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We present a computationally efficient framework to compute the neutral flux in high aspect ratio struc-
tures during three-dimensional plasma etching simulations. The framework is based on a one-
dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes
and convex symmetric trenches with a constant cross-section. The framework is intended to replace the
full three-dimensional simulation step required to calculate the neutral flux during plasma etching sim-
ulations. Especially for high aspect ratio structures, the computational effort, required to perform the full
three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical
simulation time constraints. Our results are in agreement with those obtained by three-dimensional
Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this
framework we present a comprehensive analysis of the influence of the geometrical properties of high
aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

High aspect ratio structures are essential for the fabrication of
various semiconductor devices, where the aspect ratio (AR) of the
structure is defined as depth/diameter in case of cylinders and as
depth/width in case of trenches. One particular example is
negative-AND (NAND) flash cell fabrication [1], where three-
dimensional multi-layer designs (3D-NAND) involve vertical holes
which require aspect ratios above 40. Significant pressure on con-
trol of the fabrication process as well as on modeling and simula-
tion techniques originates from these high aspect ratio structures.

One process to fabricate high aspect ratio structures is
ion-enhanced chemical etching (IECE) [2]. In this process, the sur-
face is exposed to reactive atoms and molecules from the plasma,
which chemically react with the surface to form a volatile product.
However, not only volatile products are created in this reaction,
but also non-volatile by-products which hinder subsequent surface
reactions and therefore decrease the etch rate. This chemical seal-
ing is frequently desired on the vertical sidewall of high aspect
ratio structures. To maintain a high etch rate at the bottom region
of a structure, the surface is additionally bombarded with vertically
accelerated ions, with the purpose of removing the non-volatile
by-products on exposed areas. This makes a highly anisotropic
chemical etching possible, supporting the fabrication of high
aspect ratio structures.

To simulate an IECE process, a common approach is to model
the reactive atoms and molecules of the plasma as electrically neu-
tral particles that diffuse into the domain. In contrast, the acceler-
ated ions are modeled as a directed source. A general simulation
sequence for a single time step is to (a) calculate the local neutral
particle flux and the local ion flux adsorbed on the surface, (b)
model the local surface reaction using the obtained flux rates,
and (c) calculate the new surface positions.

Common approaches for three-dimensional flux calculation are
Monte Carlo ray tracing [3] and radiosity based [4] methods. When
applying these methods to high aspect ratio structures, the compu-
tational costs for the neutral flux calculation dominates the simu-
lation. The local neutral flux originating from multiple reflections
becomes the dominant component towards the bottom of the
structures; this multiplies the computational effort by the number
of considered reflection events, compared to the costs for the com-
putation of the direct flux.1 Also, the flux rates can easily vary by
orders of magnitude along the structure depth; this increases the
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number of particles necessary to obtain an acceptable signal-to-
noise ratio when using a ray tracing approach. For spatial resolutions
typically desired for practical simulation cases, this leads to high
computational costs for the full three-dimensional computation of
the local neutral flux using Monte Carlo ray tracing or radiosity
based methods.

We suggest to use a one-dimensional approximation for the cal-
culation of the local neutral flux inside high aspect ratio structures.
Our approach, initially introduced in [5], is radiosity based and is
applicable to simulations of convex rotationally symmetric holes
and convex symmetric trenches with a constant cross-section.

The adsorption of the neutral particles is modeled with a stick-
ing probability s as a locally constant parameter of the surface. All
sources and reflections are treated as ideal diffusive, which is a
common assumption for neutral particles [6]. Molecular flow (bal-
listic transport) is assumed for the neutral particles. The sum of
these assumptions allows for the computation of the neutral flux
distribution using a radiosity approach, which was originally used
in the context of heat transfer [7] and later adopted in computer
graphics to compute global illumination [8].

The surface of the structure is discretized into elements along
the line of symmetry. Assuming a constant flux and a constant
sticking probability s over each surface element, we reformulate
the discrete radiosity equation to obtain a receiving perspective,
which allows for fully adsorbing surface elements.

We establish a general formulation to compute the view factor
between two elements of a convex rotationally symmetric hole,
based on a formula for the view factor between two coaxial disks
of unequal radius. The view factors between two elements of a
convex symmetric trench with a constant cross-section is derived
using the crossed-strings method [7].

