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Welcome to the Second International Wigner Workshop (IW2).  The workshop is a 

one day meeting and brings together researchers from all areas of science and 

engineering, areas in which Wigner functions have been or could be applied. The 2017 

Workshop marks the second installment of this series (the first was held in Hawaii, in 

December, 2015) and further fosters the growing Wigner community 

(www.iue.tuwien.ac.at/wigner-wiki/).  The speakers at this year’s workshop provided 

an abstract which were reviewed by the committee. Topics of interest are (but not 

limited to): Computational or Numerical Challenges, Nanoelectronics, Nanostructures, 

Quantum Circuits, Quantum Information Processing, Quantum Optics, Quantum 

Physics, and Quantum Transport. The workshop hosts ten invited speakers and 

accepted eleven regular speakers as well as five poster presentations.  

We would like to express our gratitude to our sponsors (in particular the United States 

Office of Naval Research Global and the Institute of Physics) as well as the participants 

who will make the workshop both interesting and successful. We hope that you enjoy 

it, as well as the host conference, and your stay in the Lake District. 

David K. Ferry and Josef Weinbub 
Chairs of IW2 2017 

May, 2017 
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Wigner Function Representation in Electron Quantum Optics 
 
Dario Ferraro1 

1 Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, I-16163 Genova, Italy 
dario.ferraro@iit.it 
 
I will investigate various aspects of the new and fast developing field of the electron quantum 
optics [1], namely the possibility to realize optics-like experiments with individual electrons (or 
holes) propagating along integer quantum Hall edge channels. Differently form what happens 
for the photonic counterpart, in the electronic case the effects of Fermi statistic and Coulomb 
interaction have to be properly taken into account and strongly affect the physics. I will 
consider a time-frequency description of the electron first order coherence (two point Green’s 
function) in analogy with the Wigner function representation in quantum mechanics [2]. This 
approach reveals extremely useful in order to characterize, in terms of a unique real function, 
both the coherence properties in the time domain and the nature of the excitations generated 
by single or few electron sources realized by various experimental group. Recently a 
reconstruction of the Wigner function through tomographic measurements has been 
presented according to the present theoretical discussion [3]. 
When individual electron sources are used as inputs of a Mach-Zehnder interferometer, the 
quantum interferences emerge in a clear way in this mixed representation. I will discuss the 
evolution of the mean current as a function of time as well as the energy spectrum, which are 
affected in a complementary way by the interference. These quantities are the marginal 
distributions associated to the Wigner function. The above description revealed very useful in 
order to provide a compact and clear description also for two-electrons interferometry 
experiments analogous to the Hanbury-Brown-Twiss [4] and the Hong-Ou-Mandel [5] in 
quantum optics and to develop efficient tomographic protocols. 
In terms of this representation it is also easy to visualize both in the time and the energy 
domains the effects of the interaction with the external environment, its role in leading to 
decoherence and relaxation of the injected electronic wave-packet and consequently the 
robustness of the output of the various possible electronic sources [6]. In particular, the 
Landau excitation (Lorentzian wave-packet in energy generated by a single electron source) 
exhibits a fast relaxation followed by spin-charge separation whereas the Levitov excitation 
(Lorentzian wave-packet in time generated by a well designed voltage pulse) only experiences 
spin-charge separation. An essential theoretical tool to deal with the interacting case is 
represented by the scattering matrix acting on the edge-magnetoplasmons, relevant degrees 
of freedom of the edge channels in presence of interaction with an external linear environment.  
 
This research has been supported by the Franch National Grants “1 shot” (ANR-2010-BLANC-0412) and “1 shot 
reloaded” (ANR-14-CE32-0017). 
 
1. E. Bocquillon et al., Ann. Phys. (Berlin), 1-30, doi: 10.1002/andp.201300181 (2013). 
2. D. Ferraro et al., Phys. Rev. B. 88, 205303, doi: 10.1103/PhysRevB.88.205303 (2013). 
3. T. Jullien et al., Nature 514, 603-607, doi: 10.1038/nature13821 (20014). 
4. E. Bocquillon et al., Phys. Rev. Lett. 108, 196803, doi: 10.1103/PhysRevLett.108.196803 (2012). 
5. E. Bocquillon et al., Science 339, 1054-1057, doi: 10.1126/science.1232572 (2013). 
6. D. Ferraro et al., Phys. Rev. Lett. 113, 166403, doi: 10.1103/PhysRevLett.113.166403 (2014). 
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Squeezing of Optical Phonons Generated by Different Optical 
Excitations of a Quantum Dot: A Wigner Function Analysis 

 
Daniel Wigger1, Helge Gehring1, V. Martin Axt2, Doris E. Reiter1, and Tilmann Kuhn1 

1 Institute for Solid State Theory, University of Münster, Germany 
2 Theoretical Physics III, University of Bayreuth, Germany 
d.wigger@wwu.de 
 
The study of the fundamental properties of phonons is crucial to understand their role in 
applications in quantum information science, where the active use of phonons is currently of 
high interest. We are studying the interplay of single excitons in optically driven semiconductor 
quantum dots (QDs) and the crystal lattice. In this contribution we concentrate on the coupling 
to optical phonons. For the phonon wave vectors that are coupled to the exciton the dispersion 
is rather flat and can be modelled by a constant energy. This allows us to transform the 
exciton-phonon coupling from a multimode case to just a single coupled longitudinal optical 
(LO) mode. A schematic picture of the coupled exciton-phonon system is shown in Fig. 1(a). 

The phonon can either be in the potential of the exciton ground state g or the exciton state

x . These two harmonic confinement potentials of the phonons are shifted with respect to 

each other by twice the exciton-phonon coupling strength  . For the single mode the 
representation of the phonon quantum states in form of Wigner functions provides a very 
intuitive way to study their properties. 

The aim of this study is to find laser pulse excitation schemes of the QD exciton that result in 
squeezed phonon states. A squeezed state is characterized by fluctuations of one variable, 

lattice displacement U  or momentum  , that fall below the respective vacuum value. 

In the limiting case of an excitation with ultrafast laser pulses, which we model by  -functions, 

every excitation leads to the creation of a coherent state in the phonon system because of the 
displaced equilibrium position. Depending on the pulse area of the laser pulse, part of the 
phonon state, can however, remain in the excitonic ground state. The complete quantum state 
of the coupled system is hence an entangled exciton-phonon state. When tracing over the 
excitonic degrees of freedom, the phonon state reduces to a statistical mixture of the vacuum 
state and a coherent state. It is obvious that after such an ultrafast excitation, no squeezing 
can occur. But it turns out that for a sequence of two ultrafast pulses, a superposition of two 
coherent states in each excitonic subsystem is created. Consequently, for the phonons a 
statistical mixture of two Schödinger cat states builds up. The dynamics of the LO phonon 
Wigner function is given in Fig. 1(b), where the two dumbbell structures are visible being 
characteristic for cat states.  

Each dumbbell rotates around a different point in phase space according to the two different 
equilibrium positions. The calculations are performed for an artificially increased coupling 
strength  . For realistic values of  , the different parts of the Wigner function overlap and 
squeezing can occur [1]. 

In a second step we discuss the phonon properties for an excitation with finite pulses. Within 
a generating function formalism, we calculate the corresponding Wigner functions numerically. 
Here even for a single-pulse excitation squeezing can occur. The Wigner function for an 

intermediate pulse duration is shown in Fig.1(c). In each excitonic subsystem ( gW  and xW ) 

we find a superposition of the two phonon Fock states 0 and 1 [2].  

mailto:d.wigger@wwu.de
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We show that the two previously introduced excitation schemes, namely (i) the superposition 
of two coherent states for two ultrafast excitations, and (ii) the superposition of two Fock states 
for extended single pulse excitations, can lead to squeezed LO phonons. 

