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1. INTRODUCTION

The need for the solution of a linear system of equations described by a sparse matrix A
and a right-hand-side vector & is ubiquitous in computational science and engineering.
Most prominently, discretizations of linear partial differential equations by means of
the finite element or the finite volume method directly lead to such systems. Smaller-
sized systems may be solved using sparse direct solvers, whereas iterative solvers are
preferred or even necessary for large systems, eventually supplemented by precondi-
tioning techniques of various degrees of sophistication.

The fine-grained parallelism of iterative solvers from the family of Krylov methods
is particularly attractive for massively parallel hardware such as graphics process-
ing units (GPUs), whereas much more effort is required to expose the parallelism
in sparse direct solvers appropriately [Kim and Eijkhout 2013; Schenk et al. 2008].
Sparse matrix-vector products—essential parts of Krylov methods—have been studied
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in detail for GPUs [Ashari et al. 2014; Baskaran and Bordawekar 2008; Bell and
Garland 2009; Greathouse and Daga 2014] and for INTEL's many-integrated core
(MIC) architecture [Liu et al. 2013; Saule et al. 2014], based on which a unified format
also well suited for multicore processors has been proposed recently [Kreutzer et al.
2014]. Similarly, vendor-tuned implementations of the vector operations required in ad-
dition to the sparse matrix-vector products for implementing sparse iterative solvers
from the family of Krylov methods are available. A disadvantage of current accelera-
tors is their connection to the host system via the PCI-Express bus, which is often a
bottleneck in terms of both latency and bandwidth. This mandates a certain minimum
system size to amortize the overhead of data transfer through the PCI-Express bus in
order to obtain any performance gains over an execution on the host.

Two programming models are currently in widespread use for general-purpose
computations on GPUs: CUDA is a proprietary programming model for NVIDIA
GPUs [Nickolls et al. 2008] providing its own compiler wrapper, whereas OpenCL
is a royalty-free open standard maintained by the Khronos Group! and is typically pro-
vided as a shared library. Although OpenCL can also be used for NVIDIA GPUs, the
richer CUDA tool chain has resulted in a higher share of research on general-purpose
computations on GPUs using CUDA. Also, slight performance differences of CUDA
and OpenCL, caused by different degrees of compiler optimizations or differences in
the implementation rather than through differences in the programming model, have
been reported [Fang et al. 2011; Karimi et al. 2010]. Automated translators such as
Swan [Harvey and De Fabritiis 2011] or CU2CL [Martinez et al. 2011] have been de-
veloped to reduce the maintenance effort of CUDA and OpenCL branches. However,
only a subset of CUDA and OpenCL is supported by these translators, limiting their
applicability particularly for highly optimized implementations. Directives-based ap-
proaches for general-purpose computations on GPUs are the OpenACC? and OpenMP?
standards. Broad compiler support for both standards in the context of GPUs is, how-
ever, not yet available. Consequently, portable software libraries targeting GPUs are
currently driven into providing support for both CUDA and OpenCL, for example,
PARALUTION,* VexCL,? or ViennaCL.%

A substantial amount of research has been conducted on various preconditioning
techniques for iterative solvers on GPUs including algebraic multigrid [Bell et al.
2012; Gandham et al. 2014; Richter et al. 2014; Wagner et al. 2012], incomplete factor-
izations [Li and Saad 2013; Naumov 2012], and sparse approximate inverses [Dehnavi
et al. 2013; Lukash et al. 2012; Sawyer et al. 2012]. Nevertheless, hardware-efficient
and scalable black-box preconditioners for GPUs are not available; instead, the use
of problem-specific information is required [Yokota et al. 2011]. Taking preconditioner
setup costs into account, iterative solvers using simple diagonal preconditioners or no
preconditioner at all are often observed to be competitive in terms of time to solution
for small to midsized systems, where, for example, the asymptotic optimality of multi-
grid preconditioners is not yet dominant [Wagner et al. 2012]. Similarly, matrix-free
methods cannot be used with complicated black-box preconditioners in general.

In this work, we consider three popular iterative solvers: the conjugate gradient
(CG) method for symmetric positive definite systems [Hestenes and Stiefel 1952], the
stabilized biconjugate gradient (BiCGStab) method for nonsymmetric positive definite

1Khronos Group, OpenCL: http://www.khronos.org/opencl/.
20penACC: http://www.openacc-standard.org/.

30penMP: http://openmp.org/.

4PARALUTION library: http://www.paralution.com/.
5VexCL library: https:/github.com/ddemidov/vexcl/.
6ViennaCL library: http://viennacl.sourceforge.net/.
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systems [van der Vorst 1992], and the generalized minimum residual (GMRES) method
for general systems [Saad and Schultz 1986]. In contrast to previous work with a focus
on the optimization of sparse matrix-vector products [Ashari et al. 2014; Baskaran and
Bordawekar 2008; Bell and Garland 2009; Greathouse and Daga 2014; Kreutzer et al.
2014; Liu et al. 2013; Saule et al. 2014], we consider the optimization potential of the
full solvers rather than restricting the optimization to a single kernel. After a careful
evaluation of the limiting resources for different system sizes and different densities of
nonzeros in the system matrix, pipelining and kernel fusion techniques are presented
in Section 2 to resolve these bottlenecks to the extent possible. The key principle in
pipelined techniques is to not only apply not only a single operation to a datum loaded
from main memory but also chain multiple operations together to reduce the overall
number of loads and stores to global memory. Pipelining is typically achieved by fusing
multiple compute kernels, but compute kernels may also be fused only to reduce the
overall number of kernel launches, not exhibiting any pipelining effect. Pipelining
and kernel fusion are then applied to the CG method, the BiCGStab method, and the
GMRES method in Section 3, leading to more efficient solver implementations than
those using a sequence of calls to the basic linear algebra subprograms (BLAS) in
vendor-tuned libraries. Section 4 then compares the proposed solver implementations
with existing solver implementations for GPUs available in the software libraries
CUSP,” MAGMA,® and PARALUTION,? demonstrating a substantial performance
gain of pipelined implementations for small systems without sacrificing performance
for large systems. Our benchmark results demonstrate the benefit of kernel fusion
and pipelining techniques for GPUs from AMD and NVIDIA for the CG method, the
BiCGStab method, and the GMRES method, and clearly outline that these techniques
have not been applied extensively in the context of GPU computing before.

The obtained execution times are also compared with those obtained from CPU-based
implementations in the PETSc!? library to demonstrate that CPU-based implementa-
tions are superior for typical sparse systems below about 3,000 unknowns. Our results,
similar to previous investigations [Lee et al. 2010], also falsify widespread misconcep-
tions of extreme performance gains using GPUs. We show that performance gains of
GPUs over power-equivalent dual-socket CPU machines are below an order of mag-
nitude on average. This holds true also for large problem sizes and when initial data
setup costs on GPUs are not taken into account. Finally, Section 5 discusses the im-
plications of our findings to software design and the need for more tightly integrated
future hardware generations.

2. IMPLEMENTATION TECHNIQUES FOR FAST ITERATIVE SOLVERS

The purpose of this section is to identify the general bottlenecks of the typical building
blocks of iterative solvers and to present techniques for mitigating their detrimental
effects on performance. A schematic view of a machine (host) equipped with a discrete
GPU connected via PCI-Express is given in Figure 1, where the following key features
are schematically depicted using a terminology similar to OpenCL:

—Threads are collected in workgroups, where each workgroup provides dedicated
memory shared across threads in the workgroup. Thread synchronizations within
a workgroup are possible inside a compute kernel, but a global synchronization of
all workgroups is typically only possible by launching a new kernel. Although global

7CUSP library: http:/cusplibrary.github.io/.
8MAGMA library: http://icl.cs.utk.edu/magma/.
9PARALUTION library: http:/www.paralution.com/.
OPETSc library: http://www.mcs.anl.gov/petsc/.
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Fig. 1. Schematic view of a GPU board connected to the host via PCI-Express at a bandwidth of about

10GB/sec and a latency on the order of 10 microseconds. Each workgroup of threads can be synchronized
through shared memory, but global synchronization is available only through separate kernel launches.

synchronization primitives and spin locks through atomic operations are used occa-
sionally, these techniques are not sufficiently portable across different hardware and
thus not further considered.

