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Abstract The existence and uniqueness of the electron transport Wigner equation

solution, determined by boundary conditions, is analyzed in terms of the Neumann

series expansion of the integral form of the equation, obtained with the help of

Newton’s trajectories. For understanding of the peculiarities of Wigner-quantum

electron transport in semiconductor structures such mathematical issues can not be

separated from the physical attributes of the solution. In the presented analysis these

two sides of the problem mutually interplay.

The problem is first formulated from a physical point of view, where the

stationary solution is considered as the long time limit of the general evolution

problem posed by both initial and boundary conditions. The proof of convergence

relies on the assumption for reasonable local conditions which may be specified

for the kernel and on the fact that the Neumann series expansion corresponds to an

integral equation of Volterra type with respect to the time variable.

Keywords Electron transport • Neumann series analysis • Semiconductor •

Wigner equation

1 Introduction

The existence and uniqueness of the solution of the Wigner equation (WE) is

subject of an active research interest [1–3] since the rising importance of a quantum

description of the electron transport in the novel semiconductor nanoelectronics. An

analysis of the regularity of the Wigner function and the existence and uniqueness of

the solution of the by initial conditions posed evolution problem relevant for single-

dimensional nanostructures is presented in [1] and used to proof the convergence of

the suggested operator-splitting method. The analysis has been further augmented
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to account for the existence of boundary conditions characterizing the contacts

of such structures. The well posedness of the transient problem, associated with

time-dependent inflow boundary conditions has been shown in a mathematically

rigorous way [2]. The integral form of the Wigner equation based on classical New-

tonian trajectories for transient (posed by an initial condition, (IC)) and stationary

(posed by boundary conditions, (BC)) problems has been used to investigate the

corresponding Neumann expansion of the solution in connection with convergence

proofs of the developed quantum Monte Carlo methods [4, 5]. In both cases the

equation is of Volterra type with respect to the evolution time or the time to the

boundary, so that the trajectory approach is straightforwardly generalized to the

typical multidimensional structures of modern nanoelectronics. In a recent work [6]

it has been shown that the stationary Wigner equation can be expressed as a Volterra

type integral equation with respect to the spatial variable. It is argued that moving

the boundaries arbitrary close, or imposing arbitrary inflow BCs on them, may lead

to non-unique and unphysical solutions [6]. However, another recent work shows the

well-posedness of the problem within the interval of periodicity ˝ D Œ�l=2; l=2� of

a certain class of periodic potentials, under arbitrary inflow BCs specified at �l=2

(v > 0) and l=2 (v < 0) [3]. Thus under certain physical settings the solution of

the stationary Wigner equation is well defined by the boundary conditions, while in

other circumstances the physical soundness of the problem becomes questionable.

Alternatively stated, there circumstances where the stationary Wigner equation

is of practical importance, while in other occasions the equation is of academic

importance only.

Here we present an analysis, in which mathematical and physical aspects of the

problem mutually interplay. This imposes a rather physical way of presentation

with an accent on the application aspects of the results, on the expense of the

mathematical rigor. The single-dimensional Wigner equation is considered, however

the analysis holds for three-dimensional transport as in the case of classical transport

[7, 8].

The problem is first formulated from a physical point of view, where the

stationary solution is considered as the long time limit of the general evolution

problem posed by both ICs and BCs. This implies the existence of a generic solution,

determined partially by the ICs and partially by the BCs. The latter are interpreted

in this scheme as a known part of the generic solution, which is complementary to

the part corresponding to the IC’s. If the contribution from the IC’s does not vanish

with time and only BCs are considered, the problem remains not well formulated

already from a physical point of view. It follows that the time-dependent component

of the field-less Liouville operator can not be neglected a priori, so that a restriction

to the stationary WE can be relevant only after existence of physical arguments

for that. As a matter of fact, physically relevant models in the Wigner formulation

are the stargenvalue problem and the time-dependent Wigner equation, thoroughly

discussed in [9–11].
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These considerations are apart from the practical aspects of Wigner transport.

Boundary conditions are known explicitly only in rare cases,. An exception is the

equilibrium Wigner function, which is well known. Thus equilibrium conditions are

routinely assumed at the boundaries. However, then the domain of the equation must

be extended to infinity to avoid correlations with the non-equilibrium central region

of the structure, where the electron flow occurs.

2 Integral Representation

The presented analysis is dimension-independent, so that for the sake of simplicity

the single- dimensional formulation of the problem is considered. The equation for

the Wigner function f reads:

@f .x; k; t/

@t
C v.k/

@f .x; k; t/

@x
D

Z
dk0Vw.x; k � k0/f .x; k0; t/; (1)

where v.k/ D „k=m and m are the electron velocity and effective mass, and Vw is

the Wigner potential:

Vw.x; k/ D
1

i„2�

Z
dse�iks.V.x C s=2/ � V.x � s=2//; (2)

with V.x/ the electric potential of the structure determining the kernel of the

equation. The differential component of (1) is given by the Liouville operator, whose

characteristics are the field-less Newton trajectories.

x.t0/ D x � v.k/.t � t0/I k.t0/ D k (3)

The trajectory (3) is initialized by x; m; t and parameterized backwards in time by

t0 < t. An important property of Newton trajectories is that they do not cross in the

phase space, so that (3) is uniquely determined by the initialization point.