1. D. E. Reiter, D. Wigger, V. M. Axt, and T. Kuhn, Phys. Rev. B. 84, 195327 (2011) 
2. D. Wigger, H. Gehring, V. M. Axt, D. E. Reiter, and T. Kuhn, J. Comput. Electron. 15, 1158 (2016) 
 

 

Fig. 1: (a) Schematic picture of the coupled exciton-phonon system. (b) Phonon Wigner function after 

the excitation with two ultrashort pulses. (c) Phonon Wigner function after the excitation with a single 

laser pulse with intermediate duration. 
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Full Reconstruction of Symmetric Two-Mode Optical Quantum 
States with Gaussian Wigner Function via Spectral Homodyne 
Detection 
 
Stefano Olivares 
 
Affiliation: Quantum Technology Lab, Department of Physics, University of Milan, I-20133 
Milano, Italy 
stefano.olivares@fisica.unimi.it 
 
Gaussian states are quantum states with Gaussian Wigner functions and, thus, are fully 
characterized by their covariance matrix and first moment vector. In the optical domain, states 
belonging to this class, as vacuum, coherent, squeezed and thermal states (see Fig. 1), play 
a central role not only in quantum information with continuous variable [1,2] but also in high-
precision quantum interferometry [3,4], since they can be generated and manipulated by 
current technology. Moreover, optical Gaussian states can be engineered to create non-
Gaussian states still useful to quantum information processing, such as single photon states 
or polarization entangled two-photon states [5]. 
Here we briefly review of the basic concepts and mathematical tools needed for phase-space 
description of Gaussian states, focusing on their manipulation through symplectic 
transformations and propagation also in the presence of losses. Then we discuss our recent 
theoretical and experimental results obtained about the full characterization of symmetric two-
mode squeezed thermal states via spectral homodyne detection and a state-balancing 
detector [6]. More precisely, we address the characterization of the signal from an optical 
parametric oscillator (OPO), that is the main source of continuous-variable quantum states 
exploited in quantum-information processing protocols. 
Homodyne detection is an effective tool to characterize the quantum state of light in a narrow 
spectral range. We demonstrate that the relevant information for the quantum state 
reconstruction of the symmetric spectral modes is obtained by using both a single homodyne 
detector and the error signal from the active stabilization of the oscillator cavity (see the left 
panel of Fig. 2). The latter is based on the Pound-Drever-Hall technique [7]. The error signal 
from the PDH is used to stabilize the OPO as well as to monitor the state balance. The 
reconstruction is achieved by exploiting the phase coherence of the setup, guaranteed in every 
step of the experiment, and two auxiliary combinations of the sideband modes selected by 
suitably setting the mixer phases (see the right panel of Fig. 2). The measurement scheme 
has been successfully tested on different states, ranging from uncorrelated coherent states to 
entangled states generated by two-mode squeezing. Our procedure is indeed a versatile 
diagnostic tool, suitable to be embedded in quantum information experiments with continuous 
variable systems in the spectral domain. 
 
1. S. Olivares, Eur. Phys. J. Special Topics 203, 3-24, doi: 10.1140/epjst/e2012-01532-4 (2012). 
2. C. Weedbrook, et al., Rev. Mod. Phys. 84, 621-669, doi: 10.1103/RevModPhys.84.621 (2012). 
3. C. Sparaciari, et al., J. Opt. Soc. Am. B 32, 1354-1359, doi: 10.1364/JOSAB.32.001354 (2015). 
4. C. Sparaciari, et al. Phys. Rev. A 93, 023810, 10.1103/PhysRevA.93.023810 (2016). 
5. P. Kwiat, et al., Phys. Rev. A 60, R773-R776, doi: 10.1103/PhysRevA.60.R773 (1999). 
6. S. Cialdi, et a., Phys. Rev. A 93, 043805, doi: 10.1103/PhysRevA.93.043805 (2016). 
7. R. W. P. Drever, et al., Appl. Phys. B 31, 97-105 doi: 10.1007/BF00702605 (1983). 

mailto:stefano.olivares@fisica.unimi.it
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Fig. 1:  Gaussian Wigner functions of the vacuum state (left plot, yellow) and of a 

thermal state (left plot, green), of a coherent state (center) and of a squeezed vacuum 

state (right). Note that, though the squeezed vacuum state is non-classical, its Wigner 

function if positive. 

Fig. 2: (Left) Schematic diagram of the experimental setup for the generation and 

reconstruction of symmetric two-mode Gaussian states from an OPO. (Right) 

Examples of the homodyne traces used for reconstruction of the signal (here a 

squeezed-coherent two-mode sideband state). Scheme and data from Ref. [6]. 
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On Wigner Functions in Dirac-Like Bands: The Transition Metal Di-
Chalcogenides 
 
Ian Welland and David K. Ferry1 

1 School of Electrical, Computer, and Energy Engineering, Arizona State University, USA 
ferry@asu.edu 
 
It is well-known that the Wigner function in Dirac bands takes a tensor form due to the spin 
and energy degeneracies.   In recent years, the importance of Dirac-like bands in 
semiconductors has been recognized beyond the zero-gap graphene case.  For example, the 

introduction of kp perturbation and spin-orbit interaction lead to Dirac-like bands in gapped 

semiconductors, of which the transition-metal di-chalcogenides provide a particularly 
interesting case [1].  Here, the lack of inversion symmetry in the monolayer crystal couples to 
need for time reversal symmetry in the spin splitting to produce a reversal of the normal spin-
split valence bands at the two degenerate extrema K and K’ points of the Brillouin zone (Fig. 
1) [2].  The spin couples to the pseudo-spin of the two valleys, producing a spin-valley 
interaction that leads to this effect.  Since the material is gapped, we need only consider the 
positive energy solutions, with the pseudo-spin already incorporating the spin separation.  As 

a result, the Wigner tensor can be expressed as a 22 tensor in the pseudo-spin, as fij,  where 
i,j=K, K’ refer to the two degenerate conduction band valleys.  In the absence of an electric 
field, all four elements are equat to one another due to the symmetry.  However, when an 

electric field is applied, the opposite spin splitting leads to a Berry curvature [3] ~f, where  

is the pseudo-spin index (1) and f is a function of the band structure parameters. This is 
opposite in the two valleys, causing them to move in opposite directions perpendicular to the 
electric field, producing a valley Hall splitting (Fig. 2).  In this situation, the off-diagonal 
elements of the Wigner tensor develop an oscillatory behaviour reflecting the entanglement of 
the two diagonal valley terms.  In this talk, we describe the full model for the spin-valley 
interaction, and compute the four elements of the Wigner tensor, illustrating how the 
oscillations and the valley Hall splitting arise naturally from the Dirac-like band structure. 

1. S.-L. Li et al., Chem. Soc. Rev. 45, 118 (2016) DOI: 10.1039/cScs00517e. 
2. D. Xiao et al., Phys. Rev. Lett. 108, 196802 (2012) DOI: 10.1103/PhysRevLett.108.196802. 
3. D. Xiao et al., Phys. Rev. Lett. 99, 236809 (2012) DOI: 10.1103/PhysRevLett.99. 236809. 
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Fig. 1.  (a) Lattice structure of the TMDC.  The orange atom is the 
transition metal, while the purple are the chalcogenides.  The structure 
is a tri-layer with metal in the central layer and chalcogenides in the 
top and bottom layer.  (b) Monolayer crystal structure, showing the 
lack of inversion symmetry.  (c) Brillioun zone and energy minimum, 
showing how the spin spliltting is reversed between adjacent minimum 
points. 