The framework is validated using a three-dimensional Monte
Carlo ray tracing based simulator [9] by comparing results for dif-
ferent aspect ratios and sticking probabilities. Furthermore, we
study the influence of geometric variations along the wall, as well
as the variations of the particle sticking probability, on the flux
distribution.

Kokkoris et al. [6] also proposed a framework to approximate
the neutral flux in long trenches and holes by exploiting symmetry
properties of the structures: The three-dimensional problem is
reduced to a line integral and the Nyström method [10] is used
for discretization, where a special numerical treatment is needed
to avoid singularities. Spikes and oscillations of the solution near
corners of the structure were reported, when the resolution is
not refined (compared to the resolution required by the Nyström
method) at these critical spots. Assumptions for the neutral flux,
which are the same for our framework, are the ideal diffuse
sources/reflections, the locally constant sticking probability, and
molecular flow (ballistic transport without considering inter-
particle collisions) of the neutral particles.

In the following sections we first define the simulation domain
and introduce the surface model (Section 2). Then, we derive the
receiving perspective for the discrete radiosity equation (Section 3)
and describe the computation of the view factors for holes and
trenches (Section 4). Finally, we present the results of the valida-
tion and the effects of geometric variations on the wall (Section 5).
2. Simulation domain

For cylindrical holes, the simulation domain is a rotationally
symmetric closed convex surface. For trenches, the simulation
domain is a trench with a closed convex symmetric cross-section.
The neutral flux source is modeled by closing the structures at the
top. This leads to a disk-shaped source and a strip-shaped source
for holes and trenches, respectively. Fig. 1a and b illustrates the
cross-sections of domains with vertical walls and with a kink at
one half of the depth, respectively.

The surface adsorption is modeled using a locally constant
sticking probability s. The received flux R is split according to s into
an adsorbed flux A and a re-emitted flux RE as depicted in Fig. 1c.
Source areas additionally emit flux E independent of R.

For the remainder of this work, a sticking probability ss ¼ 1 is
used for source areas which to not have any reflections originating
from these artificial areas; the bottom is modeled as a fully adsorb-
ing area with a sticking probability sb ¼ 1. A constant sticking
probability sw is used for the walls of the structures. These choices
represent a reasonable approximation to the prevalent conditions
for the neutral particles in an IECE environment.
3. Radiosity equation

Our assumptions, particularly that all sources and surfaces are
ideal diffuse and that the transport of the neutral particles is ballis-
tic, allows for the use of a radiosity formulation.

By assuming a constant flux and a constant sticking probability
over each surface element, the problem can be formulated using
the discrete radiosity equation: for a surface element i the equation
reads

Bi ¼ Ei þ ð1� aiÞ
X
j

ðFjiBjÞ; ð1Þ

where B is the radiosity (sum of emitted and reflected energies), E is
the self-emitted energy, a is the absorptance, and Fji is the view fac-
tor (proportion of the radiated energy, which leaves element j and is
received by element i). We adapt (1) to our problem by substituting
the absorptance awith the sticking probability s and identifying the
adsorbed flux as the adsorbed energy A. The radiosity B is then
related to the adsorbed energy A by

Ai ¼ ðBi � EiÞ si
1� si

: ð2Þ

Since we are also interested in the adsorbed flux at the fully adsorb-
ing areas, (1) and (2) are not applicable because limsi!1 Ai ¼ 1. For
this reason we use the following formulation for the received flux R:

Ri ¼
X
j

ðEjFjiÞ þ
X
j

ðð1� sjÞRjFjiÞ; ð3Þ

where the relation to the adsorbed flux is

Ai ¼ Risi: ð4Þ

Rewritten in matrix notation and resolved for the vector of the
received flux R we obtain

FT � Eþ diagð1� sÞFT � R ¼ R;

ðI� diagð1� sÞFTÞ � R ¼ FT � E; ð5Þ

with the vector of emitted flux E, a vector of sticking probabilities s,
and a matrix of view factors F (where Fij corresponds to the view
factor i ! j).

We approximate the solution of the resulting diagonally-
dominant linear system of Eq. (5) using the Jacobi method. Each
iteration of the Jacobi method can be imagined as a concurrent dif-
fuse re-emission of each element to all other elements. The
adsorbed flux A is obtained by multiplying the entries in the solu-
tion for R with the corresponding sticking probability s of the ele-
ment (4). The relation kAk � kEk ¼ 0, which holds for closed
surfaces, can be used to test the implementation and to define a
stopping criterion for the Jacobi iterations.