—If a kernel launch is initiated on the host, it takes at least a few microseconds
until the kernel will launch on a GPU. This is because a kernel launch on the GPU
requires a message from the host to trigger the execution, entailing high latency for
communication across PCI-Express. This latency of kernel launches can be hidden
if another kernel is currently active on the GPU, in which case the PCI-Express
message for launching the new kernel is received asynchronously.

—Memory access latency of GPU main memory is around three orders of magnitude
smaller than the latency of messages across the PCI-Express bus.

—The memory bandwidth between GPU main memory and the GPU compute units can
be more than 10 times higher than the bandwidth of the PCI-Express bus connecting
the host and GPU. Current high-end GPUs offer over 200GB/sec memory bandwidth,
whereas the current PCI-Express 3.0 offers up to 15.75GB/sec for a 16-lane slot.

The remainder of this section quantifies the overhead of PCI-Express latency and
presents techniques for reducing the number of kernel launches to reduce the detri-
mental latency effect.

2.1. PCI-Express Latency

At the very least, iterative solvers executed on the GPU need to communicate
information about the current residual norm to the host. In the typical case of a
communication of the residual norm in each iteration for convergence checks, the time
required for a data transfer from the device to the host represents a lower bound for the
time required for an iterative solver iteration. An OpenCL benchmark for PCI-Express
data communication shown for an NVIDIA Tesla C2050 in Figure 2 exhibits a latency-
dominated regime for message sizes below 10 kilobytes, where the transfer time is
around 8 microseconds, and a bandwidth-limited regime for larger message sizes in
accordance to the well-known idealized communication model based on latency and
bandwidth [Foster 1995]. Latency-dominated data transfer from the device to the host
takes almost twice as long, because a transfer initiation from the host is required first.
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Fig. 2. Plot of median values for execution time (left) and obtained bandwidth (right) from 100 host-device
data transfers over PCI-Express 2.0 using an NVIDIA Tesla C2050. The benchmark uses the OpenCL
functions clEnqueueWriteBuffer() and clEnqueueReadBuffer() in a blocking manner so that the respective
function only returns after the data is sent or received. Message sizes below 10* bytes are limited by latency,
not PCI-Express bandwidth.

Similar timings and bandwidths are obtained on other GPUs both with PCI-Express
2.0 and 3.0. Our overall observation in Section 4 is that NVIDIA GPUs show slightly
lower latency than AMD GPUs on the Linux-based machines used for the comparison.
To better understand the latency induced by PCI-Express transfer, consider a high-
end GPU with 200GB/s memory bandwidth. Within the PCI-Express latency of 8 mi-
croseconds, the GPU can load or store 1.6 megabytes of data from main memory as-
suming full saturation of the memory channel, which amounts to 200, 000 values in
double precision and which we will refer to as latency barrier. Consequently, GPUs
suffer from inherent performance constraints for any kernel limited by memory band-
width whenever the total amount of data loaded or stored is significantly below the
latency barrier. On the other hand, many practical applications induce systems with
storage requirements for the unknowns close to or even below the latency barrier. In
such case, iterative solver implementations for GPUs need to keep the latency-induced
overhead as small as possible by packing multiple operations into each kernel.

2.2. Kernel Fusion
As a prototypical example for many iterative solvers, consider the two operations

q=Ap (1)
a=(p.q) (2)

for a scalar value «, vectors p and ¢, and a sparse square matrix A. Conventional
implementations based on BLAS routines involve the following steps:

(1) Call the sparse matrix-vector product kernel for computing Equation (1). For a
standard compressed sparse row (CSR) representation of the sparse matrix, a
typical OpenCL kernel body is as follows (cf. Baskaran and Bordawekar [2008] and
Bell and Garland [2009]):

for (uint i = get_global_id(0); i < size; i += get_global_size(0))

double q_at_i = 0;

4 for (uint j = Arow[il; j < Arow[i+1]; ++j)
q-at-i += A_values[j] * p[A_col[j]1];

6 qli] = q-at_i;

where Arow and Aol are the arrays holding the row and column indices in
the CSR storage format, respectively, and A_values holds the nonzero entries.
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High-performance implementations of sparse matrix-vector products for the CSR
format are more involved than the simple example shown here [Ashari et al. 2014,
Greathouse and Daga 2014].

(2) Compute the partial results of (p, g) for the subvectors assigned to each of the
thread workgroups.

(8) If « is stored on the GPU, launch another kernel using a single-thread workgroup
to sum the partial results. If « is stored on the host, transfer the partial results to
the host, and perform the summation there.

Although this conventional implementation can reuse vendor-tuned routines, the
multiple kernel launches are detrimental to performance for data sizes below the PCI-
Express latency barrier.

On closer inspection, the operations (1) and (2) can be computed more efficiently by
fusing compute kernels: since the respective values in ¢ and p are already available in
the GPU processing elements when computing the matrix-vector product, they can be
reused to compute the partial results for each thread workgroup of the inner product.
The fused kernel body for the CSR format is as follows:

/1l
2| // Part 1: Matrix—vector product
/1

4| double p_in_q =
for (uint i = ge

o| 1

0;
t-global_.id(0); i < size; i += get_global_size(0))

double g_at.i = 0;
for (uint j = Arowl[il; j < Arowl[i+1]; ++j)
q-at_i += A_values[j] * p[A_col[j]];
10 qlil] = q-at-i;
p-in_.q += q-at_.i * p[i]; /| extra operation for <p, ¢>
2|}

ul //

// Part 2: Reduction to obtain contribution from thread workgroups:
6| //

__local double shared_buf[BUFFERSIZE |;

18| shared-buffer[get-local-id(0)] = p-in_q;

for (uint stride=get_local_size(0)/2; stride > 0; stride /= 2)

barrier (CLK LOCALMEM FENCE) ;
22 if (get_-local-id(0) < stride)

shared_buf[get_local_id(0)] += shared_buf[get_local_id(0) + stride];
24| }

26| if (get-local.id(0) == 0)
partial_result[get_group-id(0)] = shared_-buf[0];

First, the matrix-vector kernel from the previous snippet is only slightly augmented to
accumulate the partial results for each thread in p.in_q. Extra logic could be employed
to explicitly avoid reading plil from global memory if the respective diagonal entry of
A is nonzero, but pli] may still be available in cache anyway. Then, a reduction using
a shared memory buffer shared buf of appropriate size BUFFER_SIZE is applied to obtain
the sum over all threads within a thread workgroup. Finally, the first thread in each
thread workgroup writes the partial result of the workgroup to a temporary buffer
partial result. The summation of the values in partial_result is carried out on the host as
outlined in the third step earlier.

