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Abstract

The negative bias temperature instability (NBTI) in pMOS

transistors is typically assumed to consist of a recoverable (R)

and a so-called permanent (P) component. While R has been

studied in great detail, the investigation of P is much more

difficult due to the large time constants involved and the fact

that P is almost always obscured by R. As such, it is not really

clear how to measure P and whether it will in the end dominate

device lifetime. We address these questions by introducing a

pragmatic definition of P, which allows us to collect long-term

data on both large and nanoscale devices. Our results suggest

that (i) P is considerably smaller than R, (ii) that P is dominated

by oxide rather than interface traps and therefore (iii) shows

a very similar bias dependence as R, and finally (iv) that P is

unlikely to dominate device lifetime. We argue that a hydrogen-

release mechanism from the gate-side of the oxide, which has

been suspected to cause reliability problems for a long time [1–

6], is consistent with our data. Based on these results as well

as our density-functional-theory (DFT) calculations we suggest a

microscopic model to project the results to operating conditions.

Introduction

The experimental characterization of NBTI has always been a

challenging problem. While during the last decade a lot of effort

has been put into developing ultra-fast characterization methods

to assess mostly the recoverable component R, characterization of

P faces the opposite problem of very large time constants which

are difficult to access under normal experimental conditions. It

has however been suggested that just like R, P is also thermally

activated as it can be removed by a bake at 350◦C [7, 8].

Various attempts have been made at measuring P, for instance

using charge pumping [9, 10], DCIV [11], or spin-dependent

recombination [12, 13], all of which should be very sensitive to

interface traps (Pb centers), the most commonly suggested culprit.

These measurements have shown that such interface traps do

certainly contribute to P [10, 14] and that they are very likely

silicon dangling bonds at the interface (Pb-centers) [12, 13]. It

has been suggested, however, that in addition to interface states,

hydrogen-related donor-like traps are created [1, 2] which could

dominate P at longer times [3]. As the conversion of these data

into ∆Vth is difficult, the magnitude and composition of P relative

to R has remained controversial. As such, not too much is known

about the temperature- and bias-dependence of P, which makes

currently available lifetime extrapolation methods questionable.

Experimental Method

As summarized above, P is difficult to measure directly due to

traps with very large relaxation times contribution to R, which

overshadow P. P is thus typically assessed using a different

method, the results of which must then be converted to ∆Vth.

In order to measure P and R simultaneously, we employ 10

ID/VG sweeps into accumulation after a regular 100s recovery

[15], since it has been repeatedly shown that such bias sweeps

remove a significant fraction of traps contributing to R [10, 16–

19]. The remaining ∆Vth is henceforth pragmatically called P. The

biasing scheme of Fig. 1 is first applied to large devices (10µm

× 10µm) to study the average response of a large number of

defects, as well as to nanoscale devices (150nm × 100nm) to

study the creation and the annealing of individual defects. To

access a wide temperature range (125-350◦C), we use packaged

devices of a 130nm commercial technology [20] (2.2nm SiON)

in multiple computer-controlled furnaces.

Results Large Devices

While the P obtained using this pragmatic method almost

certainly contains a contribution from R [19], P amounts to only

10% of the total ∆Vth measured at 1µs even after a stress of

200ks, see Fig. 2. So if the real P is significantly different, it

is very unlikely to make a sizable contribution to NBTI. This P

shows the expected dependence on the readout voltage (Fig. 2),

which is typically associated with the changing occupancy of

interface states. Utilizing the ID/VG sweeps, we can extract P

as a function of the readout VG, see Fig. 3. Typically, the first

up-sweep from inversion to accumulation (typically from −0.6V
to +1V) has the strongest impact. Also, P is smaller during the

down-sweeps and we will take Pmin = min(P) as a measure for

P. It can be seen that the VG = Vread dependence of P does not

show a peak inside the scanned region, already indicating that

Pb centers are not the only contributor to P. Furthermore, P is

independent of the duty factor (Fig. 4). Also shown is the impact

of a bake cycle up to 350◦C (see inset) which recovers most of

the degradation and results in similar degradation during re-stress

[7, 8]. Fig. 5 shows that the ID/VG sweeps have a strong impact

mostly in depletion/accumulation (electron injection).

Next, the impact of the bake step is investigated in more detail.

As can be seen in Fig. 6, while the bake seems to restore the ∆Vth
dynamics, it does not fully restore Vth. In particular, baking intro-

duces an additional contribution to P. This contribution seems to

depend mostly on the bake itself. The peculiar finding that also

a bake at 350◦C/0V causes degradation is studied more closely

in Fig. 7 using various voltages during bake (temperature profile

from Fig. 4). It can be seen that P can be cycled between different

levels which depend on the voltage during bake. We stipulate

that this experiment reveals P in an accelerated form rather than

being a new effect. These results also clearly demonstrate that

the maximum obtainable P depends on the gate bias during

operation, similarly to R, where this effect is due to the “active

area” in the band diagram accessible during stress [21].

Results Small Devices

In small devices, the impact of individual defects is visible in

the ID/VG sweeps [23]. In addition to the simplest case of a fixed

positive charge, which introduces a bias-dependent offset into

the P(VG) curves, two types of defects are of interest: first, fast

interface states will contribute to P until the Fermi-level EF(VG)
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reaches the trap-level ET, see Fig. 8. On the other hand, oxide

traps can be much slower, resulting in a hysteresis between the

up and down sweeps. Furthermore, stochastic transitions between

the levels would be expected (Fig. 9).

