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Energy filtering has been put forth as a promising method for achieving large
thermoelectric power factors in thermoelectric materials through Seebeck
coefficient improvement. Materials with embedded potential barriers, such as
cross-plane superlattices, provide energy filtering, in addition to low thermal
conductivity, and could potentially achieve high figure of merit. Although
there exist many theoretical works demonstrating Seebeck coefficient and
power factor gains in idealized structures, experimental support has been
scant. In most cases, the electrical conductivity is drastically reduced due to
the presence of barriers. In this work, using quantum-mechanical simulations
based on the nonequilibrium Green’s function method, we show that, although
power factor improvements can theoretically be observed in optimized
superlattices (as pointed out in previous studies), different types of deviations
from the ideal potential profiles of the barriers degrade the performance, some
nonidealities being so significant as to negate all power factor gains. Specifi-
cally, the effect of tunneling due to thin barriers could be especially detri-
mental to the Seebeck coefficient and power factor. Our results could partially
explain why significant power factor improvements in superlattices and other
energy-filtering nanostructures mainly fail to be realized, despite theoretical
predictions.
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INTRODUCTION

The thermoelectric (TE) performance of materials is
determined by the figure of merit ZT = rS2/j, where r
denotes the electrical conductivity, S the Seebeck
coefficient, and j the thermal conductivity. Large
improvements in ZT have recently been reported in
nanoscale materials due to drastic reduction in j.1,2

On the other hand, efforts to improve the power factor
(rS2) have met with less success, and overall ZT still
remains low. Energy filtering in nanocomposite
materials with embedded potential barriers (of height
VB) is a promising way to improve rS2 via improve-

ments of the Seebeck coefficient.2–18 Cross-plane
superlattices were some of the first structures con-
sidered to utilize energy filtering.3,6,7,9 In these
structures, although the theoretical expectation of
power factor gains is high (�40%),5,10,11,15 accompa-
nying experimental verification has been lacking,
with the exception of the work of Ref. 7. Regarding
power factor gains, experimental demonstration, to
the best of our knowledge, is completely lacking. The
work of Refs. 12 and 16 has demonstrated very high
power factors in Si-based nanocomposites, but energy
filtering was only partially responsible for this. Sur-
prisingly, despite the fact that the energy-filtering
idea was suggested in 1998,5 theoretical investigation
of why power factor benefits are hard to realize
experimentally has still not been carried out.
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In this work, we use the nonequilibrium Green’s
function (NEGF) method to demonstrate that, al-
though rS2 can be theoretically improved within an
optimized geometry, different types of variation
from the idealized shape act as strong detrimental
mechanisms. We show that variations in the shape
of the potential well, the shape of the potential
barrier, and most importantly the width of the
barriers can to a large degree destroy the energy-
filtering benefits. Thus, this work could partially
shed light on the lack of experimental validation of
theoretical claims with respect to energy filtering in
cross-plane superlattices. The paper is organized a
follows: In ‘‘Methods’’ section we briefly describe the
methods used, referring to the literature for more
elaborate discussions of the models and numerical
formulation. In ‘‘Results and Discussion’’ section we
describe and discuss the results, and finally in
‘‘Conclusions’’ we conclude.

METHODS

We use the NEGF method in the effective mass
approximation, including both acoustic and optical
phonon scattering. This method amounts to a
nonequilibrium extension of many-body perturba-
tion theory and is a numerical implementation of
the Keldysh–Kadanoff–Baym formalism. The main
object of the theory is the nonequilibrium Green’s
function

G Eð Þ ¼ E� igð Þ �H � R1 � R2 � Rscatt½ ��1; (1)

which holds information about the density of states
and energy spectrum of the system, and

Gn=p ¼ GRin=outGþ (2)

holds information about the occupancy of states,
where

Rin=out ¼ Rin=out
scatt þ Rin=out

1 þ Rin=out
2 : (3)

