
doi: 10.1016/j.procs.2016.05.408 

Comparison of the Parallel Fast Marching Method,

the Fast Iterative Method, and

the Parallel Semi-Ordered Fast Iterative Method

Josef Weinbub1 and Andreas Hössinger2

1 Christian Doppler Laboratory for High Performance TCAD,
Institute for Microelectronics, TU Wien, Wien, Austria

weinbub@iue.tuwien.ac.at
2 Silvaco Europe Ltd., St Ives, Cambridge, United Kingdom

andreas.hoessinger@silvaco.com

Abstract
Solving the eikonal equation allows to compute a monotone front propagation of anisotropic
nature and is thus a widely applied technique in different areas of science and engineering.
Various methods are available out of which only a subset is suitable for shared-memory paral-
lelization, which is the key focus of this analysis. We evaluate three different approaches, those
being the recently developed parallel fast marching method based on domain decompositioning,
the inherently parallel fast iterative method, and a parallel approach of the semi-ordered fast
iterative method, which offers increased stability for variations in the front velocity as com-
pared to established iterative methods. We introduce the individual algorithms, evaluate the
accuracy, and show benchmark results based on a dual socket Intel Ivy Bridge-EP cluster node
using C++/OpenMP implementations. Our investigations show that the parallel fast marching
method performs best in terms of accuracy and single thread performance and reasonably well
with respect to parallel efficiency for up to 8-16 threads.

Keywords: Parallel fast marching method, fast iterative method, semi-ordered fast iterative method,

parallel algorithm, eikonal equation, OpenMP

1 Introduction
Simulating an expanding front is a fundamental step in many computational science and engi-
neering applications, such as image segmentation [6], brain connectivity mapping [12], medical
tomography [11], seismic wave propagation [13], geological folds [9], semiconductor process sim-
ulation [17], and computational geometry [15]. In general, an expanding front originating from
a start position Γ is described by its first time of arrival T to the points of a domain Ω. This
problem can be described by solving the eikonal equation [14], which for n spatial dimensions
reads: ‖∇T (x)‖2 F (x) = 1 x ∈ Ω ⊂ R

n , T (x) = g(x) x ∈ Γ ⊂ Ω.

Procedia Computer Science

Volume 80, 2016, Pages 2271–2275

ICCS 2016. The International Conference on Computational
Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
c© The Authors. Published by Elsevier B.V.

2271

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.408&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.408&domain=pdf


T (x) is the unknown solution (i.e. first time of arrival), g(x) are boundary conditions for Γ,
and F (x) is a positive speed function, with which the interface information propagates in the
domain. Generally speaking, isosurfaces to the solution represent the position of the front at
a given time, and can thus be regarded as the geodesic distance relative to Γ. If the velocity
F = 1, then the solution T (x) represents the minimal Euclidian distance from Γ to x.
In this work, we compare three relevant methods for solving the eikonal equation in a shared-
memory parallel setting, for which an overview is given in the following sections. A domain
decomposition-based parallel approach of the fast marching method (FMM) (cf. Section 2), the
inherently parallel fast iterative method (FIM) (cf. Section 3), and a parallel approach of the
semi-ordered fast iterative (SOFI) method (cf. Section 4). Section 5 compares implementations
based on C++ and OpenMP of those three methods with respect to execution speed, parallel
speedup, and accuracy.

2 Parallel Fast Marching Method
The original FMM [14] is inherently sequential (due to the fact that identifying the smallest
solution value is a global process) and previous attempts to parallelize it have been unsatisfac-
tory [2][11]. However, recently a shared-memory parallelization method for the FMM has been
developed which is used in this work [18]. The computational domain is partitioned into equal
parts (i.e. subgrids) via a block-partitioning scheme; each thread is responsible for a specific
subgrid. A single ghost layer is used in all interior spatial decomposition directions to ensure
that the parallel algorithm properly computes the entire domain; the updates at the inner
boundary cells (i.e. boundary cells introduced by the partitioning scheme) are forwarded to the
neighboring threads allowing the local solutions to influence the global solution process. By
using a domain decomposition technique, which is due to the use of ghost zones to be consid-
ered an overlapping domain decomposition approach, each thread (and thus partition) has its
own minimum heap data structure for finding the smallest value within the individual subgrid’s
BAND set. Thereby the primary reason for the FMM to not favor parallelization is eliminated,
as no synchronized access has to be implemented. The eikonal equation is thus solved by the
threads on their individual subgrid, including the ghost cells, which gives rise to parallelism.
Details of this method are presented in [18].