 

 
Fig. 2.  Illustration of how the two spin reversals lead to motion toward 
opposite sides in the presence of an electric field.  This separation 
gives a valley-spin Hall effect. 
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Generalized Phase Space Distributions of Observables in Quantum 
Transport 

 
Wolfgang Belzig1 and Adam Bednorz2 

1 Department of Physics, University of Konstanz, D-78457 Konstanz, Germany 
2 Institute of Theoretical Physics, University of Warsaw, Hoza 69, PL-00681 Warsaw, Poland 
Wolfgang.Belzig@uni-konstanz.de 
 
The Wigner function can be considered as general concept of a phase-space distribution of 
non-commuting variables. In particular, in the field of mesoscopic transport the observables 

are typically the current operators at a given frequency I, which can be observables similar 

to position and momentum. The currents are usually measured electronically and it has been 
shown that in general such weak measurement lead to Keldysh-ordered correlations 
functions, thus defining a generalized Wigner functional of the time-dependent current [1]. It 
can be shown that the Wigner functional at a voltage-biased tunnel junction at low 
temperatures can be negative, which can be tested by violating a classical inequality involving 
fourth-order current correlators [2]. Since the operator-ordering depends on the measuring 
setup, alternative measuring scheme involving detectors with memory allow to address 
generalized normal or anti-normal ordering [3]. This has been experimentally verified by 
showing a squeezed state in a driven tunnel contact [4]. In this talk I will present an overview 
of these concepts, relate them to some general properties of the negativity of the Wigner 
function, and will discuss suggestions for setups to measure the generalized phase space 
distributions.  

This research has been supported by the DFG through SFB 767. 

1. Adam Bednorz and W. Belzig, Positive operator valued measure formulation of time-resolved 
counting statistics, Phys. Rev. Lett. 101, 206803 (2008). 
2. Adam Bednorz and Wolfgang Belzig, Quasiprobabilistic interpretation of weak measurements in 
mesoscopic junctions, Phys. Rev. Lett. 105, 106803 (2010). 
3. Adam Bednorz, Christoph Bruder, Bertrand Reulet and Wolfgang Belzig, Nonsymmetrized 
Correlations in Quantum Noninvasive Measurements, Phys. Rev. Lett. 110, 250404 (2013). 
4. Gabriel Gasse, Christian Lupien, and Bertrand Reulet, Observation of Squeezing in the Electron 
Quantum Shot Noise of a Tunnel Junction, Phys. Rev. Lett. 111, 136601 (2013). 

5. Adam Bednorz and Wolfgang Belzig, Fourth moments reveal the negativity of the Wigner function, 
Phys. Rev A 83, 052113 (2011). 
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Challenges in Simulating Dissipative Transport in Nanostructures 
Using the Wigner Transport Formalism 
 
O. Jonasson and I. Knezevic 

University of Wisconsin – Madison, Madison, WI, USA 
iknezevic@wisc.edu 
  
There are three major types of difficulties that hinder the widespread use of the Wigner 
transport formalism in device simulation, despite the formalism’s intuitive appeal and the 
natural framework that it offers for the treatment of transients. These challenges are: 1) 
increasing computational burden with increasing dimensionality of the structure; 2) the issues 
arising from inappropriate application of boundary conditions or erroneous electron 
distributions injected from the contacts in a numerical simulation; and 3) the incompatibilities 
and tradeoffs that stem from trying to capture both coherent transport features and dissipation. 
The first challenge is a long-standing one and has been addressed in the coherent transport 
limit [1,2]. The latter two have been gaining recognition in the community in recent years as 
critical to the technique’s viability [3-8].  

In this paper, we address the second and third challenges, with focus on the last one. Namely, 
the commonly used Boltzmann collision operator in the Wigner transport equation is 
satisfactory only in systems in which electronic transport is mostly semiclassical (i.e., there is 
little tunneling) [5]. In systems with pronounced tunneling, such as superlattices or quantum 
cascade lasers [4,6], the Boltzmann collision operator leads to greatly erroneous results. We 
discuss the inherent difficulties in developing a Wigner function formalism that would 
correspond to the completely positive map for the evolution of the accompanying density 
matrix, which is a requirement needed to ensure physically meaningful results at all times. The 
dissipative term in the density matrix formalism is derived in the interaction picture, which 
means that the eigenstates of the unperturbed system are needed to cast the dissipator, but 
which also somewhat defeats the purpose of using the position-momentum basis that 
underpins the Wigner function technique. Here, we will discuss recent progress in 
understanding how to unlock the key strengths of the Wigner approach that apply to open 
electronic systems in nanostructures when thinking about dissipative transport.  

This work has been supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of 
Materials Sciences and Engineering under Award DESC0008712. The work was performed using the resources 
of the UW-Madison Center for High Throughput Computing (CHTC) 

 

1.  Ellinghaus, P., Weinbub, J., Nedjalkov, M., Selberherr, S., Dimov, I., “Distributed-memory 
parallelization of the Wigner Monte Carlo method using spatial domain decomposition,” J. Comput. 
Electron. 14, 151–162 (2015). doi:10.1007/s10825-014-0635-3 
2.  Weinbub, J., Ellinghaus, P., Nedjalkov, M., “Domain decomposition strategies for the two-
dimensional Wigner Monte Carlo method,” J. Comput. Electron. 14, 922–929 (2015).  
doi:10.1007/s10825-015-0730-0 
3.  Jacoboni, C., Bordone, P., “Wigner transport equation with finite coherence length,” J. Comput. 
Electron. 13, 257–263 (2014).  
4.  O. Jonasson and I. Knezevic, "Dissipative transport in superlattices within the Wigner function 
formalism," J. Comput. Electron. 14, 879-887 (2015).  
http://link.springer.com/article/10.1007/s10825-015-0734-9 
5.  O. Jonasson and I. Knezevic, "Coulomb-driven terahertz-frequency intrinsic current oscillations in 
a double-barrier tunneling structure," Phys. Rev. B 90, 165415 (2014). 
http://dx.doi.org/10.1103/PhysRevB.90.165415 
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6.  Olafur Jonasson, "Quantum transport in semiconductor heterostructures using density-matrix and 
Wigner-function formalisms," UW- Madison 2016. 
http://homepages.cae.wisc.edu/~knezevic/pdfs/Olafur_Jonasson_Dissertation_2016.pdf 
7.  Z. Zhan, E. Colomés and X. Oriols, “Unphysical features in the application of the Boltzmann 
collision operator in the time-dependent modeling of quantum transport,” Journal of Computational 
Electronics, 2016  DOI: doi:10.1007/s10825-016-0875-5 
8.  Kim, KY., Kim, S. & Tang, T., “Accuracy balancing for the finite-difference-based solution of the 
discrete Wigner transport equation,” J Comput Electron 16, 148 (2017). doi:10.1007/s10825-016-
0944-9 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1: (Top to bottom) Wigner functions for an injector state (i), the upper lasing level 
(u), and the lower lasing level (l) in a THz quantum cascade laser. Based on Refs. 
[4,6]. 
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Wigner-Boltzmann Monte Carlo Simulation: From Ballistic to 
Diffusive Quantum Transport in Semiconductor Devices 

 
Philippe Dollfus, Damien Querlioz, Arnaud Bournel, and Jérôme Saint-Martin 

Centre for Nanoscience and Nanotechnology, CNRS, Univ. Paris-Sud, Université Paris-
Saclay, Orsay, France 
philippe.dollfus@u-psud.fr 
 
The Wigner description of quantum mechanics is a phase-space formulation of the quantum 
theory, based on the Wigner function that is both the phase-space counterpart of the density 
matrix and the quantum counterpart of the classical distribution function. Hence, as the 
Boltzmann formalism in classical transport, the Wigner formalism provides a powerful 
framework of quantum transport of particles, suitable for semiconductor device simulation with 
open-boundary conditions. However, as with all formalisms of quantum transport, beyond the 
description of coherent transport, the accurate implementation of electron scattering (with 
phonons or impurities) is an issue from both the physical and the numerical perspectives. For 
instance, to describe the electron-phonon interaction, it is a priori required to define a 
generalized Wigner function including the phonon states [1]. After solving the resulting 
generalized Wigner equation, which is far from trivial, the reduced (electron) Wigner function 
of interest can be obtained by taking the trace over the phonon modes. To reduce the 
complexity of this approach, the Wigner-Boltzmann equation (WBE) can be obtained after a 
hierarchy of approximations, including the weak scattering limit and assuming the phonon 
system to be in equilibrium, and after taking the classical limit of the phonon term, which leads 
to the instantaneous and local collision operator [2]. 