In these equations, H is the Hamiltonian of the
channel of interest, ig is an imaginary infinitesimal,
and R1,2 and Rscatt are the perturbative self-energies
capturing the effect of the left and right contacts
and the scattering processes (acoustic and optical
phonon scattering), respectively. The corresponding
R1,2

in/out is defined as R1,2 times the Fermi–Dirac dis-
tribution for ‘‘in’’ or one minus the Fermi–Dirac

distribution for ‘‘out,’’ and R
in=out

scatt is defined below.
The scattering self-energies are taken here to have
only two components, resulting from optical (ROP)
and acoustic (RAP) phonon scattering. As is common
practice, the self-energies of phonon scattering are
taken to be diagonal in the real-space basis
(amounting to the assumption that phonon scat-
tering is local) and acoustic phonon collisions were
assumed to be due to elastic and optical phonons
with flat bandstructure. Thus, the self-energies of
optical phonons are taken to be

Rin
OP Eð Þ ¼ DOP nx þ 1ð ÞGn Eþ �hxð Þ

þDOPnxG
n E� �hxð Þ;

(4a)

Rout
OP Eð Þ ¼ DOP nx þ 1ð ÞGp E� �hxð Þ

þDOPnxG
p Eþ �hxð Þ;

(4b)

while those of acoustic phonons are taken to be

Rin=out
AP ¼ DAPG

n=p Eð Þ: (5)

In this formalism, we assume deformation potential
scattering, where the strength of electron–phonon

scattering by phonons in the self-energies Rin=out is
captured by the constants DAP and D0 that describe
acoustic and optical phonons, as is common practice
in electronic transport calculations. We do not
compute the phonon spectrum, despite the fact that
in a superlattice geometry it could be different
compared with bulk. We still use this common
approximation as the focus of this work is on elec-
tronic transport rather than details of the phonons
or heat transport.

An effective mass model was used with a value of
meff = 1.0me (me being the mass of a free electron) and
lattice spacing of a0 = 0.5 nm. The energy of the
optical phonons (�hx) was chosen to be 60 meV, and
the values of the acoustic and optical phonon coupling
strengths were taken to be equal (i.e., DAP ¼
DOP ¼ D0); this was done to minimize the number of
tunable parameters in the system. The value of D0

was chosen as discussed below. For further informa-
tion on the NEGF method, the reader is referred to
the book of Datta,19 which is entirely dedicated to a
pedagogical introduction to the method.

The power factor, GS2 (where G is the con-
ductance, not the previously introduced Green’s
function), is calculated from the expression

I ¼ GDV þ SGDT: (6)

For each value of the power factor, the calculation is
done twice, initially with a small potential differ-
ence and no temperature difference (DT = 0) to yield
the conductance [G = I(DT=0)/DV], then again with a
small temperature difference and no potential dif-
ference (DV = 0) to yield the Seebeck coefficient
[S = I(DV=0)/GDT]. This method was validated in
Ref. 10. Convergence of self-consistent scattering
was measured through the requirement of current
conservation throughout the system. A convergence
value of 5% conservation was chosen (i.e., conver-
gence is reached if the current varies by no more
than 5% along the length of the channel). The sharp
features of the system required a very large number
(�1000 s) of convergence steps. One hundred dif-
ferent device structures were simulated overall in
order to gather enough data for the effect of non-
idealities on the power factor of superlattices. Only
the imaginary part of the scattering self-energy was
included. The relevant matrix problems were solved
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using the recursive Green’s function (RGF) meth-
od.20

Figure 1 illustrates the simulated one-dimen-
sional (1D) channel geometry. Figure 1a shows the
channel as a series of potential barriers, which is
the base geometry we consider, while Fig. 1b shows
the local density of states (LDOS) (E, x) extracted
from the NEGF. Figure 1c shows the charge density
in the channel. Note the charge fluctuations in
space and energy, formed by quantum interference.
Figure 1d shows the current spectrum and how it
fluctuates in energy during emission/absorption of
optical phonons. The red line above the barriers
indicates the average current spectrum energy. This
first check indicates that the simulator functions
properly as required.