3 Fast Iterative Method
The FIM was originally implemented for parallel execution on Cartesian meshes [10] and later
extended to triangular surface meshes [7]. Due to its inherent parallel nature no parallel exten-
sion was required, contrary to the FMM (cf. Section 2) and the SOFI method (cf. Section 4).
The FIM relies on a modification of a label correction scheme coupled with an iterative proce-
dure for the mesh node update. In particular, there is no fixed node update order and several
nodes can be updated simultaneously, enabling parallelism. More concretely, the inherent high
degree of parallelism is due to the ability of processing all nodes of an active list (i.e. narrow
band) in parallel, thus efficiently supporting a single instruction, multiple data parallel execution
model. Therefore, the FIM is suitable for implementations on highly parallel accelerators, such
as graphics adapters [10][11]. The iterative nature of the algorithm requires the use of an error
threshold; the smaller the threshold the more accurate the method computes the solution by
simultaneously requiring more iterations. Details of this algorithm can be found in the original
work [10]. Although FIM has been primarily investigated regarding fine-grained parallelism on
accelerators, investigations on shared-memory approaches have also been conducted [4][5][17].

Comparison of the Parallel FMM, the FIM, and the Parallel SOFI Method J.Weinbub, A.Hössinger

2272



4 Parallel Semi-Ordered Fast Iterative Method
Although the FIM provides superior parallel performance to other available methods (in most
cases), its performance is problem dependent. Complex speed functions tend to significantly
increase the solution time. To overcome this shortcoming, the SOFI method has been devel-
oped [8]; SOFI is based on both the FIM as well as on the Two-Queue method [1]. SOFI enforces
an ordering to get the iterative behavior closer to front tracking methods, i.e., fast marching
and wavefront tracking methods, in turn offering an increased stability, when faced with intri-
cate speed functions. Front tracking methods inherently favor sequential execution, therefore
parallel scalability is by definition inferior to that of the FIM. Rather than computing all active
nodes in parallel (as is the case with the FIM), the SOFI method pauses some of the await-
ing updates according to a cutoff criterion based on statistical in-situ analysis of the solution
values. Details can be found in the original work [8]. Although originally developed as a serial
algorithm, the SOFI method has been extended to support shared-memory parallelism [16]:
The parallel approach achieves - albeit using straightforward parallelization techniques via par-
titioning the active nodes’ iteration space and thread-synchronized data structures - reasonable
performance and is thus investigated in this work.

5 Benchmarks
In this section, we compare the introduced methods with respect to execution performance
(serial and parallel), parallel efficiency, and accuracy. Our benchmarks use established synthetic
problem cases [3][4][9] and cover different three-dimensional problems with varying problem
sizes (1003 and 2003 Cartesian cube grids using 0.0 and 1.0 for lower and upper bounds,
respectively), speed functions as described in [16], and multiple-source configurations, i.e., 100
source nodes randomly spread over the entire simulation domain. The entire simulation domains
are computed. The benchmarks have been carried out on a dual socket machine, equipped
with two eight-core Intel Xeon E5-2650v2 (Ivy Bridge-EP) and 64GB of DDR3 1866 ECC
main memory. The Intel C++ compiler version 16 has been used as well as 64-bit floating
point precision (i.e. double) and - for the FIM - an error threshold of ε = 10−12 has been
utilized. The fastest execution times out of five repetitions have been recorded and used for the
investigation.

Figure 1-3 compare the strong scaling results of the parallel FMM and the FIM for both
grid setups. The execution times are shown in logarithmic scale to increase the identifiability
of the presented data sets, as the timings for the various setups would otherwise potentially be
indistinguishable from each other. As can be seen from the execution times the FIM struggles
in general with complicated speed functions whereas the parallel FMM and SOFI method fare
significantly better. The parallel efficiency improves for increased problem sizes, which is due
to the increased workload per thread. For the 1003 problem size, good scalability is achieved
for up to eight threads (efficiency of around 90%) by all methods. In turn, for the 2003 case, all
methods perform well for up to 16 threads. A tendency for super-linear scaling for the parallel
FMM is identified which is due to the decomposition scheme: For one thread, the required
additional decomposition logic results in a disproportionate overhead which is alleviated for
higher thread numbers. However, for more than eight threads, the book keeping required for
handling the larger thread numbers counters this effect again. Table 1(a,b) provides a detailed
comparison of the serial execution times (i.e. with one thread) of the different benchmark
setups. The results show that the parallel FMM and the SOFI method alternate in claiming
the single thread performance lead, albeit the SOFI method being disproportionately slower
(≥ 55%) than the FMM for the Fosc speed function.