A comparison of execution times of the conventional implementation with the imple-
mentation using the fused kernel is given in Figure 3. In both cases, the final reduction
step for the partial results from 128-thread workgroups has been computed on the host
and is included in the timings. Two types of matrices have been compared: The first
family of matrices with four randomly (with a uniform distribution over all column
indices) distributed nonzeros per row is limited by latency for systems with up to 10*
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Fig. 3. Total time required to run the operations (1) and (2) for different matrix and vector sizes on an
NVIDIA Tesla C2050. If the vector size is below 10, 000 entries, the total time is dominated by the latency
for enqueuing the kernel, not the kernel execution time.

unknowns. A performance gain of about 20% is obtained from the use of a fused kernel,
which reduces the number of kernels required from two to just one. At system sizes
above 10° unknowns, a performance gain of a few percent is still obtained because the
vector ¢ does not need to be reloaded from memory when computing the inner product
(Equation (2)). The second matrix type with 28 randomly distributed nonzeros per row
is limited by the kernel execution time for system sizes below 10?> unknowns. This is
because each thread needs to process 28 nonzeros per row in A, which results in a
larger execution time than the pure PCI-Express latency. Nevertheless, a performance
gain of up to 10% is obtained for smaller systems, yet there is no notable performance
gain or loss at larger system sizes due to diminishing savings from reusing values from
q for computing the inner product.

Not only is it possible to fuse the first stage in the inner product computation with the
matrix-vector product, but also one can fuse the second stage (summation of partial
results) with subsequent operations. Since the summation result is usually needed
in each thread workgroup, the final summation has to be computed in each thread
workgroup in such case. These redundant computations are usually well below the PCI-
Express latency barrier and thus faster than the use of a separate host-device transfer
or a dedicated summation kernel. While kernel fusion can in principle be applied
to an arbitrary number of vector updates, the global synchronization points induced
by matrix-vector products as well as inner products are natural boundaries for fusing
compute kernels. However, not every inner product induces a separate synchronization
point: the partial summation stage of several inner products may also be computed
within the same kernel, which is then followed by a second kernel computing the final
results of the inner products and possibly other vector operations.

3. PIPELINED ITERATIVE METHODS FOR GRAPHICS PROCESSING UNITS

The implementations of the CG method, the BiCGStab method, and the GMRES
method are investigated in depth in the following. Each of these solvers is analyzed
for the number of kernel launches to evaluate latency. The kernel fusion techniques
outlined in Section 2 are applied to reduce the number of kernel launches whenever
appropriate. We restrict our investigations to the execution on a single GPU, as this is
the most frequent use case. Nevertheless, the optimizations applied in this section can
also be transferred to a multi-GPU setting, where additional data exchange between
GPUs via the PCI-Express bus entails similar cost. This allows, for example, to pack
multiple partial results from inner products into a single memory buffer transfer to
minimize latency.

ACM Transactions on Mathematical Software, Vol. 43, No. 2, Article 11, Publication date: August 2016.



11:8 K. Rupp et al.

3.1. Conjugate Gradient Method

Several variations of the classical CG method [Hestenes and Stiefel 1952] have been
proposed in the past (cf. Aliaga et al. [2013], Barkai et al. [1985], Chronopoulos and
Gear [1989], and Ghysels and Vanroose [2014]). Also, techniques for merging multiple
solver iterations have been proposed, but they do not find broad acceptance in prac-
tice because of numerical instabilities [Saad 1985]. In the following, the classical CG
method and a pipelined version are compared, where the latter has already been de-
veloped for vector machines [Chronopoulos and Gear 1989], revisited for extreme-scale
scalability [Ghysels and Vanroose 2014], and implemented in field-programmable gate
arrays [Strzodka and Goddeke 2006]:

ALGORITHM 1: Classical CG ALGORITHM 2: Pipelined CG

1 Choose xq 1 Choose xg

2 po=r9=>b—Axp 2 po=ro=>b—Axp

3 3 Compute and store Ap,

4 4 a9 = (ro,70)/(Po, Apo)

5 5 Bo = af(Apo, Apo)/(ro.ro) — 1

6 for i = 0 to convergence do 6 for i =1 to convergence do

7 Compute and store Ap; 7

8 Compute (p;, Ap;) 8

9 o; = (ri,ri)/{pi» Ap;) 9
10 Xiy1 =X + o p; 10 Xi = X1+ ®&_1pi1
11 riy1 =17 — o Ap; 11 1y =ri1 —ai_1Api1
12 12 pi=ri+Bi-1bi1
13 13 Compute and store Ap;
14 14 Compute (Ap;, Ap;), (pi. Api)
15 Compute (r;11,7:41) 15 Compute (r;,r;)
16 16 o; = (ri, 1) /(pi, Api)
17 Bi = (riy1.1i01)/(rin i) 17 Bi = o} (Ap;, Ap;)/(ri.mi) — 1
18 Piv1=rix1+Bibi 18
19 end 19 end

A direct implementation of Algorithm 1 using one call to a matrix-vector product
routine and five calls to BLAS routines per solver iteration is straightforward. Opti-
mizations of the matrix-vector products on lines 2 and 7 in Algorithm 1 and lines 2, 3,
and 13 in Algorithm 2 have been investigated in detail for different matrix formats on
GPUs in the past [Baskaran and Bordawekar 2008; Bell and Garland 2009]. The inner
products in lines 8 and 15 in the classical CG formulation impose synchronization by
either splitting the operation into two kernels or requiring a host-device transfer. In
particular, the residual norm computed in line 15 is typically required on the host for
convergence checks. The vectors » and p are loaded in lines 10 and 11, but have to be
reloaded for the search vector update operation in line 18.

The pipelined version in Algorithm 2 is based on the relation

(rig1.riv1) o (Api, Api) — (ri.mi)
(ri,mi) (ri, i)

Bi = = o2 (Ap;, Api)/(ri, i) — 1 3)

to compute p; in line 18 of Algorithm 1 without having computed (r;,1, ;1) yet. We note
that it has been stated in the literature that precomputing inner products involving the
vectors p; and r; by using recursion formulas based only on inner products of p; and r;
with j < i may lead to unstable algorithms [Chronopoulos and Gear 1989; Saad 1985].
However, the computation of 3; involves Ap;, resulting in a stable algorithm based on
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experiences from multiple groups in different application contexts [Barkai et al. 1985;
Chronopoulos and Gear 1989; Strzodka and Goéddeke 2006].

Equation (3) allows for a rearrangement of Algorithm 1 such that all vector updates
can be computed right after each other (lines 10, 11, and 12 in Algorithm 2). An
application of kernel fusion allows not only for computing all three vector updates
within a single kernel instead of three kernels but also for avoiding a reload of p;_; and
r; (line 12) when using registers for intermediate values. Furthermore, all three inner
products in Algorithm 2 can be computed simultaneously, allowing all intermediate
results to be communicated to the host with a single data transfer. More precisely,
the first reduction stage for the inner products (Ap;, Ap;), (p;, Ap;), and (r;,r;) can be
computed within the same kernel sharing the same buffer for intermediate results.
Then, the second reduction stage for obtaining the final results is computed either by
only a single additional kernel launch or by communicating all partial results with a
single transfer to the host, which performs the summation. The data size of a single
partial result is about 1 kilobyte; hence, the data transfer time remains in the latency-
dominated regime even if three of them are packed together (cf. Figure 2).

To further enhance data reuse, we fuse the matrix-vector product in line 13 with
the inner products in line 14, so that the result values of the matrix vector product
can be processed right before they are written to GPU RAM. Thus, the computation
of (Ap;, Ap;) and (p;, Ap;) comes at reduced data transfer cost, because the j-entry of
Ap; has just been computed, and the jth entry of p; may still be available in cache.
Similarly, the inner product (r;, ;) in line 15 is fused with the vector update kernel for
lines 10, 11, and 12.

In summary, we propose the following implementation of Algorithm 2:

—Compute lines 10, 11, and 12 in one kernel and store the reduction results of each
workgroup for the computation of (r;, r;) in line 15 in a temporary buffer.