The WBE can be solved using a particle Monte Carlo technique, for instance using the "affinity" 
[3] or the "signed-particle" [4] method. The results presented here have been obtained using 
the affinity method that is very convenient for device simulation. Though the WBE was shown 
to have limitations for large quantum systems as superlattices [5] or if the states generated by 
the collision operator are not properly chosen [6]. It has been successfully employed to treat 
many problems of quantum transport. Here, we will review some of them, including phonon-
induced decoherence of a wave packet [7] and transport in resonant tunnelling diodes and 
nanotransistors. They are illustrated in Figs. 1 (decoherence in a RTD), 2 (I-V characteristics 
of a RTD) and 3 (I-V characteristics, Boltzmann function and Wigner function of a 6 nm-

MOSFET). Finally, we will discuss the potential prospects of this approach. 

1. C. Jacoboni et al., in Topics in high field transport in semiconductors, Worls Scientific, p 25, 2001. 
2. M. Nedjalkov et al., in Selected topics in semiclassical and quantum transport modelling, Springer, 
p. 289, 2011. 
3. D. Querlioz et al., The Wigner Monte Carlo method for nanoelectronic devices, ISTE-Wiley, 2010. 
4. J. M. Sellier et al., Phys. Rep. 577, 1-34 (2015). 
5. O. Jonasson et al., J. Comput. Electron. 14, 879-887 (2015). 
6. Z. Zhan et al., J. Comput. Electron. 15, 1206-1218 (2016). 
7. D. Querlioz et al., Phys. Rev. B 78, 165306 (2008); P. Schwaha et al., J. Comput. Electron. 12, 
388-396 (2013). 
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Fig. 1. Density Matrix modulus of the RTD operating at the peak voltage with (a) no scattering, (b) 
standard scattering rates, and (c) scattering rates multiplied by five. 

 
Fig. 2. I-V characteristics of a RTD at 300K with scattering artificially deactivated (circles), with standard 
scattering rates (squares) and with scattering rates multiplied by 5 (diamonds). 

 
Fig. 3. (right) I-V characteristics of (a) 6 nm-DG-MOSFET at T = 77 K using three types of mode-space 
simulation, (left) Map of (a) semi-classical distribution function and (b) Wigner function of the 1st sub-
band of MOSFET at T = 300 K, for VGS = 0.45 V and VDS = 0.7 V. 
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Potential Problems in the Application of Wigner-Boltzmann Equation 
in the Time-Dependent Modelling of Dissipative Quantum Transport 

 
Zhen Zhan, Enrique Colomés and Xavier Oriols 

Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, Spain 
zhenzhanh@gmail.com 
 
Typically, open systems are modelled through the reduced density matrix or the Wigner 
distribution function. An equation of motion for the Wigner function (or the density matrix) 
requires a coherent term plus a collision term that accounts for the interaction of the open 
system with the environment. The exact shape of this collision term is unknown and 
reasonable approximations are mandatory. In the Wigner formalism, it is quite common to use 
the Boltzmann collision operator. The inclusion of such operator into the Liouville equation 
generates the so-called Wigner-Boltzmann equation. An equation of motion can be interpreted 
as a dynamical map which has to satisfy some necessary conditions: among them, complete 
positivity which guarantees that the charge density is positive at any time. Does the Wigner-
Boltzmann equation satisfy complete positivity? In this conference, we will discuss this issue 
from numerical simulations.  

The effects of the Boltzmann collision operator on the Wigner function can be interpreted as 
subtracting and adding parts of the Wigner function. The absorption of a phonon with 
momentum q by an initial electron with momentum ko can be understood as subtracting the 
part of the Wigner function representing an initial electron of momentum ko  and adding another 
part representing another electron with final momentum kf=ko+q. The so-called Wigner-
Boltzmann equation of motion cannot guarantee the mentioned completely positivity as can 
be seen numerically (Fig. 1) where unphysical negative charge density appears [1-3]. This 
unphysical feature of the Wigner-Boltzmann equation of motion can be solved by knowing 
which are the states conforming the open system. With such information, the Boltzmann 
collision operator does not need to be interpreted in terms of subtracting/adding parts of the 
Wigner function, but in terms of modifying one state from its initial momentum k0 before the 
scattering to its final momentum kf. The knowledge of the states that build the Wigner function 
(or the density matrix) in an open system with dissipation can be obtained by using numerical 
techniques dealing with the Bohmian conditional wave functions [4-6]. By construction, 
positive expectation values of the charge density are always obtained when dealing with such 
states (Fig. 2). 

  

1. Z. Zhan et al., J. Comput. Electron, 15, 1206-1218 DOI: 10.1007/s10825-016-0875-5 (2016). 
2. F. Rossi et al., EPL, 112, 67005, DOI: https://doi.org/10.1209/0295-5075/112/67005 (2015). 
3. M. Nedjalkov, et al., Phys. Rev. B, 74, 035311, DOI: https://doi.org/10.1103/PhysRevB.74.035311 
(2006). 
4. E. Colomés et al., submitted (2017). 
5. X. Oriols, Phys. Rev. Lett., 98, 066803, DOI: https://doi.org/10.1103/PhysRevLett.98.066803 
(2007).   
6. E. Colomés et al., J. Comput. Electron, 14, 894-906 DOI: 10.1007/s10825-015-0737-6 (2015). 
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Figure 1. Evolution of the Wigner 

function of electrons suffering a 

collision with a phonon while moving 

towards a double barrier located at 

350 nm. (a) and (c) are the Wigner 

distributions at time tS=0.006 ps 

when the scattering occurs and at 

t2=0.315 ps when the  interaction 

with barriers occurs. (b) and (d) are 

the corresponding probability 

density (momenta integral of the 

Wigner function). The collision is 

modelled through the Wigner-

Boltzmann equation of motion 

mentioned in the text. In this model, 

negative charge density appears in 

(d) pointed out by the red circle.    

Figure 2. Same simulation as in 

Fig.1, but treating the collision with 

the Boltzmann collision operator 

adopting conditional wave 

functions. Such scattering process 

can be interpreted as modifying 

the states representing Wigner 

function, which ensures positive 

charge density at any time.  

The simulation parameters in both 

figures are:  wave packet energy 

E=0.09 eV, effective mass 

m*=0.2m0, where m0 is the free 

electron mass, the barrier height is 

0.2 eV, the barrier width is 0.8 nm 

and the well width is 4 nm. 
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Wigner Function and Decoherence 
 
Carlo Jacoboni and Paolo Bordone 

Dipartimento FIM, Università di Modena e Reggio Emilia, Italy 
Carlo.Jacoboni@unimore.it  
 
In the last decades decoherence has stimulated particular interest in theoretical physics, 
mainly because it constitutes the bridge between quantum and classical physics. 
Decoherence is strictly related to entanglement: If, e.g., the position coordinate of an electron 
becomes entangled with a variable of the environment, decoherence appears in the 
calculation when the trace over the “external” variables is performed in order to obtain the 
reduced density matrix of the electron. 