(a) Vertical (b) Kink (c) Surf.Model

Fig. 1. Cross-sections of simulation domains with vertical walls (a) and with a kink
at one half of the depth (b). ss ; sw , and sb designate the sticking probabilities for the
source, the wall, and bottom region, respectively. (c) Illustrates the surface model
showing the relation between the received flux R, the adsorbed flux A, and the re-
emitted flux RE; source areas emit flux E independent of the received flux R.

Fig. 3. Isometric (a) and side view (b) on the four infinite strips which correspond
to the surface elements a and b from Fig. 2a. In (b), the view factors from the top
right strip ar towards the other three strips are visualized.

(a) Cone/Cone (b) Cone/Annulus (c) Cone/Disk

Fig. 4. Three possible pairs of segments as they result from discretizing the hole.
For each pair, the near apertures an and bn , and the far apertures af and bf are
denoted. (a) Two cone-like segments. (b) Cone and annulus. (c) Cone and disk. The
far aperture is treated as an infinitely small element.
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4. View factors

Our approach is based on a discretization of the surface into dis-
crete surface elements along the structure’s line of symmetry.
Fig. 2 shows the cross-section of a convex structure and the shape
of the resulting surface elements. Two vertical ranges are indicated
in Fig. 2b and the resulting surface elements a and b are shown for
a trench (Fig. 2a) and a hole (Fig. 2c). The elements are formed from
two strips for the trench and take the form of a sliced cone for the
hole.

To assemble the matrix F we need to evaluate the view factors
between all possible pairs of surface elements.
4.1. Trench view factors

The view factor between two segments of a symmetric convex
trench with a constant cross section, as depicted in Fig. 2a, is
derived using the crossed-strings method [7]. This method com-
putes the view factor between two surfaces with a constant cross
section and infinite length utilizing a two-dimensional re-
formulation of the problem. For two mutually completely visible
strips of infinite length the view factor is [7]

F1!2 ¼ ðd1 þ d2Þ � ðs1 þ s2Þ
2 � a1 ; ð6Þ

where d1 and d2 denote the lengths of the diagonals when connect-
ing the cross-section of the two strips to form a convex quadrilat-
eral, s1 and s2 denote the lengths of the sides of that quadrilateral
which connects the strips, and a1 denotes the length of the side of
the quadrilateral which represents the emitting strip.

Fig. 3a is an isometric view of the four strips from Fig. 2a. The
view factors from the top right strip ar towards the other three
(a) Trench (b) Domain (c) Hole

Fig. 2. Two surface elements, which result when discretizing the domain (b) are
displayed: (a) is the side view of two surface elements a and b, which result from a
trench discretization and (c) is the isometric view of two surface elements a and b,
which result form a hole discretization.
strips is visualized in Fig. 3b. The view factor between the two seg-
ments a and b is

Fa!b ¼ Far!br þ Far!bl ; ð7Þ
where the subscripts denote the side of the strip according to
Fig. 3b. al can be neglected, as the cross section is symmetric. The
view factor of an element to itself is

Fa!a ¼ Far!al ; ð8Þ
where again the other direction can be neglected due to symmetry.
Eq. (6) is used to compute the view factors between individual
strips in (7) and (8).

4.2. Hole view factors

We derive a general formulation to compute the view factors
between two segments of a rotationally symmetric convex hole
as depicted in Fig. 2c. It is based on the view factor between two
coaxial disks of unequal radii r1 and r2 at a distance z defined by

F1!2 ¼ 1
2

X �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4ðR1=R2Þ2

q� �
; ð9Þ

where Ri ¼ ri=z and X ¼ 1þ ð1þ R2
2Þ=R2

1 [11]. Using this relation and
the reciprocity theorem of view factors

S1 � F1!2 ¼ S2 � F2!1; ð10Þ
where S is the element area, we derive a general formulation for the
view factor between the inner wall surfaces of two coaxial cone-like
segments whose surfaces are mutually completely visible. Fig. 4a
shows two segments a and b in such a configuration and denotes
the four coaxial disks which represent the apertures of the two
elements.