The Liouville operator becomes a full time differential over given characteristics,

so that it is now possible to rewrite Eq. (1) as a set of equations parametrized by t0,

which can be furthermore integrated on t0 in the limits Œ0; t�, giving rise to:

f .x; k; t/ D

tZ

0

dt0
Z

dk0Vw.x.t0/; k.t0/ � k0/f .x.t0/; k0; t/ (4)

Cfi.x.0/; k.0//�˝.x.0// C fb.x.tb/; k.tb//�.tb/:

Here the domain indicator �˝ is unity, if the argument belongs to the closed interval

˝ , and is zero otherwise, tb is the time needed for x.t0/ to reach the boundary.
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Finally (3) has been used to set x.t/ D x, k.t/ D k. The solution is sought in the

interval ˝ , where the initial condition (IC) fi.x; k/ is known at time t D 0 and the

BCs fb.�l=2; k; t/, k > 0, fb.l=2; k; t/, k < 0 are known at any time t > 0 (and

zero at t D 0). Here we assume stationary physical conditions, in particular the BCs

and the potential profile V are time independent. Furthermore boundaries, usually

associated with certain physical interfaces, have now the meaning of points, where

the function f , the unique solution of a generic evolution problem, is known.

3 Convergence

The second kind Fredholm integral equation (1) has a free term given by the IC and

BCs. The solution can be presented as a Neumann series of the consecutive iteration

of the kernel on the free term and is uniquely determined by the latter provided

the series converges. The proof of the convergence relies on the fact that (1) is of

Volterra type with respect to the variable t. This allows to rewrite the equation as

f .x; k; t/ D

tZ

t0

dt0
Z

dk0Vw.x.t0/; k.t0/ � k0/f .x.t0/; k0; t/ C f1.x; k; t0/; (5)

where itself the free term

f1.x; k; t0/ D f .x.t0/; k.t0/; t0/ (6)

of (5) satisfies Eq. (4) at t0 D t � �t1, which is a time of the past with respect to the

initialization time, t > t0. Under the assumption that f1 is known, reasonable local

conditions may be specified for the kernel, in order to guarantee the convergence

of the series. In [7] the necessary conditions for the convergence of such a

kind of iterative expansion are given. These conditions concern the kernel of the

equation Vw. We consider a typical condition for Vw after the following remark.

Frequently authors use the term mild conditions. However, since one is interested in

computational convergence, we also need to have a mild condition number. If the

solution convergence is mild, then the solution can be confidently declared as non-

singular. Since the convergence behavior and the condition number can be affected

by poor scaling, the definition of mild is problem dependent. Simply speaking,

mildness means confidence in the convergence to the true non-singular solution [12].

Now, one sufficient condition for convergence is the boundedness of the Wigner

potential, jVwj < C, where C is a constant. Indeed, if �t1 is small enough, the

iterative terms have an upper limit given by the corresponding terms of a geometric
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progression defined by

C�t1 < 1: (7)

In this way the solution f of (5) is uniquely determined by the free term f1.

The procedure can be repeated for f1, which introduces the free term f2 and so on,

giving a decomposition of the backward evolution into the time intervals �ti. It is

important to show that these intervals can cover the whole evolution interval, which

ensures that the initial time is reached. The next estimation addresses this problem.

By assuming that the Fourier transform QV of the electric potential V is bounded by

a constant „C=4 and using the definition (2) it may be shown that:

jVw.x; k/j < C; (8)

Thus, it is sufficient to request that the potential V is an absolutely integrable

function, as the Fourier transform of such a function is bounded and continuous.

The result (8) used in (7), shows the existence of an infimum of the set �ti, which

can be used as a global decomposition time �t.

Finally, this procedure links f to the free term in (4): the initial and the boundary

conditions, which uniquely determine the solution of the equation.

4 Physical Analysis

The physical aspects of this proof may be associated to the Markovian character of

the Wigner evolution. Furthermore we note that the solution has two complementary

contributions from the IC and the BCs. In general, for small evolution times t the

main contribution to the solution in an internal point of ˝ is given by the IC. For

large times (3) encounters the boundary, so that the BCs determine the solution.

Moreover, since the trajectory evolves backward in time, the function f outside ˝

contributes to the solution inside ˝ by these values of k only, which guarantee the

injecting character of fb.

An important conclusion follows from this analysis: In the case when the

initial condition ‘leaks’ through the boundaries: fi D 0 after given time ts, the

electron system enters into a stationary regime and it is legitimate to consider

the stationary equation as physically relevant. However, from a physical point of

view it is clear that if there are electronic states which remain insulated away

from the boundaries, they can not be controlled by the boundaries and the time

dependent factor in the Wigner equation can not be neglected. Such are the

bound eigenstates of the Hamiltonian related e.g. to periodic in time solutions or

electrons with zero momenta. From a mathematical point of view, states which

commute with the system Hamiltonian give rise to the ‘bound state problem’ for

the von Neumann or Wigner equations [13]. The particular manifestation of this

problem within the developed approach, is the fact that such states can not be
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associated with trajectories which reach the boundaries: the wave vector of bounded

states is undefined. In particular, zero momentum electrons are routinely neglected

in the mathematical approaches. Indeed they have zero contribution to certain

physical mean values like velocity, energy, and current, however, they affect the

electrostatics.

The requirement for V to be an absolute integrable function is satisfied by a large

class of potentials. Indeed the physical quantities are usually assumed to be smooth

functions of their variables. In particular the existence of the first derivative, the

electric force, guarantees the continuity of V almost everywhere, besides the fact

that discontinuities are considered as convenient for the mathematical treatment of

limiting cases. Furthermore one must assume that V approaches zero far away from

the structure, which correctly accounts for the recovery of the equilibrium [14].

Finally almost everywhere continuous functions which become zero at infinity

are absolutely integrable, showing that this condition does not restrict, but rather

characterize the physically relevant potentials.

We conclude with a remark concerning the fact that boundaries are considered

as a part of a global Wigner function. There are conditions for both pure and

mixed states, which, if satisfied, allow to interpret a phase space function as a

physically acceptable quasi-distribution, or Wigner function [13]. In this respect, an

inconsistent change of the values at the boundaries will lead to unphysical results.
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