The Wigner function (WF) has proved to be a useful theoretical concept to study (mainly 
through its visualization) the phenomenon of decoherence. Since the entanglement between 
the electron coordinates and the environment occurs during the dynamical evolution of the 
combined system, first the definition of the WF must be extended to include the environment 
variables and then traced over such variables to obtain a “reduced WF”. This means that the 
simulation of the WF must be performed to eventually obtain diagonal elements with respect 
to the environment variables. 

Several methods have been devised to this purpose [1], from the inclusion of electron-phonon 
interaction [2], to the interaction of the electron with a fixed harmonic oscillator [3], to the 

introduction of a phenomenological parameter , in the very definition of the WF, representing 
a decoherence length [4]. 

A new development will be presented related to the study case of an electron beam splitter 
realized by a potential barrier. A source of noise on the electron kinetic energy in one of the 
two paths, transmitted or reflected, generates the entanglement of the electron with the 
environment. At this point, in order to evaluate the diagonal elements of the WF with respect 
to the environment coordinates, the numerical simulation must interrupt the evaluation of the 
product of the two lobes of the wavefunction in the two different paths. The stochasticity of the 
noice source generates a gradual disappearance of the coherent oscillations of the WF.   

1. See, e.g., D.Querlioz and P. Dollfus,  The Wigner Monte Carlo Method for Nanoelectronic Devices, 
Wiley 2010, and references therein. 
2. F. Buscemi et al., phys. stat. sol. (c) 5, 52 (2008). 
3. P. Bordone et al., J: Comput. Electron. 3, 407 (2004) 
4. C. Jacoboni and P. Bordone, J. Comput. Electron. 13, 257 (2014) 
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Application of the Discrete Wigner Transport Equation to Simulation 
of Gate-All-Around Silicon Nanowire Transistors: Preliminary 
Results and Numerical Issues 

 
Kyoung-Youm Kim1, Ting-wei Tang2, and Saehwa Kim3 

1 Sejong University, Korea 
2 University of Massachusetts, Amherst, USA 
3 Hankuk University of Foreign Studies, Korea 
kykim@sejong.ac.kr  
 
Because of easy fabrication and its superior performance over the conventional inversion-
mode N+-P-N+ junction transistors, the junctionless nanowire transistors (JLNWTs) have been 
intensively studied, both experimentally and theoretically. To achieve a satisfactory OFF-state, 
the ratio of the gate length (Lg) to the silicon channel diameter (2Rsi) cannot be too small (≥2). 
However, there is also a limit to how short Lg can be, because of quantum mechanical 
tunneling through the potential barrier at OFF-state. We employ the discrete Wigner transport 
equation (DWTE) to study such a limit. We simulate gate-all-around silicon JLNWTs of 2Rsi = 
1.15 nm, oxide thickness Tox = 1 nm, highly doped (ND = 8 x 1020 cm-3) contact regions with 
Lc = 3.1 nm on each side, and varying Lg = 1.55, 3.1, 6.2, and 9.3 nm, respectively.  

 

 

Our preliminary simulation results indicate that for a device with Lg = 3.1 nm and Lg/2Rsi = 

2.7, the subthreshold slope (SS) is about 228 mV/decade (see Fig. 1), much larger than the 
ideal value of 60 mV/decade. This calculated value of SS is perhaps over-estimated compared 
to the actual one because of the limited capability of solving the DWTE beyond the ratio IOFF/ION 

≈ 10-3. We will discuss the origin of this limitation, especially focusing on the problem of 
accuracy balancing between the discretization of kinetic (diffusion) term and the discretization 
of potential term in the DWTE [1]. The associated numerical implementation issues will also 
be discussed.  

This research has been supported by the Basic Science Research Program through the National Research 
Foundation of Korea funded by the Korean government (MSIP) (NRF-2016R1D1A1B03931510). 

1. K.-Y. Kim et al., J Comput. Electron. 16, 148, doi:10.1007/s10825-016-0944-9 (2017). 

Fig. 1: Variation of the subthreshold slope (SS) depending on the gate length (Lg). 
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Cavity QED of Atoms: Cooling, Trapping and Many-Body Physics 

 
Peter Domokos1 and Helmut Ritsch2 

1 Wigner Research Centre for Physics, Hungarian Academy of Sciences, Hungary 
2 Institut für theoretische Physik, University Innsbruck, Austria 
domokos.peter@wigner.mta.hu 
 
The elementary system of light-matter interaction is a single atom coupled to a single mode of 
the electromagnetic radiation field, which is realized in recent cavity QED experiments both in 
the microwave and optical frequency domain. The so-called strong coupling regime has been 
achieved, where the coherent interaction between the atom and the field mode due to the 
electric dipole coupling dominates the uncontrolled dissipation processes. Such a system may 
have a wealth of applications, e.g. in quantum information processing, where  such an atom-
field interface can be used as a memory or repeater by converting a flying qubit carried by 
photons into long-lived hyperfine states of the atom. Capturing an atom inside the tiny volume 
of an optical resonator is a great experimental challenge not only for technical reasons. The 
photon scattering in the resonator has a significant mechanical effect on the atomic center-of-
mass motion which, in the targeted strong coupling regime, leads to a dynamical coupling 
between the atomic motion and the field mode amplitude. This effect calls for a substantial 
extension of the well-established laser cooling and trapping theories. So far, the most 
transparent and computationally the most powerful approach to describe the dynamics of 
atomic motion in a strongly coupled field mode is based on the joint Wigner quasi-distribution 
function representation of the cavity QED system. In this talk we review first the semi-classical 
description obtained from the Wigner function approach. Then we present various effects, 
easily obtained from this approach, which shed light into the cooling and trapping of atoms in 
a cavity. In the second part, we consider many-body effects arising when many cold atoms 
are trapped in the resonator. The atoms interact indirectly, mediated by the cavity field. A 
peculiar many-body system is at hand where one can make use of the computational power 
of the semiclassical theory. We show an experimentally observed non-equilibrium phase 
transition: the atoms evolve into a periodic crystalline pattern bound by the field Bragg 
scattered into the cavity off the self-organized crystal (Fig. 1). Finally, we give an outlook on 
the extension of the semi-classical effects to the quantum domain with Bose-condensed 
ultracold atoms replacing the cold atoms.    

This research has been supported by the National Research, Development and Innovation Office of Hungary 
(K115624). 

1. P. Domokos and H. Ritsch, JOSA B 20, 1089-1122 (2003) 
2. H. Ritsch, P. Domokos, F. Brennecke, T. Esslinger, Rev. Mod. Phys. 85, 553 (2013)  
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Fig. 1. The initial 5 microseconds of the trajectories of a number of 40 atoms starting from 

a random homogeneous distribution evolves into a regular pattern occupying antinodes 

separated by an even number of edges. The atoms along the diagonal lines scatter in 

phase the laser light incoming from the vertical z direction into the cavity axis direction x. 