The next step is to calibrate the base geometry to
initially provide optimal power factor values from
which a study of detrimental effects can be under-
taken. Previous works have indicated that, under
optimal conditions, the power factor can be im-
proved by up to �40%, compared with pristine
material with a flat potential.5,10,11,15 For this to be
achieved, however, the transport in the wells needs
to be semiballistic, where carriers only lose part of
their energy before they reach the next barrier.6,11

In addition, it was also indicated that ideally the
barrier height needs to extend �kBT above the
Fermi level.6 Finally, the Fermi level needs to be
placed high enough in energy to provide carriers
with high velocities and conductivity. Thus, in this
work we calibrate the geometry, electron–phonon
scattering, Fermi level, and barrier height for these
optimal conditions and use the calibrated geometry
as a base, before we start to consider the influence of
nonidealities in the design parameters. The cali-
bration procedure is as follows: (i) A channel of
length Lch = 20 nm is considered with flat potential
across it. (ii) The position of the Fermi level EF for
maximum ballistic conductance G is identified. The

conductance G versus EF is shown in Fig. 2a. The
position of EF for maximum G is indicated by the
blue dashed line. This is observed at EF = 0.14 eV.
(iii) Using that channel and Fermi level, the elec-
tron–phonon scattering interaction is increased
(i.e., deviating from the ballistic case towards dif-
fusive transport) until the conductance drops to 50%
of the ballistic limit (achieving 50% ballisticity in
the channel). The value of the electron–phonon
interaction used for this is D0 = 0.0016 eV2 (see
Ref. 21 for details of the formalism and how D0 is
used). Figure 2b shows how the conductance chan-
ges in the 20-nm channel versus D0, and the 50%
ballisticity value is indicated by the red dashed line.

RESULTS AND DISCUSSION

Once the calibration was completed, we proceeded
by forming the superlattice geometry and then
investigated the performance of energy-filtering
processes under unintended variations in the design
parameters away from the optimal case, which
could be the usual case in experiments. To form the
structure geometry, we placed a series of wells and
barriers as in Fig. 1a, with the length of the wells
being 20 nm and the width of the barriers being
4 nm, with the Fermi level EF placed at
EF = 0.14 eV.

The first parameter we examine is the shape of
the barriers/wells. In practice, an ideal rectangular
barrier might not be achievable, thus we examine
the influence of deviations from the rectangular
shape on the performance. In this case, we model
the barrier shape as a Gaussian function (see inset
of Fig. 3) and vary the variance. For small vari-
ances, the barriers will approach a delta function
potential, whereas large variances will tend to re-
cover very thick barriers with a limiting case of a
single barrier structure. Crucially, we denote this
limiting single barrier structure as a ‘‘bulk ther-
moelectric structure’’ and take it as a comparison
case. Should power factor performance be worse
than this case, then the superlattice structure offers
no enhancement. Thus, power factor values below
this point, marked by a dotted magenta line in the
figures to follow, represent a loss of all power factor
gains from the superlattice structure. Figure 3
shows the power factor versus the Gaussian distri-
bution variance (the shapes of the distributions are
also shown in the inset). Structures with different
barrier heights from VB = 0.14 eV to 0.18 eV are
indicated. Although the barrier height does not have
significant qualitative influence on the power factor,
the variance can have a strong influence. In the left
side of Fig. 3, for delta-shaped potentials, the power
factor is significantly lower as a result of increasing
quantum-mechanical tunneling from the barriers,
which significantly degrades the Seebeck coefficient.
However, at the right side of Fig. 3, the power factor
approaches that of the pristine, flat-potential
material (magenta dashed line) as expected, since

(a) (b)

(d)(c)

Fig. 1. Sample data for a nanocomposite channel. (a) The potential
profile of the barriers in the channel with width of 4 nm and height of
0.16 eV. (b) The local density of states in the channel. (c) The charge
density. (d) The current density versus position (colormap). Super-
imposed on the image are the potential barriers and the carrier en-
ergy expectation value<E>.
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the barriers become significantly thicker with the
variance. In the middle region, however, an
improvement of the power factor is observed for
variances around 0.7 nm2, resulting in a power
factor value similar to the optimal one achieved
with square barriers (see Fig. 5). Thus, these results
indicate that the shape of the barriers is important,
and care needs to be taken in their design, espe-
cially to avoid the possibility of tunneling.