Comparison of the Parallel FMM, the FIM, and the Parallel SOFI Method J.Weinbub, A.Hössinger

2273



 0.01

 0.1

 1

 10

 2  4  8  16  32

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

Threads

FIM
FMM
SOFI

 2
 4

 8

 16

 32

 2  4  8  16  32

Sp
ee

du
p

Threads

FIM
FMM
SOFI

 0.1

 1

 10

 100

 1000

 2  4  8  16  32

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

Threads

FIM
FMM
SOFI

 2
 4

 8

 16

 32

 2  4  8  16  32

Sp
ee

du
p

Threads

FIM
FMM
SOFI

Figure 1: Fconst execution times and speedups on 1003 (left two) and 2003 (right two) domain

 0.01

 0.1

 1

 10

 2  4  8  16  32

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

Threads

FIM
FMM
SOFI

 2
 4

 8

 16

 32

 2  4  8  16  32

Sp
ee

du
p

Threads

FIM
FMM
SOFI

 0.1

 1

 10

 100

 1000

 2  4  8  16  32

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

Threads

FIM
FMM
SOFI

 2
 4

 8

 16

 32

 2  4  8  16  32

Sp
ee

du
p

Threads

FIM
FMM
SOFI

Figure 2: Fcheck execution times and speedups on 1003 (left two) and 2003 (right two) domain

 0.01

 0.1

 1

 10

 2  4  8  16  32

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

Threads

FIM
FMM
SOFI

 2
 4

 8

 16

 32

 2  4  8  16  32

Sp
ee

du
p

Threads

FIM
FMM
SOFI

 0.1

 1

 10

 100

 1000

 2  4  8  16  32

Ex
ec

ut
io

n 
Ti

m
e 

[s
]

Threads

FIM
FMM
SOFI

 2
 4

 8

 16

 32

 2  4  8  16  32

Sp
ee

du
p

Threads

FIM
FMM
SOFI

Figure 3: Fosc execution times and speedups on 1003 (left two) and 2003 (right two) domain

Fconst Fcheck Fosc

FMM 0.715878 1.28597 1.51159
FIM 0.931384 2.76385 9.53287
SOFI 0.548253 1.42799 3.44997

(a) 1003 Execution Times

Fconst Fcheck Fosc

FMM 10.4973 17.9843 20.0329
FIM 10.1596 29.4321 112.024
SOFI 6.79996 16.7754 61.6414

(b) 2003 Execution Times

L1 L2 L∞
FMM 8 · 10−3 7.3 · 10−5 1 · 10−3

FIM 17 · 10−3 31 · 10−5 15 · 10−3

SOFI 17 · 10−3 31 · 10−5 15 · 10−3

(c) Error Norms

Table 1: Comparison of serial execution times (i.e. single threaded) between the parallel FMM,
the FIM, and the parallel SOFI method for different speed functions for the 1003 (a) and 2003

(b) test case. (c) The L1, L2, and L∞ norms of the parallel FMM, the FIM, and the parallel
SOFI method are compared for the single source, 1003 test case using a constant speed function.

Overall, the FMM offers the best serial execution performance over the entire spectrum, con-
sidering the relatively small shortfall to the SOFI method (< 35%) when the FMM is indeed
slower. On the contrary, the FIM offers inferior serial execution performance. Table 1(c) shows
the rounded L1, L2, and L∞ error norms of the individual methods for a single source problem
(i.e. a single source node located at 0.0) with constant speed for a 1003 grid. As can be seen
from the results, the parallel FMM offers the highest accuracy and is thus the clear favorite for
accuracy-focused applications.

6 Conclusion
Three relevant eikonal equation solver algorithms have been investigated with a focus on three-
dimensional problem cases and shared-memory parallelization: The domain decomposition par-
allel FMM, the FIM, and the parallel SOFI method. An introduction to each method has been
given followed by a description of the benchmark and comparison setups. The serial and par-
allel execution times as well as accuracy have been shown and discussed. Overall, the parallel
FMM has been shown to perform best. Future work will extend the investigations beyond
synthetic benchmarks and will focus on real-world problem cases arising from surface evolution
simulation techniques.