The field building up inside the cavity stabilizes the pattern. The evolution was calculated 

from the stochastic differential equations generated from a partial differential equation on 

the joint Wigner distribution function representing the centre-of-mass motion of the atoms 

and the bossing field mode of the cavity.  
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Transport Properties of Quasiperiodic Systems 
 
Maciej Wołoszyn and Bartłomiej J. Spisak 

Faculty of Physics and Applied Computer Science, AGH University of Science and 
Technology, Poland 
woloszyn@agh.edu.pl 
 
Quasiperiodic systems and their unique properties attract a lot of attention since the discovery 
of quasicrystals. Initial interest was mainly focused on their structural properties, but soon 
afterwards also the transport properties proved to show many interesting features, like the 
fractal nature of the transmission spectrum [1,2]. 

The considered model potential profiles are based on two quasiperiodic sequences, Fibonacci 
and Thue-Morse. Fig. 1 schematically presents those systems: in one-dimensional case both 
of them shown together with periodic and disordered systems used for comparison, and in 
two-dimensional case an example of model potential based on the Fibonacci binary sequence. 

 

 

 

 
 

Fig. 1:  Left: construction of the model 1D potentials based on the periodic, 

quasiperiodic and disordered binary sequences. Right: example of the 2D 

model with scattering centers distributed according to the Fibonacci 

quasiperiodic sequence. 
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The methods based on the Wigner function allow us to analyze the dynamics of charge 
carriers in such systems in the phase space. As a result, we are able to determine the transport 
properties of quasiperiodic systems, resulting from the quantum phenomena related to the 
scattering and tunneling processes on potential barriers and/or scattering centers. The time-
dependent Wigner functions corresponding to the wave packets traveling in the discussed 
systems are obtained using methods based on the Wigner equation in the Moyal form [3,4] 
and with the Monte-Carlo methods using ViennaWD [5] 

 

 

 

 

The results show that in terms of expectation values of the momentum, position, and their 
squares, the quasiperiodic systems should be classified somewhere between their periodic 
and disordered counterparts. Based on the performed calculations, such classification may be 
based e.g. on the quantitative analysis of the diffusion exponents (Fig. 2). 

 

1. E. Macia, Rep. Prog. Phys. 69, 397, doi: 10.1088/0034-4885/69/2/R03 (2006). 
2. B.J. Spisak, M. Wołoszyn, Phys. Rev. B 80, 035127, doi: 10.1103/PhysRevB.80.035127 (2009). 
3. B.J. Spisak, M. Wołoszyn, D. Szydłowski, J. Comput. Electron. 14, 916, doi: 10.1007/s10825-015-
0733-x, (2015). 
4. U. Kaczor, B. Klimas, D. Szydłowski, M. Wołoszyn, B.J.Spisak  Open Phys. 14, 354, 
doi: 10.1515/phys-2016-0036, (2016). 
5. J. Weinbub, P. Ellinghaus, M. Nedjalkov,  J. Comput. Electron. 14, 922, doi: 10.1007/s10825-015-
0730-0, (2015). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2:  Left: trajectories in the phase space (in terms of expectation values). 

Right: diffusion exponents for periodic, quasiperiodic and disordered systems. 
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The Role of Wigner and Cross-Wigner Functions in a Non-
Commutative Phase Space 
 
Basil J. Hiley 

Birkbeck, University of London and University College London, United Kingdom 
b.hiley@physics.bbk.ac.uk 

 
In contrast to classical mechanics, which involves a commutative phase space, quantum 
mechanics uses a configuration space using non-commutative operators.  However, one can 
construct a phase space from pairs of points in configuration space. This phase space inherits 
a non-commutative *-product, giving a key role to the brackets (f*g-g*f) and (f*g+g*f).  This *-
product is analogous to the quaternion or Clifford product used for spin structures.  The Moyal 
algebra and the Heisenberg matrix mechanics are particular examples of this general 
structure.  Although the structure is non-local, it gives rise to entities that can be regarded as 
local operators such as the local momentum.  These quantities are known generically as 

'weak values', which can now actually be measured, giving new insights into quantum 
phenomena. These weak values are closely related to Wigner and cross-Wigner 
functions.  Our group at UCL are in the process of measuring weak values of spin and 
momentum using excited helium and argon atoms.  My talk will give an overview of this 
approach. 
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On the Characteristic Neumann Equation and the Wigner Equation 
 
Robert Kosik, Markus Kampl, and Hans Kosina 

Institute for Microelectronics, TU Wien, Austria 
kosina@iue.tuwien.ac.at 
 

For a density matrix 𝜌(𝑥1, 𝑥2), the Wigner function 𝑤(𝑟, 𝑘) is defined as the result of two 
consecutive transformations: 

1. Introduce characteristic coordinates 

𝑟 = (𝑥1 + 𝑥2) 2⁄   

𝑠 = 𝑥1 − 𝑥2  

an define the sigma  function 

𝜎(𝑟, 𝑠) = 𝜌(𝑟 + 𝑠 2⁄ , 𝑟 − 𝑠 2⁄ ).        (1) 

2. Fourier transformation of 𝜎(𝑟, 𝑠) with respect to 𝑠 gives 𝑤(𝑟, 𝑘). 

In this work we study properties of the sigma function as defined in (1) and its numerical 
application to quantum transport problems. Our first goal is a comparison with the finite 
difference Wigner method [2]. 

Using coordinates (𝑟, 𝑠) the von Neumann-Liouville equation with potential energy  𝑉 takes on 
its characteristic form: 

𝜕𝜎

𝜕𝑡
=

−ℏ2

2𝑚

𝜕

𝜕𝑟

𝜕

𝜕𝑠
𝜎 + 𝑈𝜎          (2) 

Here the potential term 𝑈 is defined as 𝑈(𝑟, 𝑠) = 𝑉(𝑟 + 𝑠 2⁄ ) − 𝑉(𝑟 − 𝑠 2⁄ ). Scattering can be 
included in a relaxation time approximation using the same model as in the finite difference 
Wigner method. 

Differential equation (2) can be transformed into a two-dimensional integral equation of 
Volterra type, see [5]. 

𝜎(𝑅, 𝑆) = 𝜎0(𝑅, 𝑆) + ∬ 𝑈
𝑅𝑆

00
(𝑟, 𝑠)𝑑𝑟𝑑𝑠        (3) 

Here the stationary case is assumed and constants have been absorbed into 𝑈. The term 

𝜎0(𝑅, 𝑆) is a solution to the homogeneous equation and is given by boundary conditions 
(Goursat or Darboux problem). Existence and uniqueness of the solution to (3) can be proved 
similarly to the ordinary differential case (expand into a Neumann series and check 
convergence). 

In typical quantum transport problems inflow conditions on left and right boundaries are given. 
We can impose these boundary conditions through a local Fourier transform. The appropriate 
choice of boundary conditions for upper and lower boundaries is anti-periodic: 

𝜎(𝑟, 𝑠𝑚𝑎𝑥) = −𝜎(𝑟, −𝑠𝑚𝑎𝑥) 

This is consistent with Frensley’s discretization as the shifted Fourier transform used in [2] for 
the Wigner function implies anti-periodic boundary conditions in s-space and periodic 
boundary conditions in k-space according to Martucci’s classification of discrete Fourier 
transforms [4]. 
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From (2) we can derive the continuity equation 
𝜕𝑛

𝜕𝑡
+  

𝜕𝑗

𝜕𝑟
= 0, where local carrier density and 

current density are given by 

𝑛(𝑟) =  𝜎(𝑟, 0),        𝑗(𝑟) =  
−𝑖ℏ

𝑚

𝜕𝜎

𝜕𝑠
 (𝑟, 0).   

Frensley’s discretization in [2] is based on the use of an equispaced k-mesh. This is necessary 

to guarantee conservation of mass which, in the Wigner formulation, is a condition non-local 
in k. In contrast for the sigma equation conservation of mass is a condition local to 𝑠 = 0. 
Consequently global meshing constraints are less stringent and we are not restricted to the 
use of an equispaced mesh in s. Discontinuities in 𝑈 resulting from potential steps can be 
dealt with by using exact matching conditions. 