The evolution of P during a 77 day study is shown in Fig. 10.

The 10s/100s stress/relax cycles were interrupted three times

for a long recovery phase (1-3 days, −0.3V@125◦C) where no

recovery was observed and 11 times for a bake. Most changes

in P are simply RTN, probably due to oxide traps with very

large time constants (days). Also shown is the evolution of R,

which clearly shows volatile oxide traps [24]. Similar results

are obtained on a different device for 1ks/100s stress/relax

cycles (Fig. 11). During these long-term time-dependent defect

spectroscopy (TDDS) studies the noise in the recovery traces

tended to increase. Interestingly, a bake at +1V@350◦C was

found not only to nearly restore the initial Vth but also the initial

noise level, see Fig. 12.

The “permanent” changes in P are analyzed in Figs. 13 and 14.

Various types of behavior were found, most of them consistent

with oxide traps/charges rather than interface states. However,

interface states would have a trap level distributed around 250mV

above EV (see Fig. 3), which is at the border of our experimental

window, so about 50% of interface states would look like fixed

charges in our experiments. In any case, no clean interface

trap signal could be detected, confirming previous results which

suggest that P is dominated by oxide defects [3], likely trapped

hydrogen [2].

Modeling and Extrapolation

Our results are clearly consistent with the previously suggested

hydrogen-release mechanism following hot electron injection [3,

25]. During NBTI, however, a slightly different mechanism for H

release needs to be found. DFT calculations show [26–30] that in

amorphous SiO2 protons can be trapped in various configurations.

A schematic model based on this result is shown in Fig. 15:

First, protons can bind to bridging oxygens [28] with a wide

distribution of energy levels (1eV). Depending on the gate voltage

during stress, the ET of some traps are moved above EF, are

neutralized and released as H0 and quickly migrate from the

gate to the channel occupying trapping sites that were previously

not available at VG = Vth, thereby forming P. Some of those H0

may also depassivate Pb centers, thereby also giving a convenient

explanation for the puzzling observation that during NBTI stress

such strong Si-H bonds (EB = 2.5eV for the direct removal of

H [31, 32]) are broken [33]. Secondly, when the local strain in

the structure is larger, H0 can remain attached to their bridging

oxygens even after having been neutralized [29, 30]. They can

only be released over an 1-1.5eV large barrier and are thus

immune to neutralizing ID/VG sweeps. Our data suggest that it

is those trapped hydrogens which form the major contribution to

P in addition to a smaller contribution of Pb centers [3, 34–36].

To explain the additional increase in P at 350◦C, we assume that

additional H can be released from the poly-gate over a barrier

of 2.5eV (e.g. the Si-H binding energy [31, 32]), which then

moves into the recently vacated H-trapping sites. Given the high

diffusivity of hydrogen [37], the response of the system is purely

reaction-limited [38].

The complete model is evaluated with good accuracy against

the data in Fig. 16, showing first how P saturates at each stress

temperature and then how the number of available defects can be

increased at temperatures higher than 350◦C. The re-distribution

of hydrogen towards the channel is shown Fig. 17, consistent

with nuclear reaction analysis (NRA) results [6]. Finally, an

extrapolation towards 125◦C demonstrates that P will unlikely

dominate the degradation after 10 years, see Fig. 18. Note that

the extrapolation was only done with respect to the temperature,

as experiments were conducted mostly at VG =VDD =−1.5V.

Conclusions

Using a pragmatic definition of the “permanent” component of

NBTI, we have studied P at the multi- and single-defect level

using a long-time dataset. We found that just like the recoverable

component R, P depends on a bias-dependent active region in the

oxide. Also, even after 10ks of recovery, a significant fraction of

∆Vth can be removed by a sweep into accumulation, with the

remainder (P) being probably dominated by trapped hydrogen

rather than Pb centers. Finally, it was shown that while P can

provide a sizable contribution to ∆Vth, it does not appear to

dominate the lifetime at use-conditions.
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Fig. 10: A nanoscale device was stressed/recovered
(10s/100s) for nearly 80 days at −2.1V@125◦C.
Before each of the 12 blocks, the device was baked
at 0V/350◦C. Excepting block #4 (which was af-
ter a bake at +1V), only little build-up of P is
observed during stress (red areas). During recovery
(blue shaded area), P stayed constant for several days.
Note the fluctuations in R (“volatility” [24]) as well
as in P.
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not be released during ID/VG sweeps provided the barriers are large enough, contributing to P (in red: DFT barriers [29]). Right: A schematic view of the H-release
model. H can get trapped in two configurations (see Middle/Right) and the trapping sites are connected via barriers to the interstitial configurations. Redistribution
of H in these configurations (diffusion) is very fast and not rate-limiting [37]. At T & 350◦C, additional H can be exchanged with the reservoir, separated by a 2.5eV
barrier (e.g. Si-H bonds [31, 32]).
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Fig. 16: The H-release model vs. data (Bottom) at
various temperatures (Top: T profile). Each symbol is
a measurement taken at 200◦C between T ramps. At
350◦C, additional H is supplied by the reservoir. This
effect, however, is irrelevant under normal operation
and only required to understand the 350◦C data.
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No additional H is supplied from the reservoir close
to these use conditions. For simplicity, a constant H
trap density is assumed [6]. The noise is due to the
stochastic algorithm employed in the model [40].
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Fig. 18: Using only T acceleration, we find that
P does not dominate the 10-year degradation value.
Using a simple power-law extrapolation, P is about
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of available H trapping sites, the H-release model
predicts P to be only about 23%.
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