—Compute lines 13 and 14 in one kernel and append the reduction results of each
workgroup for the computation of the inner products in line 14 to the same temporary
buffer.

—Communicate the temporary buffer to the host, where the final reduction is computed
to obtain (r;, r;), o;, and B; from lines 15, 16, and 17.

Since (r;, r;) is available for monitoring the residual norm on the host, a convergence
check can be applied in each iteration with no extra effort. The proposed implementa-
tion requires only two kernel launches per iteration and one host-device data transfer.
In contrast, a direct translation of the classical CG algorithm into BLAS routines re-
quires at least six kernel launches (lines 7, 8, 10, 11, 15, and 18) and may involve a
second host-device data transfer for (p;, Ap;). Consequently, we expect an up to three-
fold performance gain for small systems in the latency-dominated regime. Because p;
and r; do not need to be loaded from memory twice per iteration, a performance gain of
a few percent may also be obtained for large systems with very few nonzeros per row.

If a fusion of the matrix-vector product in line 13 and the partial reduction of the
inner products in line 14 is not possible or desired, each of the two lines can be computed
in separate kernels instead. This increases the number of kernel launches from two
to three per iteration and requires one additional load and store operation of Ap; in
global memory. Since the CUDA or OpenCL runtime can communicate all three kernel
launches in a single transaction, no notable hit in the latency-dominated regime is
expected.

3.2. BiCGStab

BiCGStab is an attractive iterative solver for systems described by nonsymmetric
matrices, because the transposed operator AT is not required. Based on the initial
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derivation [van der Vorst 1992], a pipelined method with only two global synchroniza-
tions has been proposed [Jacques et al. 1999]. Later, a variant with only a single global
synchronization has been proposed at the cost of an application of the transposed op-
erator in the setup stage [Yang and Brent 2002]. Also, a preconditioned BiCGStab
method overlapping global communication with the application of the preconditioner
has been developed [Krasnopolsky 2010]. A preliminary optimization study of the clas-
sical BiCGStab for GPUs is also available [Anzt et al. 2014], for which we postpone a
comparison to Section 4.

In analogy to the classical BiCGStab algorithm, the pipelined BiCGStab implementa-
tion proposed in this work does not require the transposed operator AT to be available
and is similar to the one proposed with two global synchronizations [Jacques et al.
1999]. A comparison with the classical BiCGStab algorithm [Saad 2003] is as follows:

ALGORITHM 3: Classical BiCGStab

1 Choose x

2 po=r9=>b—Axp

3 Choose rj arbitrary

4 Compute (ro, )

5 for i = 0 to convergence do

ALGORITHM 4: Pipelined BiCGStab

1 Choose x

2 pp=rog= b— AJCO

3 Choose r§ arbitrary

4 Compute (ro, )

5 fori = 0 to convergence do

6 Compute and store Ap; 6 Compute and store Ap;
7 Compute (Ap;, ry) 7 Compute (Ap;,ry)
8 o; = (ri,15)/(Api, 15) 8 o; = (r;, 75)/{Api. 75)
9 s =r; — o Ap; 9 s =r; — 0 Ap;
10 Compute and store As; 10 Compute and store As;
11 Compute (ASi, Si), (ASL', ASL) 11 Compute <A.S‘i, Si), (ASi, ASL)
12 12 Compute (As;, r{)
13 13 | fi=- fj;,%g
14 w; = (ASi,Si)/(ASi,ASi> 14 w; = (ASi,Si)/<ASi,ASi>
15 Xit1 = X + o pi + w;S; 15 Xiy1 = X + o;p; + w;S;
16 iyl =8 — w; As; 16 rig1 =8 — w; As;
17 Compute (r;,1,77) 17
18 pi = (r<r+1r0r(>)> X 18
19 Div1 =Tiy1+ Bi(pi — wi A) 19 Div1 =Tiy1+ Bi(pi — 01 A)
20 20 Compute (rj41,7g)
21 end 21 end

The classical BiCGStab method in Algorithm 3 requires a global synchronization
after line 7 to compute «; for use in line 8. Similarly, synchronizations are also required
after line 11 to compute w; for use in line 14 and after line 17 to compute g for use in
line 8. In analogy to the classical CG method, the search direction vector p;,1 (line 19)
cannot be updated together with the approximated solution x;.; (line 15) and the
residual vector ;1 (line 16). Consequently, additional loads from GPU main memory
are required. Overall, two calls to routines for sparse matrix-vector products and at
least eight calls to BLAS level 1 routines are needed in a conventional implementation
of the classical BiCGStab method. Four host-device data transfers are required if each
inner product induces a data transfer between host and device. An additional call to a
BLAS level 1 routine and a host-device transfer are necessary if the residual norm is
recomputed explicitly in each iteration.

The pipelined BiCGStab version in Algorithm 4 allows for improved data reuse by
shifting the calculation of §; to line 13 through

(As;, rg)
(Api,rg)
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Using the orthogonality (s;, ;) = (r; — «;Ap;, ) = 0, one arrives at

(Asi, rg)
Bi=———rs
(Api. T, 0)
which we found to be numerically stable based on our experiments. This derivation of
a pipelined BiCGStab version is similar to the modification of the classical CG method
in Algorithm 1 to obtain the pipelined Algorithm 2. The minor price to pay for this
rearrangement is the calculation of (As;, ;) in line 12.

The next step is to apply kernel fusion extensively to the pipelined BiCGStab version
in Algorithm 4. The calculation of (As;, r;) can be fused with the sparse matrix product
in line 10 together with the calculation of (As;, s;) and (As;, As;) in line 11. Similarly,
lines 6 and 7 are fused to a single kernel computing a matrix-vector product and the
first reduction stage of the inner product. The vector update in line 9 is fused with the
second reduction stages for the inner products needed to compute «; in line 8. Since
the residual norm is obtained via

(riv1,Tig1) = (8i, 8i) — 2w (i, As;) + 02 (As;, As;),

for which (s;, As;) and (As;, As;) are computed in line 11 and needed for the calculation
of w; in line 14, we augment the update kernel for the computation of s; in line 9
with the first reduction stage for (s;, s;). The partial results are transferred to the host
together with the partial results for all other inner products after line 12, where §; and
w; are computed. Finally, the vector updates in lines 15, 16, and 19 as well as the first
reduction stage for the inner product in line 20 are fused into another kernel.

Overall, the proposed pipelined BiCGStab implementation of Algorithm 4 consists of
four kernel launches and one host-device transfer of the partial results from the four
inner products (As;, s;), (As;, As;), (As;,r5), and (s;, 5;):

—Compute the matrix-vector product in line 6 and the partial results for the two inner
products required for ¢; in line 8.

—Compute s; in line 9 by redundantly computing «; in each thread workgroup from
the partial results of the inner products (r;, ;) and (Ap;, 7).

—Compute and store As; (line 10) and the partial results for the inner products in lines
11 and 12.

—Communicate all partial results for the inner products to the host, sum them there,
and perform a convergence check.

—Compute the vector updates in lines 15, 16, and 19 as well as the partial results for
the inner product in line 20.

In comparison, the BiCGStab implementation proposed in Anzt et al. [2014] requires
five kernel launches and three reductions, while a BLAS-based implementation of the
classical method requires at least eight kernel launches and four additional kernel
launches or host-device transfers for the second reduction stage in the computation
of the inner products. Therefore, a moderate improvement over the pipelined imple-
mentation in Anzt et al. [2014] and a two- to threefold performance gain over purely
BLAS-based implementations in the latency-dominated regime are expected, assuming
that kernel launches and host-device transfers entail comparable latency.