In our formulation, the final goal to compute the view factor
between two elements a and b is divided into multiple inexpensive
view factor computations between coaxial disks. First, the differ-
ence of the view factors from bf towards the two disks of a is com-
puted, and the reciprocity theorem (10) is applied to obtain Fabf

(red indicates sending and blue receiving areas):



Fig. 6. Normalized flux distributions along the wall and at the bottom for cylinders of as
(circles) is compared to a three-dimensional ray tracing simulator (lines). The sticking pr
tracing and radiosity towards the wall-bottom interface are due to the resolution of the ra
maximum along the cylinder radius, particularly visible for sw ¼ 0:2.
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Fig. 5. Cross sections of the geometric variations of the wall for holes and trenches
(shown for AR = 3). Starting from a vertical wall, the bottom width is increased by
25% (extended) and reduced by 25% (tapered). Finally, the width at 1/2 of the total
depth is increased by 12.5% to form a kink. The resulting angle a, which is identical
for all three variations, is depicted.
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ð11Þ

The same is done for bn to obtain Fabn :

ð12Þ

Finally Fab is obtained by subtracting Fabf from Fabn :

ð13Þ

The view factor of an element to itself Faa is computed by sub-
tracting the flux which leaves through the two apertures from
unity:
pect ratio 5 (a, b) and aspect ratio 45 (c, d). Our one-dimensional radiosity approach
obability of the wall sw is varied between 0.02 and 0.2. The deviations between ray
y tracing simulator. In (c) the ray tracing results are plotted using the minimum and



Fig. 7. Normalized flux distributions along the wall and at the bottom of a hole and a trench of AR = 25 for sticking probabilities sw ¼ 0:2 (a, b) and sw ¼ 0:01 (c, d). The
geometry of the structures is varied (according to Fig. 5). The results for structures with vertical sidewalls are plotted as a reference. Lines represent the results of the
reference ray tracing simulator [9]. The deviations between ray tracing and radiosity towards the wall-bottom interface are due to the limited grid resolution of the ray
tracing simulator. The flux distributions at the bottom span the interval [0.75,0] for the tapered structures and [1.25,0] for the extended structures. In (c), the vertical dashed
lines mark positions at 25% and 75% of the total depth as a reference for the results in Fig. 8.

P. Manstetten et al. / Solid-State Electronics 128 (2017) 141–147 145
Faa ¼ 1� Faan � Faaf : ð14Þ
If an element is an annulus or a disk (see Fig. 4b and c, respec-

tively), the general formulation still applies. For a disk, the far aper-
ture is treated as an infinitely small element.
5. Results

To provide a good qualitative comparison we normalize the
results to only depend on the aspect ratio of the structure and
the sticking probability. The adsorbed flux A is divided by the area
of the element (Ai

n = Ai/Si) and normalized to the flux which a
surface of the same sticking probability would absorb, if it is fully
planar-exposed to the source (Ai

nsrc = Ai
n/Eisrc

n �Si).
The sticking probabilities of the source areas at the top ss and
the bottom of the structures sb are modeled as fully adsorbing in
all of the following results.

5.1. Validation: cylindrical holes

To evaluate the quality of our one-dimensional radiosity model,
we analyze different simulation setups of cylinders, where we vary
the sticking probability of the wall between sw ¼ 0:02 and sw ¼ 0:2.
Fig. 6a and b compares the flux distributions for structures where
AR ¼ 5 obtained using the proposed one-dimensional radiosity
approach with results generated with a reference Monte Carlo
ray tracing tool [9]. Similarly, Fig. 6c and d compares the flux dis-
tributions for structures where AR ¼ 45. The results show a good
agreement, aside from the deviation at the wall/bottom interface,



Fig. 8. Flux in a convex hole (a) and trench (b) (with tapered, extended, and kinked sidewalls) relative to the flux in a hole and a trench with vertical walls for an aspect ratio
25 and a wall sticking probability sw ¼ 0:01. The flux at the bottom center and at two points on the wall (at 25% and 75% of the total depth) is plotted over the angle a
(introduced in Fig. 5). The angle a corresponds to the taper angle (tapered), the extension angle (extended), and to the angle which is formed by a kink at one half of the total
depth of the structure. The vertical dashed lines indicate an angle a ¼ 0:286� as a visual reference to the results in Fig. 7c.
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caused by the discretization which is used in the ray tracing simu-
lation. In Fig. 6c two flux distributions are plotted for the ray trac-
ing results along the wall; they represent the minimum and
maximum along the cylinder radius. The separation of the flux dis-
tributions, particularly visible for sw ¼ 0:2 (Fig. 6c), and the visible
noise in Fig. 6d, reflect the stochastic nature of the ray tracing
approach.
5.2. Validation: convex structures