All operators in (2) can be sparsely discretized. In the stationary case (2) can be solved by a 
shooting method. No big system matrix needs to be stored and the method can easily be 
parallelized. Sparsity of operators can be exploited which is a major numerical advantage in 
comparison with the finite difference Wigner method. 

There is a large body of knowledge on the numerical solution of hyperbolic equations and on 
Volterra integral equations [1] [3]. These methods need to be adapted and specialized for use 
with (2). A  further research topic is incorporation of scattering models beyond the relaxation 
time approximation. 

This work was partly funded by the Austrian Research Promotion Agency (FFG), contract no. 850660 
(MORAFLASH) 
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Wigner Functions for the Canonical Pair Angle and Orbital Angular 
Momentum 
 
Hans A. Kastrup 

DESY, Theory Group, Notkestrasse 85, D-22607 Hamburg, Germany 
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In view of the impressive successes of Wigner functions on the topologically trivial planar 

phase space ℝ2 (and its generalizations to higher dimensions ℝ2𝑛), attempts have been made 

to generalize the concept to other - topologically non-trivial - phase spaces, in particular, to 

that of a simple rotator around a fixed axis, its position given by an angle θ ∈ [−π,π) and its 

angular momentum by a real number p, thus having a phase space corresponding 

topologically to a cylinder of infinite length, i.e. S1 × ℝ. 

A main obstacle for the quantum theory of that space for decades has been the treatment 

of the angle θ which has no satisfactory self-adjoint operator counterpart quantum 

mechanically. The way around this obstacle is the following [1]: An angle can be characterized 

by a point on the unit circle which in turn is uniquely determined by the pair (cosθ, sinθ). The 

three Poisson brackets of the 3 classical “observables” cosθ, sinθ and p form the Lie algebra 

of the Euclidean group E(2) of the plane. The unitary representations of this group provide the 

basis for the quantum mechanics of the system [1]. Its Hilbert space consists of square - 

integrable functions 𝜓(𝜑) on the circle with scalar product 

  , basis: 𝑒𝑛(𝜑) = 𝑒𝑖𝑛𝜑 , 𝑛 ∈ ℤ.  

On this Hilbert space the operators 𝐶 = cos 𝜑 and 𝑆 = sin 𝜑 act as multiplication operators and 

the angular momentum operator is given by 𝐿 = (ℏ 𝑖⁄ )𝜕𝜑 (ℏ = 1 in the following). Using this 

group theoretical structure allows for a consistent construction of the Wigner function 𝑉𝜓(𝜃, 𝑝) 

associated with a wave function 𝜓 [2,3]: 

 

The “cylindrical” Wigner function 𝑉𝜓(𝜃, 𝑝) has most of the structural properties well-known from 

the “planar” one 𝑊𝜙(𝑞, 𝑝). Examples: 

The marginal distributions |𝜓(θ)|2 and |𝑐𝑚|2 are obtained by appropriate integrations of 

𝑉𝜓(𝜃, 𝑝) over p and θ, with the sinc function sincπ(p − m) interpolating between the continuous 

classical values p and the discrete quantum mechanical values 𝑚 ∈ ℤ of the angular 

momentum. The transition probability for 𝜓1 ↔ 𝜓2 is given by 

 
 

and the expectation value of an operator O by 
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  . 

Thus, the phase space function (“symbol”) 

�̃�(𝜃, 𝑝) = 2𝜋 𝑡𝑟[𝑂 ·  𝑉(𝜃, 𝑝)] 

corresponds to the Hilbert space operator 𝑂. 

Conversely, given the function �̃�(𝜃, 𝑝), the operator 𝑂 is given by 

      . 

Many more relations are discussed in Refs. [2] and [3]. 

An informative and illustrative example is the Wigner function 𝑉𝜒(𝜃, 𝑝) of the “cat” state 

𝜒(𝜑) = [exp(𝑖𝜑) + exp(−𝑖𝜑)]/√2: 

 

. 

The θ-dependent term in 𝑉𝜒(𝜃, 𝑝) represents the entanglement of the two superposed basis 

states exp(𝑖𝜑) and exp(−𝑖𝜑) [2]. 

  0.5 
     0 

     -0.5 

 π −3 
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Wigner Functions as a Route to Correlation Fluctuations in Problems 
of Electromagnetic Interference and Noise and Vibration 

 
Stephen C Creagh, John Blackburn, Gabriele Gradoni, Timo Hartmann, Sendy Phang and 
Gregor Tanner 

School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK. 
stephen.creagh@nottingham.ac.uk 
 

Problems of transport of quantum density operators and associated Wigner functions have 
analogues in classical wave problems that are often of immense practical importance in 
engineering contexts. Such applications include the propagation of electromagnetic emissions 
from electronic circuitry, the modelling of wireless/mobile communications in buildings and 
urban environments, or the prediction of noise and vibration in complex structures such as 
cars, trains and ships. 

In the high-frequency regime, the complexity and scale of these problems typically make direct 
modelling of the underlying wave problem infeasible, even with the most intensive 
computational resources. For example, in the context of future 5G communication, it is 
proposed to exploit frequencies of the order of 60 GHz that have (sub-cm) wavelengths that 
are extremely small compared to the scale of the environments in which one operates. Even 
if direct modelling of such problems were feasible, inherent uncertainty in the geometry and 
other characteristics of the structures involved would make prediction of the detailed response 
irrelevant. Instead, approximate, course-grained methods such as ray tracing may provide the 
only practical means of simulating such systems.  In this context, efficient numerical 
propagation of associated phase space densities has been achieved in such complex and 
large-scale problems using Dynamical Energy Analysis (DEA) and Discrete Flow Mapping 
(DFM) methods [1,2]. Such complex classical wave systems then provide analogue problems 
to the quantum-to-classical limit, including environmental uncertainty. 

The analogy to quantum transport has received further impetus by the recent emergence of 
direct measurement of field-field correlation functions as a practical means of characterising 
electromagnetic emissions from electronic circuits [3-6]. Essentially, the statistically 
characterised source of such emissions is then modelled by a density operator, in direct 
analogy to quantum mechanics, and the associated Wigner-function representation has 
proved effective in modelling its propagation, for example [5-6]. 

The aim in the work to be presented is to further exploit the connection offered by Wigner-
function approaches, between measured correlation functions and phase space densities, to 
characterise fluctuations in the response of the system. Straightforward ray tracing predicts 
the averaged response of the system, but not fluctuations due to multipath interference, which 
can be a dominant feature of the problem and are of tremendous importance in engineering 
contexts. On the other hand, as previously mentioned, it is typically pointless to predict such 
fluctuations in detail, as there is usually significant inherent uncertainty in the system structure. 
We therefore adopt a combined approach, using propagated phase-space densities to predict 
coarse-grained averaged responses, but adding statistical modelling of fluctuations around 
this average using Random Matrix Theory (RMT) approaches [7]. The Wigner function 
representation is essential in achieving this as it provides a direct route from the modelled 
phase space densities to the correlations and intensities that are of direct interest in 
applications 

The authors acknowledge support from the ONR, grant no. N62909-16-1-2115 and from the European Commission 
through the Horizon 2020 FET project NEMF21, grant no. 664828. 
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To Know, or not to Know the Quantum State of an Open System, that 
is the Question in the Realistic Modelling of Quantum Dissipation 
 
Xavier Oriols 
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xavier.oriols@uab.es 
 
The many-body state for a closed quantum system is computationally inaccessible. Therefore, 
most approaches for simulating quantum dissipation deal with open systems whose quantum 
nature is described by a reduced density matrix or a Wigner distribution function. Their 
equations of motion require a collision term whose exact shape is unknown and requires 
approximations that, in some cases, can lead to unphysical results [1-3].  