If a fusion of the matrix-vector products in lines 6 and 10 with the partial reduction
for the inner products in lines 8, 11, and 12 is not possible or desired, each of the two
kernels can be split into one kernel for the matrix-vector product and one for the partial
reductions. This increases the total number of kernel launches to six per iteration, of
which the CUDA or OpenCL runtime can pack up to six kernel launches into a single
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communication while preserving the benefit on only a single data transfer from the
device to the host.

3.3. GMRES

In contrast to the CG and BiCGStab methods, the GMRES method requires storing
the full Krylov basis rather than only the current search direction vector, leading
to an increase in the number of operations with each iteration [Saad and Schultz
1986]. To limit the computational expense, the GMRES method is typically restarted
after m iterations, which is denoted by GMRES(m). Typical values for m are in the
range of 20 to 50. Smaller values tend to slow down the overall convergence, whereas
higher values increase the computational cost and may lead to more time spent in
the orthogonalization rather than the matrix-vector product, making GMRES less
attractive when compared to other methods.

Three methods for the computation of an orthonormal Krylov basis from a set of
linearly independent vectors {v;}7 b1 are common [Saad 2003]; further algorithms em-
ployed for the orthogonalization in a multi-GPU settmg with significantly different
constraints in terms of communication can be found in Yamazaki et al. [2014]:

—Classical Gram-Schmidt: The kth vector of the basis is obtained as

k-1

Wy <= Z(Ui, UR)Vi , Up < Vp — Wk
i=1

followed by a normalization of v,. The inner products (v;, v;) are independent and
can be computed in parallel.

—Modified Gram-Schmidt: An accumulation of round-off errors in the basis vectors
v may lead to a loss of orthogonality as the basis is augmented. Higher numerical
robustness than for the classical Gram-Schmidt method has been observed for

Uk <= Ve — (i, Up)V;

for i from 1 to £—1 rather than forming a single update vector w;. The disadvantage of
the modified Gram-Schmidt method is the reduced parallelism: instead of computing
all inner products (v;, vz) concurrently, only one inner product can be computed at a
time, followed by a vector update.

—Householder reflections: The Krylov basis may also be obtained through Householder
reflections P, = (I — ,Bkukuz) with identity matrix I, suitably chosen scalars g,
and Householder vectors u;,. Similar to the modified Gram-Schmidt method, the
Householder reflections have to be applied sequentially to obtain the Krylov basis.
Although the method allows for the computation of an orthonormal basis up to
machine precision, the method is less regularly used for implementations of the
GMRES method due to its sequential nature.

In the following, we consider the simpler GMRES method [Walker and Zhou 1994],
which allows for a simpler solution of the minimization problem than the original
formulation, but is otherwise comparable in terms of computational expense. A com-
parison of the restarted form and a pipelined formulation, both using the classical
Gram-Schmidt method for higher efficiency on parallel architectures, is as follows:
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ALGORITHM 5: Classical GMRES(m)

ALGORITHM 6: Pipelined GMRES(m)

1 Choose xq 1 Choose xg

27’0=b—Ax0 27‘0=b—AJCO

3 po = [Iroll2 3 po = lIroll2

4 vo =19 =ro/po 4 vo=T19="0/po

5 Rj=0fori,je{l,....m} 5 Rj=0fori,je{l,...,m}
6 fori =1tomdo 6 fori =1tomdo

7 v; = Avl-_l 7 v, = Avi_l

8 for j=1¢i—1do 8 for j=1¢0i—1do
9 | Rji=(vj,v) 9 | Rji=(vj,v)

10 end 10 end

11 for j=1toi—1do 11 for j=1toi—1do
12 ‘ V; =vi—Rj,in 12 ‘ v, = V; —Rj‘ivj

13 end 13 end

14 v = v/l 14 v = v;i/|lvil

15 & =(r,v;) 15 & = (r,v;) (first stage)
16 r=r—§&uv; 16

17 end 17 end

18 18 fori =1¢to mdo

19 19 | & = (r,v;) (second stage)
20 20 end
21 Solve Rn = (&1, ...,&,) 21 Solve Ry = (&1, ...,&,)
22 Update Xy = MI" + 2:12 Nivi—1 22 Update X = M1 + ZZZZ N Vi—1

with 7; = n; + 11&;_1 to account for the updates of the residual r.

The main difference between the classical formulation in Algorithm 5 and the
pipelined formulation in Algorithm 6 involves the update of the residual vector in
line 16 of Algorithm 5. Because of the orthonormality of {v;}; ,, the inner product in
line 15 remains unchanged when using exact arithmetic. Similarly, since the values §&;
do not enter the Gram-Schmidt process, the values in the matrix R remain unchanged
so that round-off errors only affect the right-hand-side vector in line 21. Our numerical
experiments indicate that round-off errors in & are dominated by round-off errors in the
classical Gram-Schmidt process and therefore do not affect the overall numerical sta-
bility of the solver. Also, the convergence monitors proposed in Walker and Zhou [1994]
do not require updates of the residual and are based on the values &; only. Therefore,
the full convergence history is still accessible before solving the minimization problem
in line 21, allowing for a correct handling of early convergence. Nevertheless, m — 1
unnecessary steps of the Gram-Schmidt process will be carried out if convergence is
obtained right at the first iteration, but this is rarely encountered for unpreconditioned
solvers in practice.

The benefit of removing the residual update from the Gram-Schmidt orthogonal-
ization is that extensive kernel fusion can be applied to obtain an implementation of
Algorithm 6 with almost no host-device communication. To begin, the reduction stage
of the inner products in line 9 can be computed in two ways: The first option is a special-
ized matrix-vector routine for tall matrices if all Krylov vectors are stored as either the
rows or the columns of a matrix. The second option is to fuse multiple inner products
into the same kernel if all Krylov vectors reside in distinct buffers [Rupp et al. 2013].
With both options, the second reduction stage for computing R;; in line 9 is fused with
the vector updates in line 12 and also with the first reduction stage for computing || v;||
needed in line 14. The normalization of v; in line 14 is carried out by a kernel first
computing the second reduction stage for ||v;||, then scaling v; and directly computing
the first reduction stage for obtaining &; in line 15. Consequently, no data transfer
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between host and device is required during the Gram-Schmidt orthogonalization. An
asynchronous transfer of the intermediate values for & can be inserted at the end of
each orthogonalization step for a better monitoring of the convergence process.

After the Gram-Schmidt process, the intermediate results for computing &; are trans-
ferred to the host if not already transferred asynchronously, where the final values &;
are computed. Similarly, the triangular matrix R is transferred to the host. After the
triangular system R is inverted, the result vector containing the values 5; is trans-
ferred to the device and the update of the result vector x,, is computed in line 22 using
a single kernel similar to the vector update in line 12.

Overall, the proposed implementation of the pipelined GMRES(m) method in Algo-
rithm 6 requires two kernel launches in the first iteration and four kernel launches in
subsequent iterations:

—Compute the matrix-vector product in line 7 and the first reduction stage for (v;_1, v;).

—Compute the first reduction stage for the inner products (v;, v;) in line 9 with j
ranging from 1 toi — 2.

—Compute the second reduction stage for the inner products (v;, v;) in line 9 for j from
1 to i — 1, use the results directly for computing the vector update in line 12, and
compute the first reduction stage for |v;].

—Compute the second reduction stage for ||v;||, normalize v;, and compute &;.

A conventional implementation of the classical GMRES(m) method in Algorithm 5
requires at least seven kernel launches and may involve several host-device data
exchanges per iteration. Thus, an up to twofold performance gain in the latency-
dominated regime is expected.

