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Sparse matrices are extensively used in areas such as linear algebra, data mining, or graph analytics. One of
the fundamental operations is general sparse matrix-matrix multiplication (SpGEMM), where our primary
interest is in computing coarse grid operators in algebraic multigrid methods [1]. While certain applications
provide additional information to derive optimized sparse matrix-matrix multiplications, a fast and general
SpGEMM is desirable from an abstraction point of view. As a consequence, parallel implementations of
SpGEMM are provided by several libraries including the Math Kernel Library (MKL) by INTEL for CPUs
and MICs, and CUSP as well as CUSPARSE by NVIDIA for NVIDIA GPUs.

In this work we present optimization results for SpGEMM on shared memory systems equipped with multi-
core CPUs, GPUs, or MICs. We build on top of previous work on optimizing SpGEMM for NVIDIA
GPUs [2], generalize the optimization techniques to other architectures [3], and derive fast implementations
for hardware from all major vendors: First, an SpGEMM kernel implementation based on second-generation
advanced vector extensions (AVX2) intrinsics merging multiple rows concurrently on the latest Haswell
Xeon CPU line, and an implementation based on 512-bit wide AVX intrinsics on Xeon Phi (KNC) is
discussed. Second, an embedded performance model for estimating the work required by each thread is
introduced, resulting in improved load balance across threads. Third, our contribution for a GPU-based
SpGEMM is a refinement of the recently proposed row-merging algorithm proposed in Ref. [2] by reducing
the memory footprint and the number of kernel launches. While the original row-merging algorithm has
memory overheads of at least the size of the result matrix, the additional memory required by our algorithm
depends only on the total number of threads and the maximum number of nonzeros in the right hand side
factor matrix. A comparison with MKL, CUSP, and CUSPARSE in Figure 1 demonstrates a 50 percent
performance gain over INTEL’s MKL library on a recent Haswell-based Xeon system on average. A two-
fold performance gain over CUSP and CUSPARSE is demonstrated on an NVIDIA Tesla K20m. Also, we
present the first implementation of an efficient SpGEMM on AMD GPUs based on row-merging.
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Fig. 1: Performance comparison of sparse matrix-matrix multiplication routines.

References

[1] Trottenberg, U., Oosterlee, C. W., and Schüller, A., Multigrid, Academic Press (2001).
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