mobile SoCs may not reach full mem-
ory bandwidth either, as the Odroid XU3-Lite demonstrates
(Figure 2). On the other hand, the Jetson TK1 reaches full
memory bandwidth only when using the GPU. Mobile SoCs
may become very attractive for memory-bandwidth-limited
tasks as soon as the CPU fully saturates the main memory

channel. At the same time, memory bandwidth per Watt is
also determined by the energy cost of moving data. The direct
comparison with the x86-based laptop shows that the Jetson
TK1 and the Odroid XU3-Lite offer the same memory band-
width per Watt. This is a strong indication that new memory
technology, such as on-chip high bandwidth memory, rather
than a different processor architecture is needed to improve
power efficiency.

The evaluation of latencies is positive: Mobile SoCs are al-
ready competitive with x86 processors in terms of thread syn-
chronization cost. A direct comparison with an x86 processor
in Table 2 shows latencies of mobile SoCs competitive with
today’s HPC machines. Still, an HPC system consisting of
mobile SoCs is likely to suffer from higher overall network
latencies, because the smaller raw performance on each node
can only be compensated with a higher number of nodes. A
higher number of nodes, however, inevitably leads to higher
latency for global all-to-all communication.

Overall, the Jetson TK1 with its high compute power in sin-
gle precision and the possibility to fully saturate the mem-
ory channel is the most attractive for use in HPC among the
devices considered in our benchmark. However, its attrac-
tiveness stems from the scaled-down GPU rather than from
the ARM-based CPU. Therefore, further improvements to
ARM-based CPUs are necessary in order to gain any traction
in the HPC landscape. At least some are addressed by the
new ARMVS instruction set, but it is not clear whether that
is enough to become competitive for HPC without negative
side-effects for the mobile sector.

6. CONCLUSION

In this work we evaluated the suitability of mobile SoCs
for the HPC landscape. After considering practical perfor-
mances obtained for raw floating point compute power, mem-
ory bandwidth, and latencies, we conclude that mobile SoCs
are only competitive with respect to latencies. Even if the cost
of additional networking infrastructure required for building
a hypothetical cluster based on mobile SoCs is ignored, the
CPUs on the SoCs still fall behind most existing systems in
HPC.

The current migration to the new ARMVS instruction set in
mobile SoCs is expected to resolve limitations in memory ca-
pacity by transitioning to a 64 bit address space. Also, better
double precision capabilities through the NEON vector in-
structions are expected. However, the lack of support for er-
ror correcting code (ECC) main memory will remain a sig-
nificant hindrance for adoption in HPC. Nevertheless, ARM-
based cores will remain an attractive option of chip makers
who do not have access to an x86 license.

ACKNOWLEDGMENTS
Karl Rupp acknowledges support by the Austrian Science
Fund (FWF), project P23598.

REFERENCES

1.

Adams, M. F., Brown, J., Shalf, J., Van Straalen, B.,
Strohmaier, E., and Williams, S. HPGMG 1.0: A
Benchmark for Ranking High Performance Computing
Systems. Tech. Rep. LBNL-6630E, LBNL, 2014.

. Bull, J. M., Reid, F., and McDonnell, N. A

Microbenchmark Suite for OpenMP Tasks. In Proc.
International Conference on OpenMP in a
Heterogeneous World (IWOMP), Springer (2012),
271-274.

. Dongarra, J., Heroux, M. A., and Luszczek, P.

High-Performance Conjugate-Gradient Benchmark: A
New Metric for Ranking High-Performance Computing
Systems. International Journal of High Performance
Computing Applications (2015).

. Goddeke, D., Komatitsch, D., Geveler, M., Ribbrock,

D., Rajovic, N., Puzovic, N., and Ramirez, A. Energy
Efficiency vs. Performance of the Numerical Solution of
PDEs: An Application Study on a Low-Power
ARM-based Cluster. Journal of Computational Physics
237 (2013), 132 — 150.

. Kramer, W. Top500 Versus Sustained Performance: The

Top Problems with the Top500 List - and What to Do
About Them. In Proc. International Conference on
Farallel Architectures and Compilation Techniques
(PACT), ACM (2012), 223-230.

. Liu, Y., Yang, C., Liu, F,, Zhang, X., Lu, Y., Du, Y,,

Yang, C., Xie, M., and Liao, X. 623 Tflop/s HPCG run
on Tianhe-2: Leveraging Millions of Hybrid Cores.
International Journal of High Performance Computing
Applications (2015).