If a fusion of the matrix-vector product in line 7 and the first reduction stage for
(v;_1, v;) is not possible or desired, each of the two operations can be computed in
separate kernels instead. This increases the number of kernel launches from four to
five per iteration and requires one additional load and store operation of v; in global
memory. In light of the subsequent inner products with the Krylov basis required for
GMRES, these additional data loads and stores for v; are typically negligible.

The computation of ||v;| in Algorithm 6 can be avoided by making use of the shift-
invariance property of the Krylov space, as it has been successfully demonstrated for
['-GMRES in the context of large distributed-memory machines [Ghysels et al. 2013].
This would allow for a reduction of the number of kernels from four to three, but the
resulting GMRES variant would require an additional shift parameter. Moreover, since
the Gram-Schmidt orthogonalization in Algorithm 6 is already free of intermediate
host-device communication, the CUDA or OpenCL runtime can already communicate
all kernel launches in a single PCI-Express message; thus, no more gains from a further
reduction of kernel launches are obtained.

It is also worth comparing the pipelined p!-GMRES method [Ghysels et al. 2013]
with Algorithm 6. The former is concerned with overlapping global reductions in in-
ner products with the computation of the sparse matrix-vector product involving local
point-to-point communication on distributed-memory machines. Such an overlap, how-
ever, is not needed in Algorithm 6, because the whole orthogonalization phase is free
from synchronizations with the host.

4. BENCHMARK RESULTS

The implementations proposed in this work are available in the 1.7.0 release of the free
open-source linear algebra library ViennaCL!! and are compared in the following with

11ViennaCL library: http://viennacl.sourceforge.net/.
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the implementations in the free open-source libraries CUSP'2 0.5.1, MAGMA'? 1.6.2
(linked with INTEL MKL 11.0), and PARALUTION 1.0.0. Since CUSP and MAGMA
are based on CUDA, benchmark data for AMD GPUs could only be obtained with
ViennaCL and PARALUTION. All four libraries are used in an out-of-the-box manner
without additional target-specific tuning in order to reflect typical use cases.

In addition to classical implementations of the CG, BiCGStab, and GMRES methods,
MAGMA also provides pipelined implementations of the CG method (four kernels with
custom sparse matrix-vector product) and the BiCGStab method (nine kernels using
vendor-tuned sparse matrix-vector products) [Anzt et al. 2014]. Since MAGMA 1.6.2
provides a flexible GMRES implementation but no classical GMRES implementation,
we used the classical GMRES implementation in MAGMA 1.6.1 for comparison. CUSP
and PARALUTION implement classical formulations of all three iterative solvers in
the comparison. Our numerical experiments showed that the implementations of the
classical CG and BiCGStab methods in MAGMA show similar performance to PAR-
ALUTION. Therefore, we do not include timings for the classical implementations in
MAGMA in our benchmark result plots, but instead only report execution times for the
pipelined variants.

All tests were carried out on Linux-based machines running the CUDA 6.0 SDK
on NVIDIA GPUs with GPU driver version 331.20 and the AMD APP SDK 2.9 with
GPU driver version 13.352.1014 on AMD GPUs. An NVIDIA Tesla C2050, an NVIDIA
Tesla K20m, an AMD FirePro W9000, and an AMD FirePro W9100 were used for a
comparison, representing the latest two generations of high-end workstation models
from each vendor. Error-correcting code memory was disabled on all four GPUs for
better comparison. Since all operations are limited by the available memory bandwidth,
the obtained results are also representative for a broader range of mid- to high-end
consumer GPUs with comparable memory bandwidth.

In addition to GPU benchmarks, we also compare with the execution times obtained
with the CPU-based PETSc!® library, version 3.6.0, on a dual-socket system equipped
with INTEL Xeon E5-2620 CPUs, where parallel execution is based on the Message-
Passing Interface (MPI)!® using MPICH!” 3.1. The fastest execution times from runs
with one, two, four, and eight MPIs ranks for each system size are taken for comparison.
However, it should be noted that a comparison with a CPU-based library needs to be
interpreted with care, because our benchmarks only compare the time taken per solver
iteration, not the time required for copying the data to the GPU or for obtaining the
result vector.

Execution times per iterative solver iteration are computed from the median value
of 10 solver runs with a fixed number of 30 iterations for each solver. In our ex-
periments, we have not observed any significant differences in the number of solver
iterations required for convergence of the classical implementation and the pipelined
implementation; hence, the execution time per solver iteration is a suitable metric for
comparison.

4.1. Linear Finite Elements for the Poisson Equation in 2D

We consider the execution time obtained with linear finite elements applied to the
solution of the Poisson equation on the unit rectangle on a hierarchy of uniformly

12CUSP library: http://cusplibrary.github.io/.

13MAGMA library: http://icl.cs.utk.edu/magma/.
H4PARALUTION library: http://www.paralution.com/.

I5PETSc library: http://www.mcs.anl.gov/petsc/.

16Message Passing Interface Forum: http:/www.mpi-forum.org/.
TMPICH library: http://www.mpich.org/.
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refined unstructured triangular meshes as a first benchmark. The resulting systems
consist of 225, 961, 3969, 16129, 65025, and 261121 equations, respectively, and cover
a broad range of typical system sizes solved on a single workstation. Results for CG,
BiCGStab, and GMRES using the ELLPACK sparse matrix format (cf. Bell and Gar-
land [2009] for a description) are given in Figure 4 for the four GPUs considered in
our comparison. Similar results are obtained for other matrix formats, because the
execution times in this setting are primarily dominated by latency effects. The case of
large system matrices, where kernel execution times are dominant, is considered in
Section 4.3.

Results for the NVIDIA GPUs show that the pipelined methods for the CG and
the BiCGStab methods in ViennaCL and MAGMA show the same performance for
small systems. The small differences can be explained by the use of asynchronous
(and hence nondeterministic) convergence checks in MAGMA, whereas ViennaCL uses
synchronous checks. Although MAGMA’s BiCGStab implementation uses five kernels
rather than the proposed implementation with four kernels, no significant difference
is visible in Figures 4(b) and 4(e). A comparison with the classical implementations
in PARALUTION shows a roughly twofold performance gain of pipelined implementa-
tions for small systems. The proposed pipelined GMRES implementation on NVIDIA
GPUs is by about a factor of two faster in the latency-dominated regime than the im-
plementation in MAGMA and about a factor of three faster than the implementations
in CUSP and PARALUTION.

On AMD GPUs, the differences between ViennaCL and PARALUTION are more
pronounced, because PARALUTION cannot take advantage of some optimizations in
CUBLAS for NVIDIA GPUs. Conversely, these results suggest that the CUDA runtime
for NVIDIA GPUs is able to hide the overhead of kernel launches more efficiently. A
threefold difference in execution times is obtained for the CG method, which reflects
the different number of kernel launches, namely, two for the pipelined implementation
and six for a conventional implementation. A fourfold difference in execution times is
obtained for the BiCGStab method, again reflecting the reduction in the number of
kernel launches and reduced host-device communication in the proposed pipelined im-
plementation. The difference for GMRES is approximately 10-fold, because the Gram-
Schmidt orthogonalization in PARALUTION calls one kernel per dot-product during
the orthogonalization procedure.

Execution times for each solver iteration at system sizes below 10* are practically
constant for both NVIDIA and AMD GPUs. Because this constant is about a factor
of two larger for AMD GPUs and because the AMD GPUs in this comparison of-
fer higher memory bandwidth, essentially constant execution times are obtained for
systems with up to 10° unknowns for AMD GPUs. Only at system sizes above 10°
unknowns does PCI-Express communication become negligible compared to kernel ex-
ecution times; hence, the performance of all libraries becomes similar and varies only
mildly.