Comparison of the Parallel FMM, the FIM, and the Parallel SOFI Method J.Weinbub, A.Hössinger

2274



Acknowledgments. The financial support by the Austrian Federal Ministry of Science,
Research and Economy and the National Foundation for Research, Technology and Development
is gratefully acknowledged. The presented computational results have been achieved using the
Vienna Scientific Cluster (VSC).

References

[1] Stanley Bak et al. Some Improvements for the Fast Sweeping Method. SIAM J.Sci.Comput.,
32(5):2853–2874, 2010. DOI: 10.1137/090749645.

[2] Michael Breuß et al. An Adaptive Domain-Decomposition Technique for Parallelization of the
Fast Marching Method. Appl.Math.Comput., 218(1):32–44, 2011. DOI:
10.1016/j.amc.2011.05.041.

[3] Adam Chacon and Alexander Vladimirsky. Fast Two-Scale Methods for Eikonal Equations.
SIAM J.Sci.Comput., 34(2):A547–A578, 2012. DOI: 10.1137/10080909X.

[4] Florian Dang and Nahid Emad. Fast Iterative Method in Solving Eikonal Equations: A
Multi-level Parallel Approach. Proc.Comput.Sci., 29:1859–1869, 2014. DOI:
10.1016/j.procs.2014.05.170.

[5] Florian Dang et al. A Fine-Grained Parallel Model for the Fast Iterative Method in Solving
Eikonal Equations. In Proc. of 3PGCIC, pages 152–157, 2013. DOI: 10.1109/3PGCIC.2013.29.

[6] Nicolas Forcadel et al. Generalized Fast Marching Method: Applications to Image Segmentation.
Numer.Algorithms, 48(1-3):189–211, 2008. DOI: 10.1007/s11075-008-9183-x.

[7] Zhisong Fu et al. A Fast Iterative Method for Solving the Eikonal Equation on Triangulated
Surfaces. SIAM J.Sci.Comput., 33(5):2468–2488, 2011. DOI: 10.1137/100788951.

[8] T. Gillberg. A Semi-Ordered Fast Iterative Method (SOFI) for Monotone Front Propagation in
Simulations of Geological Folding. In Proc. of MODSIM, pages 631–647, 2011.

[9] Tor Gillberg et al. Parallel Solutions of Static Hamilton-Jacobi Equations for Simulations of
Geological Folds. J.Math.Indus., 4(10):1–31, 2014. DOI: 10.1186/2190-5983-4-10.

[10] Won-Ki Jeong and Ross T. Whitaker. A Fast Iterative Method for Eikonal Equations. SIAM
J.Sci.Comput., 30(5):2512–2534, 2008. DOI: 10.1137/060670298.

[11] Shengying Li et al. Physical-Space Refraction-Corrected Transmission Ultrasound Computed
Tomography Made Computationally Practical. In Lect.Notes.Comput.Sc., volume 5242, pages
280–288, 2008. DOI: 10.1007/978-3-540-85990-1 34.

[12] Emmanuel Prados et al. Control Theory and Fast Marching Techniques for Brain Connectivity
Mapping. In Proc. of CVPR, volume 1, pages 1076–1083, 2006. DOI: 10.1109/CVPR.2006.89.

[13] Nick Rawlinson and Malcolm Sambridge. Multiple Reflection and Transmission Phases in
Complex Layered Media Using a Multistage Fast Marching Method. Geophy., 69(5):1338–1350,
2004. DOI: 10.1190/1.1801950.

[14] James A. Sethian. A Fast Marching Level Set Method for Monotonically Advancing Fronts.
P.Natl.A.Sci., 93(4):1591–1595, 1996.

[15] James A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press,
1999. ISBN: 978-0521645577.

[16] Josef Weinbub et al. Shared-Memory Parallelization of the Semi-Ordered Fast Iterative Method.
In Proc. of HPC, pages 217–224, 2015.

[17] Josef Weinbub and Andreas Hössinger. Accelerated Redistancing for Level Set-Based Process
Simulations with the Fast Iterative Method. J.Comp.Elect., 13(4):877–884, 2014. DOI:
10.1007/s10825-014-0604-x.

[18] Josef Weinbub and Andreas Hössinger. Shared-Memory Parallelization of the Fast Marching
Method Using an Overlapping Domain-Decomposition Approach. In Proc. of HPC, 2016.

Comparison of the Parallel FMM, the FIM, and the Parallel SOFI Method J.Weinbub, A.Hössinger

2275