. Magbool, J., Oh, S., and Fox, G. C. Evaluating ARM

HPC Clusters for Scientific Workloads. Concurrency
and Computation: Practice and Experience 27, 17
(2015), 5390-5410.

. Mattson, T. G., and Henry, G. An Overview of the Intel

TFLOPS Supercomputer. Intel Technology Magazine 2
(1998).

. McCalpin, J. D. Memory Bandwidth and Machine

Balance in Current High Performance Computers. I[EEE
Computer Society Technical Committee on Computer
Architecture Newsletter (1995), 19-25.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Rajovic, N., Carpenter, P. M., Gelado, I., Puzovic, N.,
Ramirez, A., and Valero, M. Supercomputing with
Commodity CPUs: Are Mobile SoCs Ready for HPC?
In Proc. Supercomputing, ACM (2013), 40:1-40:12.

Rajovic, N., Vilanova, L., Villavieja, C., Puzovic, N.,
and Ramirez, A. The Low Power Architecture Approach
towards Exascale Computing. Journal of Computational
Science 4, 6 (2013), 439 — 443,

Rupp, K., Rudolf, F., and Weinbub, J. ViennaCL - A
High Level Linear Algebra Library for GPUs and
Multi-Core CPUs. In Proc. Intl. Workshop on GPUs and
Scientific Applications (GPUScA) (2010), 51-56.

Shaw, D. E., Deneroff, M. M., Dror, R. O., Kuskin, J. S.,
Larson, R. H., Salmon, J. K., Young, C., Batson, B.,
Bowers, K. J., Chao, J. C., Eastwood, M. P., Gagliardo,
J., Grossman, J. P, Ho, C. R., Ierardi, D. J., Kolossvéry,
L, Klepeis, J. L., Layman, T., McLeavey, C., Moraes,
M. A., Mueller, R., Priest, E. C., Shan, Y., Spengler, J.,
Theobald, M., Towles, B., and Wang, S. C. Anton, a
Special-purpose Machine for Molecular Dynamics
Simulation. Communications of ACM 51, 7 (2008),
91-97.

Shaw, D. E., Dror, R. O., Salmon, J. K., Grossman, J. P.,
Mackenzie, K. M., Bank, J. A., Young, C., Deneroff,

M. M., Batson, B., Bowers, K. J., Chow, E., Eastwood,
M. P, Ierardi, D. J., Klepeis, J. L., Kuskin, J. S., Larson,
R. H., Lindorff-Larsen, K., Maragakis, P., Moraes,

M. A, Piana, S., Shan, Y., and Towles, B.
Millisecond-scale Molecular Dynamics Simulations on
Anton. In Proc. Supercomputing, ACM (2009),
65:1-65:11.

Stone, J. E., Gohara, D., and Shi, G. OpenCL: A Parallel
Programming Standard for Heterogeneous Computing
Systems. IEEE Design & Test 12, 3 (2010), 66-73.

Tillet, P.,, Rupp, K., Selberherr, S., and Lin, C.-T.
Towards Performance-Portable, Scalable, and
Convenient Linear Algebra. In Proc. USENIX Workshop
on Hot Topics in Parallelism (2013), 1-8.

Turley, J. Cortex A-15 “Eagle” Flies the Coop.
Microprocessor Report 24 (2010), 1-11.

Varghese, A., Edwards, B., Mitra, G., and Rendell, A. P.
Programming the Adapteva Epiphany 64-Core
Network-on-Chip Coprocessor. In Proc. IEEE
International Parallel & Distributed Processing
Symposium Workshops (IPDPSW), IEEE Computer
Society (2014), 984-992.

Wang, Q., Zhang, X., Zhang, Y., and Yi, Q. AUGEM:
Automatically Generate High Performance Dense
Linear Algebra Kernels on x86 CPUs. In

Proc. Supercomputing, ACM (2013), 25:1-25:12.

Young, C., Bank, J. A., Dror, R. O., Grossman, J. P.,
Salmon, J. K., and Shaw, D. E. A 32x32x32, Spatially
Distributed 3D FFT in Four Microseconds on Anton. In
Proc. Supercomputing, ACM (2009), 23:1-23:11.