When comparing the execution times of GPU-based solvers with the execution times
obtained with the CPU-based PETSc implementations, it is observed that the pro-
posed pipelined implementations on GPUs are faster if systems carry more than about
3,000 unknowns on average. Depending on the underlying hardware and solver, up
to 100,000 unknowns are needed with the conventional implementations in PARALU-
TION or CUSP to outperform the CPU-based implementations in PETSc. If initial data
setup is taken into account, these cross-over points are shifted to even larger values,
highlighting the importance of pipelining to increase the range of system sizes where
GPU acceleration may pay off.
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Fig. 4. Comparison of the solver time required per iteration for solving the Poisson equation using finite
elements on triangular grids in two spatial dimensions. The proposed pipelined implementations in Vien-
naCL as well as the pipelined implementations in MAGMA outperform classical implementations in CUSP
and PARALUTION for system sizes below 10° thanks to a smaller number of kernel launches and better
data reuse.
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4.2. Linear Finite Elements for Linear Elasticity in 3D

The second benchmark compares the execution time obtained with linear finite ele-
ments for numerical solutions of the linear elasticity model in three spatial dimen-
sions. A hierarchy of uniformly refined tetrahedral meshes of the unit cube was used,
resulting in system sizes of 693, 5265, 40725, and 319725, respectively. Compared to
the first benchmark, the average number of unknowns per row increases from about
7 to 60 for the largest system, resulting in a higher share of the execution time being
spent on sparse matrix-vector products.

The results on NVIDIA GPUs in Figure 5 show a similar trend as the results in
Figure 4: for small matrix sizes, the pipelined implementations of the CG and the
BiCGStab methods in ViennaCL and MAGMA show similar performance. A twofold
performance gain over PARALUTION is obtained for the smallest system when using
the CG method, which quickly diminishes at larger system sizes due to more time spent
on sparse matrix-vector products. While CUSP is about five times slower in the latency-
limited regime for BiCGStab, the implementation in PARALUTION is less than a factor
of two slower, suggesting that the CUDA runtime is able to hide kernel launch latencies
as well as host-device communication fairly well. Similar to the previous benchmark,
the performance gain of the proposed pipelined implementation of GMRES is twofold
over MAGMA and threefold over CUSP and PARALUTION.

Performance differences between ViennaCL and PARALUTION on the AMD GPUs
are about threefold for the CG and BiCGStab methods. For GMRES, a 10-fold perfor-
mance advantage of the proposed pipelined implementation in the latency-dominated
regime is obtained.

Although the system matrix carries more nonzeros than in the first benchmark,
about 2 x 10* unknowns on NVIDIA GPUs and 10° unknowns on AMD GPUs are
required such that kernel execution times hide performance penalties due to PCI-
Express communication.

4.3. Florida Sparse Matrix Collection

The performance of the proposed pipelined implementations is compared in the follow-
ing for matrices from the Florida Sparse Matrix Collection!® used for the evaluation of
sparse matrix-vector products in the past [Bell and Garland 2009; Kreutzer et al. 2014].
While the focus in the previous section was on demonstrating the benefit of the proposed
implementations for small to medium-sized systems, the purpose of this section is to
show that the proposed implementations are also competitive for large systems. Thus,
the implementations in PARALUTION and MAGMA (for BiCGStab and GMRES) are
a priori expected to provide the best performance, since they use the vendor-tuned
sparse matrix-vector product kernels from NVIDIA’s CUSPARSE library. In contrast,
our implementations in ViennaCL rely on fused kernels, while CUSP implements the
classical methods using its own set of sparse matrix-vector product kernels [Bell and
Garland 2009].

Since OpenCL does not support complex arithmetic natively, we restrict our bench-
mark to real-valued matrices listed in Table I. The symmetric, positive definite matrices
are used for benchmarking the implementations of the CG method, while the nonsym-
metric matrices are used for benchmarking the implementations of the BiCGStab and
GMRES methods. All sparse matrix formats available in the respective library are
compared using implementations in CUDA and, if available, OpenCL. The fastest com-
bination is then taken for the comparison, since such a procedure resembles the typical

I8http://www.cise.ufl.edu/research/sparse/matrices/.
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Fig. 5. Comparison of the solver time required per iteration for solving the linear elasticity model using
finite elements in three spatial dimensions. The proposed pipelined implementations in ViennaCL as well
as the pipelined implementations in MAGMA outperform other libraries for system sizes below 10° thanks
to a smaller number of kernel launches and better data reuse.
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Table I. Summary of Symmetric and Nonsymmetric Matrices Taken from the Florida Sparse
Matrix Collection for Comparison (These Matrices Represent the Set of Real-Valued,
Floating-Point Square Matrices Used in Earlier Contributions on Optimizing
Sparse Matrix-Vector Products [Bell and Garland 2009; Kreutzer et al. 2014])

Name Rows ‘ Nonzeros ‘ Nonzeros/Row ‘ Symmetric
pdb1HYS 36, 417 4, 344, 765 119.31 yes
cant 62, 451 4, 007, 383 64.17 yes
consph 83, 334 6, 010, 480 72.13 yes
shipsecl 140, 874 7, 813, 404 55.46 yes
pwtk 217, 918 11, 643, 424 53.39 yes
rmal0 46, 835 2, 374, 001 50.69 no
cop20k_A 121, 192 2, 624, 331 21.65 no
scircuit 170, 998 958, 936 5.61 no
mac_econ_fwd500 206, 500 1, 273, 389 6.17 no
RMO7R 381, 689 37, 464, 962 98.16 no
Hamrle3 1, 447, 360 5, 514, 242 3.81 no
kkt_power 2, 063, 494 13, 612, 663 7.08 no
Table Il. Comparison of the Relative Differences of Residuals After 30 Solver
Iterations for the Classical and the Proposed Pipelined Algorithms
Matrix CG BiCGStab GMRES
pdb1HYS 2.9 x 10712 1.9 x 102 2.3 x 1015
cant 1.4 x 10714 12 x10°6 2.8 x 10711
consph 3.0 x 10715 7.3 x 1077 9.8 x 10710
shipsecl 7.4 x 10712 1.4 x 1072 4.0 x 10710
pwtk 3.0x 10714 1.2x10°6 6.5 x 10711
rmal0 - 4.1x 107! 5.3 x 1078
cop20k_A - 3.4x10°6 1.8x 1071
scircuit - 1.4 x 1072 2.1x 1078
mac_econ_fwd500 - 1.5 x 1071 4.6 x 10714
RMO7R - 2.2 x 1071 14 x10~1
Hamrle3 - 1.1x 107! 1.1x 10716
kkt_power - 4.7 %1072 4.9 x 10712

For CG and GMRES, the difference in residuals is only slightly above the inherent
round-off error. The difference of the residuals obtained for the classical and the
proposed pipelined BiCGStab method (Algorithm 4) is larger, suggesting higher
sensitivity with respect to round-off errors.

user who picks the fastest sparse matrix format and the programming model with the
best performance for a particular application.

A comparison of the relative difference of the residuals obtained for the classical and
the pipelined solvers after 30 solver iterations is given in Table II. For CG and GMRES,
the relative differences are on or below the order of 10~1° for all matrices considered;
hence, the classical and the pipelined methods can be considered to be equally stable.
In contrast, the relative differences of the residuals obtained for BiCGStab are up
to 41% (rmal0), where differences are larger if BiCGStab converges slower or even
stagnates. This suggests that the classical BiCGStab method in Algorithm 3 and the
pipelined BiCGStab method in Algorithm 4 show different sensitivities with respect
to round-off errors. However, as the relative differences remain below unity and as
the residual norms for the pipelined BiCGStab method are smaller than those for the
classical method for seven out of 12 matrices, we conclude that neither of the two
methods is more sensitive to round-off errors than the other.
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Fig. 6. Comparison of execution times per CG solver iteration for different systems from the Florida Sparse
Matrix Collection relative to the proposed pipelined implementations. Absolute execution times in millisec-
onds are given inside each bar. ViennaCL implements the pipelined methods proposed in this work; MAGMA
uses a similar pipelined implementation without using vendor-tuned kernels.