To further stress the detrimental effect of quan-
tum-mechanical tunneling from thin barriers, the
left axis of Fig. 4 (black) shows the power factor
versus barrier width for the starting geometry with
perfect, square-shaped barriers. Indeed, similarly to
Fig. 3, in the left side, thin barriers allow significant
tunneling, which degrades the Seebeck coefficient
and diminishes the power factor. As the width in-
creases, the power factor increases, but then for
larger widths the power factor begins to drop
slightly again, and in the limit of infinite barrier
width it approaches the single barrier, flat-potential
channel. The reason is that the channel resistance
increases with the barrier width as carriers relax
near the bottom of the barrier conduction band more
effectively. Carrier velocities and conductivity at
those energy regions are low. The less the barrier
space in the channel, the better the conductivity,
but a large amount of tunneling should be avoided.
An optimal point can be found in the middle region
for barrier width of W = 3 nm, which is thick en-
ough to prevent sufficient tunneling to erode the
energy-filtering effect but thin enough to prevent
resistance increase. To further demonstrate that the
power factor loss for ultrathin barriers is due to an
increase in tunneling and that the amount of tun-
neling for barriers above W = 3 nm is not sufficient
to further erode the power factor, the right axis of

Fig. 4 (blue) shows the ratio of the current contri-
bution from tunneling to the total current. Indeed,
tunneling decreases monotonically, contributing
only �35% at W = 3 nm. This can be quite signifi-
cant, but its effect on the power factor is limited. It
is also clear that the sudden drop in power factor for
W< 2 nm, going even below the magenta line,
coincides with the increase in the fraction of the
total current tunneling through the barriers.

The final nonideality we examine is the effect of
well shape alone. The motivation for this is to iso-
late the effect of the barrier shape and the well
shape, in order to better understand the nonideali-
ties in the shape of the well. For this, we consider a
flat-top rectangular barrier with fixed thickness,
but allow for a decay of the potential into the well

(a) (b)

Fig. 2. Calibration of the model and initial channel material. A channel of length Lch = 20 nm is used. (a) The position of the Fermi level for
maximum ballistic conductance G is identified. The maximum conductance is observed for EF = 0.14 eV. (b) Using that channel and Fermi level,
the electron–phonon interaction is increased until the conductance drops to 50% of the ballistic limit (achieving 50% ballisticity).

Fig. 3. Power factor of a superlattice material geometry upon devi-
ations of the shape of the barriers/wells from a square to a Gaussian-
like shape. Materials with different barrier heights from VB = 0.14 eV
to 0.18 eV are shown. Inset: The potential profiles in channels with
Gaussian-shaped barriers and wells.
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with a decay length n as shown in the insets of
Fig. 5a and b. The rectangular barriers are ideal
(left-side limit of n = 0), which shows that �30%
improvement can be achieved compared with the
bulk TE material case with a flat potential (magenta
dashed line). As we deviate from that shape, the
power factor drops (approaching the bulk case, right
side). For this to happen, however, significant dis-
tortion needs to be applied to the shape of the well
(compare right versus left inset in Fig. 5).

CONCLUSIONS

Using the NEGF method, we computed the ther-
moelectric power factor in nanocomposite channels

in the presence of energy barriers designed to en-
hance filtering and thereby the thermoelectric
power factor. While ideally, as shown in previous
works,5,10,11,15 power factor improvements of up to
30% can be achieved using energy filtering under
optimal conditions, we show that this improvement
is sensitive to structural imperfections. Fluctua-
tions in the barrier width, barrier shape, and well
shape could degrade the performance significantly
and take away most of the power factor improve-
ments provided by the superlattice geometry.
Especially, barriers with width or shape that allows
significant quantum-mechanical tunneling cause
large degradation of the power factor. Our results
indicate that superlattice thermoelectric material
designs should be fabricated close to ideal geome-
tries if benefits are to be provided, which might be
an indication as to why significant power factor
benefits due to energy filtering have not been ob-
served to date.
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Fig. 4. Left axis (black): Power factor versus barrier width. The
optimal barrier width is �3 nm, which is thick enough to prevent a
large amount of tunneling but thin enough to keep the electrical
resistance from barriers low. For very thin barriers (<3 nm) the
power factor drops rapidly, becoming worse than the bulk thermo-
electric case (magenta line). Right axis (blue): The fraction of the
current that is contributed by tunneling Ib (i.e., flows below the bar-
riers) compared with the total current, flowing above and below the
barriers, Ia + Ib. It is clear that the dramatic loss in power factor for
ultrathin barrier widths coincides with the increase in tunneling cur-
rent through the barriers.

Fig. 5. Power factor versus barrier shape, defined as an exponen-
tially decaying profile described by a decay length n from the top of
the barrier. The limit n = 0 corresponds to a square barrier (left side),
which is found to be the optimal one. Insets: Potential profiles in the
superlattice structure under different values of n.
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