To validate our method for convex structures, several geometric
variations including an extended, tapered, and kinked sidewall,
visualized in Fig. 5, are applied to a hole and a trench of aspect ratio
25. Good agreement is achieved when comparing to the results
obtained with a reference Monte Carlo ray tracing simulator.

Furthermore, the results allow to study the influence of the geo-
metrical properties of high aspect ratio structures as well as of the
particle sticking probability on the neutral particle flux. Fig. 7 com-
pares the resulting flux distributions along the wall and at the bot-
tom for sticking probabilities sw ¼ 0:2 and sw ¼ 0:01. For a sticking
probability sw ¼ 0:2, Fig. 7a and b shows small variations along the
wall and at the bottom for both, holes and trenches. Solely the
presence of the kink clearly increases the flux on the bottom half
of the wall.

When decreasing the sticking probability to sw ¼ 0:01, Fig. 7c
indicates stronger deviations along the entire wall for all geome-
tries. Fig. 7d reveals a variation of about �25% and �10% for the
bottom flux in a hole and a trench, respectively.
To summarize, low sticking probabilities increase the influence
of geometric variations on the flux distributions along the wall, and
especially at the bottom of high aspect ratio structures.
5.3. Variation of wall geometries

Using our framework, the influence of the wall geometry on the
flux distributions is studied in more detail using a hole and a
trench of aspect ratio 25 with a wall sticking probability
sw ¼ 0:01. For a ¼ 0:286�, this reassembles the configuration used
to produce the results in Fig. 7c and d. Fig. 8 compares the flux
at the bottom center and two points on the wall (at 25% and 75%
of the depth) when additionally varying a (depicted in Fig. 5) from
0� to 1�.

For the kinked structures, the angular dependence of the flux at
all three positions can be approximated with a linear relation to
the flux in a structure with vertical sidewalls. The results for the
extended and especially the tapered structures reveal the generally
non-linear relation already for small angles. Fig. 8a and b shows
that the kinked sidewall leads to higher flux rates at the bottom,
compared to the extended configuration; the tapered configuration
reduces the bottom flux.

When interpreting the results, it must be considered that the
fully adsorbing bottom area changes its size when tapering or
extending the structure. For a ¼ 1�, the bottom width/diameter is
reduced to 13% and extended to 187%, for the tapered and
extended structures, respectively. This is likely one reason why
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the bottom flux is, at all angles, higher for the kinked structures,
when comparing with the extended structures.

6. Summary and outlook

We provide an approximation of the local neutral flux in three-
dimensional plasma etching simulations of high aspect ratio holes
and trenches, using a one-dimensional radiosity approach. The
radiosity equation is reformulated into a receiving perspective,
which allows to model fully adsorbing surface elements. We
compute all relevant view factors for holes by establishing an
inexpensive general formulation for the view factor between
coaxial cone-like segments. Comparing the results for various
convex configurations using a rigorous three-dimensional Monte
Carlo ray tracing simulation good agreement is noted and the
applicability of our model for practical situations is confirmed.

We study the influence of geometric variations on the wall as
well as the sticking probability on the flux distributions. The
results indicate a strong influence for low sticking probabilities
which are typical in IECE simulations of high aspect ratio struc-
tures. The influence is studied in more detail for holes and trenches
using a sticking probability sw ¼ 0:01 and an aspect ratio of 25. The
results provide a compact overview on the magnitude of the flux
deviation at different positions in the structure, when comparing
to the idealized shape.

Our framework is based on a computationally inexpensive and
straightforwardly implementable method to compute the neutral
flux distributions inside convex symmetric holes and convex
symmetric trenches of constant cross-section. It can be used as a
drop-in replacement for the neural flux computation during
three-dimensional IECE simulations of high aspect ratio structures
to significantly reduce simulation times in practical simulation
cases – or as a stand-alone tool which provides fast results for
general investigations.
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