The benchmark results for the CG method in Figure 6 show that the proposed solver
implementation provides the best overall performance on all four devices. Although the
pipelined CG method implemented in MAGMA is similar to the one proposed here, the
performance difference reflects the importance of providing fast-fused kernels. Simi-
larly, the difference is particularly pronounced on AMD GPUs, where the performance
of our proposed implementation is up to twice as high as the performance of PAR-
ALUTION, which needs to rely on its own kernels rather than using vendor-tuned
implementations. A comparison of absolute execution times also shows that the AMD
GPUs provide a better overall performance due to their higher memory bandwidth.

The comparison of execution times for the BiCGStab method in Figure 7 shows
similar performance of ViennaCL, PARALUTION, and MAGMA for NVIDIA GPUs on
average: depending on the device and the matrix considered, either of the three is the
best choice. Since the proposed implementations do not contain any device-specific or
matrix-specific optimizations, further tuning may provide further performance gains.
In contrast, the use of vendor-tuned kernels for the implementations in PARALUTION
and MAGMA imposes limitations on further device- or matrix-specific tweaks to what
is offered by the vendor library. The custom sparse matrix-vector product kernels in
CUSP result in about 60% higher execution times on average. On AMD GPUs, the
performance gain over PARALUTION is about 50% on average. Similar to the results
of the benchmark of the CG method, slightly higher overall performance can be obtained
on AMD GPUs because of their higher memory bandwidth.

The benchmark results obtained for the GMRES method are depicted in Figure 8
and show the same trend as the results obtained when comparing the implementations
of the BiCGStab method. Depending on the device and the matrix considered, either
ViennaCL, PARALUTION, and MAGMA may be the best choice. In particular, no
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Fig. 7. Comparison of execution times per BiCGStab solver iteration for different systems from the Florida
Sparse Matrix Collection relative to the proposed pipelined implementations. Absolute execution times in
milliseconds are given inside each bar. The cop20k_A and the kkt_power matrices could not be tested with
PARALUTION due to segmentation faults. The RMO07R matrix could not be run with MAGMA since it did
not pass a check for positive definiteness.

performance penalty from using pipelined implementations for large systems can be
observed.

The relative share of execution time spent on just computing matrix-vector products
by running isolated sparse matrix-vector product kernels as compared to full solver
cycles is given in Table III. About 85% of the time is spent on matrix-vector products
for the CG method after pipelining, so significant reductions in execution times can
only be obtained by optimizing the sparse matrix-vector product. Similarly, 66% of the
time is spent on matrix-vector products in the pipelined BiCGStab method on average,
where the share correlates well with the average number of nonzeros per row. For the
GMRES method, however, 60% of the time is spent outside the matrix-vector product
on average, justifying the careful optimization of the orthogonalization of the Krylov
vectors via kernel fusion and pipelining.

Finally, execution times for the proposed implementations of the three iterative
solvers using CUDA and OpenCL are compared in Figure 9. In all cases, the obtained
execution times of CUDA and OpenCL are within a few percent, which is a negligible
difference in practice.

Overall, the benchmark results confirm that pipelined methods are not only favorable
for smaller systems, where latency effects are significant, but also competitive for large
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Fig. 8. Comparison of execution times per GMRES solver iteration for different systems from the Florida

Sparse Matrix Collection relative to the proposed pipelined implementations. Ab
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milliseconds are given inside each bar. The cop20k_A and the kkt_power matrices could not be tested with

PARALUTION due to segmentation faults.

Table Ill. Relative Share of the Execution Time Per Solver Iteration Spent

on the Sparse

Matrix-Vector Product, Evaluated on an NVIDIA Tesla K20m

Matrix CG | Matrix BiCGStab GMRES
pdb1HYS 79.9% rmal0 78.2% 53.2%
cant 89.5% cop20k_A 89.3% 53.6%
consph 89.0% scircuit 44.0% 21.3%
shipsecl 89.2% mac_econ_fwd500 50.1% 24.6%
pwtk 88.9% RMO7R 91.2% 72.8%
Hamrle3 52.3% 17.1%
kkt_power 58.9% 32.9%

While the execution time for the CG and the BiCGStab method are

usually dom-

inated by computing sparse matrix-vector products, particularly after pipelining,

orthogonalizations in the GMRES method dominate.
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Fig. 9. Comparison of execution times obtained with CUDA and OpenCL for the CG method (top), the
BiCGStab method (left), and the GMRES method (right). Relative execution times are with respect to
the faster framework. Absolute execution times in milliseconds are given inside each bar. Overall, the
performance differences of CUDA and OpenCL are negligible in practice, even though OpenCL shows slightly
better performance overall.

systems. This is beneficial for code maintenance, as only a single implementation needs
to be maintained. Furthermore, our results also suggest that a single implementation
in OpenCL is sufficient, as the performance differences to CUDA are negligible. This,
however, faces practical limitations, as user codes may be written only in CUDA and
thus be incompatible with OpenCL.

5. CONCLUSION

The proposed pipelined implementations of the CG, BiCGStab, and GMRES methods
address the latency-induced performance penalties of GPU-accelerated implementa-
tions for sparse systems with less than about 10° unknowns. Our comparison with other
solver packages shows significant performance gains over conventional implementa-
tions for practically relevant problem sizes between 10* and 10° unknowns. A compar-
ison for larger systems shows that the proposed implementations using fused kernels
provide a performance competitive with implementations built on top of vendor-tuned
kernels. As a consequence, our results suggest that future efforts on the optimization of
compute kernels should not be restricted to standard BLAS or BLAS-like kernels, but
additional performance can be obtained if optimized implementations for fused ker-
nels are also provided. For example, not only the sparse matrix-vector product kernel
but also a kernel computing the sparse matrix-vector product plus the first reduction

ACM Transactions on Mathematical Software, Vol. 43, No. 2, Article 11, Publication date: August 2016.



Pipelined Iterative Solvers with Kernel Fusion 11:25

stage of inner products involving the result vector may offer superior performance for
iterative solvers from the family of Krylov methods.

While an extensive use of pipelining and kernel fusion addresses latency issues and
limited memory bandwidth, it also brings new challenges for the design of scientific
software. To leverage the full potential of modern hardware, it is no longer sufficient to
only use a fairly small set of vendor-tuned BLAS-kernels, but instead modular building
blocks must be provided for minimizing communication of data.

Future GPUs as well as CPUs will see gains in memory bandwidth, but the latency
induced by the PCI-Express bus will not change substantially. Therefore, the minimum
system size required to get any performance gains on GPUs over CPUs will continue to
grow. As a consequence, the replacement of the PCI-Express bus with an interconnect
technology of lower latency is essential for making accelerators more attractive. Inte-
grations of GPU units on the CPU die are one possible path to achieve lower latency.
However, no benefit over a well-optimized, purely CPU-based implementation can be
expected for the memory-bandwidth limited operations in iterative solvers if both the
accelerator and the CPU core share the same memory link.

The techniques applied in this work can also be extended to preconditioned iterative
solvers. Not only can the application of the preconditioner be possibly fused with vector
updates, but also the setup stage can benefit from fusing as many operations as possible
into the same kernel. A rigorous application of these techniques to preconditioners is
left for future work.
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