The ultimate reason of such unphysical results is that the equation of motion of the Wigner 
distribution function or the density matrix with the collision terms (interpreted as a dynamical 
map) can fail to satisfy complete positivity [1]. On the contrary, the condition of complete 
positivity is trivially satisfied when the density matrix (or its Wigner-Weil transform) can be 
written, at any time, as a sum over different states Ψj (x,t) of the open system, for j=1,…,W, 
as: 

ρ(x,x’) = Σj  pj Ψj
*(x’,t) Ψj (x,t)                                              (1) 

where pj is the probability of each of these states. Eq. (1) directly implies a positive density 
operator and a completely positive map [1]. Unfortunately, the states Ψj (x,t) of an open system 
are inaccessible within the “orthodox” formulation (the reduced density matrix in Eq. (1) is 
defined as an improper mixture [4]), unless the environment is continuously monitored as done 
in Stochastic Schrodinger equation techniques [5]. 

In this conference, I will show how the Bohmian formulation of an open system [6,7], allows 
an alternative and natural definition of the (conditional) wave functions of an open system, Ψj 

(x,t), where the subindex j accounts for different experiments. With the knowledge of the state 
of the open system, Ψj (x,t), it is a straightforward procedure to develop a quantum approach 

for dissipation that, by construction, satisfies Eq. (1) and therefore provides a complete 
positive map for either Markovian or non-Markovian dynamics. In this conference, I will also 
explain how such approach can be implemented to study dissipation and decoherence in 
tunnelling devices with either linear (Dirac equation) or parabolic (Schrödinger equation) band 
dispersions [8,9].  The details and capabilities of this approach are indicated in Figs. 1 and 2.  
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Figure 1: a) Time evolution of the 

modulus squared of the conditional 

wave function of an electron in the 

conduction band of a graphene sheet 

with initially wave vector 

(kxo,kyo)=(0,2.27e-8) m-1 suffering an 

elastic collision (at tc) with a phonon 

that lead to a final wave vector 

(kxf,kyf)=(1.6e8, 1.6e8) m-1. The 

associated Bohmian trajectories are 

also plotted. Inset: Energy 

conservation of the elastic collision. 

b) Same wave vector change as in a) 

but with an inelastic collision that 

moves the electron to energies in the 

valence band (with opposite velocity 

and momentum) as seen in the 

energy inset. 

Figure 2: a) Current-voltage 

characteristic for a resonant tunnelling 

diode with (solid red curve) and 

without (blue dashed curve) 

dissipation due to (acoustic and 

optical) phonons and impurities. The 

optical phonons leads to an inelastic 

electron energy change of ±0.036 eV. 

The simulation time for each bias point 

is 5 ps. The Fermi energy is Ef=0.15 

eV and the electron effective mass 

m*=0.067m0 with m0 the free electron 

mass. The barrier height and width are 

0.5 eV and 1.6 nm, respectively, and 

the well width is 2.4 nm. b) Number of 

collisions as a function of bias. At 

resonance, the number of collisions is 

three times greater than out of 

resonance. 
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In the phase-space representation of quantum mechanics the quantum state of the system 
cannot be represented by the Dirac measure localized at a point in the space because of 
Heisenberg's uncertainty principle.  In this framework, the quantum state of the system can be 
represented by the Wigner quasi-probability distribution function or simply the Wigner function, 
and dynamical variables form a non-commutative algebra on the phase space [1].  This 
formulation of quantum mechanics is frequently used as an alternative to the description of 
the electron's dynamics in the condensed matter nanosystems where the analysis based on 
the ordinary Boltzmann's picture of transport phenomena is rather inadequate.  One of the 
reasons for this uncomfortable situation is the inherence of the quantum interference 
phenomena which introduce the effect of the phase memory for propagating electrons through 
the nanosystem over a distance which is called the coherence length.   

The quantum interference between spatially correlated pieces of electronic states in the phase 
space is related to the negative part of the Wigner function [2].  From the mathematical point 
of view the negative values of the Wigner function can be regarded as a consequence of the 
Weyl transform of the density matrix, which transfers the off-diagonal elements of the density 
matrix in the position representation to the momentum variables [3].  This procedure suggests 
the existence of the mutually dependent correlations between the momentum and position 
states of conduction electrons. 

In this report, the problem of the position-momentum correlations in the phase space is 
discussed.  We present a scheme for determination of these correlations using the methods 
based on the Wigner function.  For this purpose the appropriate class of correlation functions 
is defined and some of them are numerically calculated for the canonical system of  
nanoelectronics, which is a resonance tunneling diode [4].  The preliminary results are 
presented in Fig. 1. 

 

 

 

 

 

 

 

 

Fig. 1: Influence of the relaxation time on the symmetrical correlation function of the first order 
at selected points of the current-voltage characteristics. 
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Apart from this, we also investigate the influence of the scattering mechanisms on non-
classical properties of electronic states.  It allows us to analyze the evolution of quantumness 
of the states driven by the bias voltage along the current-voltage characteristics. 

All the obtained results are discussed based on steady-state solution of the kinetic equation 
with the scattering integral in the form of the relaxation time approximation for the Wigner 
function.  Additionally, a short discussion of the time evolution of the non-classical properties 
of the electronic state in the quasi-ballistic regime is included.  For this purpose, the Wigner 
equation in the Moyal form is solved [5, 6], and the dynamical aspects of electronic states 
which stem from its quantumness are analyzed. 
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A Probabilistic Model for the Wigner Transport Equation 
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The term Wigner Monte Carlo method is used for the “particle based Monte Carlo approach 
to the Wigner–Boltzmann transport equation”. During these years, several variants of the 
method related to particle weights (signed, integer valued, continuous) have been introduced 
[1]. 
This paper is concerned with the construction of a probabilistic model for the Wigner equation. 
The model is based on a particle system with the time evolution of a piecewise deterministic 
Markov process. Each particle is characterized by a real-valued weight, a position x and a 
wave-vector k. The particle position changes continuously, according to the velocity 
determined by the wave-vector. New particles are created randomly and added to the system. 
The main result is that appropriate functionals of the process satisfy a weak form of the Wigner 
equation. Moreover the stochastic model contains several new algorithms as well as some of 
the algorithm previously considered in the literature. The approximation error and the 
efficiency of the algorithms are analyzed and performed on a benchmark test case, where 
certain advantages of the new class of algorithms are demonstrated. 
 

1. D. Querlioz and P. Dollfus, The Wigner Monte Carlo method for nanoelectronic devices. Wiley 2010 
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An efficient numerical solution of the Wigner-transport equation based on the Wigner-Weyl 
transformation is desirable. Unfortunately, conventional approaches suffer from different 
drawbacks. On the one hand the drift operator represents a function, which oscillates strongly 
due to the spatial frequency leading to high approximation errors as the Fourier integrals within 
the Wigner-transport equation are not converging with respect to the Hartree-Fock potential 
[1]. On the other hand so-called upwind difference methods are used for the numerical 
approximation, which overestimate diffusion effects [2]. Therefore, coherent effects cannot be 
described adequately and inherent errors are a consequence. Furthermore, local boundary 
conditions are assumed, which neglect the non-local behavior of quantum mechanics [3]. 
Open boundary conditions are needed. The numerical results deviate from the results 
obtained by coherent models when scattering is neglected [4]. 

An approach is presented, which circumvents the above mentioned issues. The von-Neumann 
equation in center-mass coordinates r and r’ is discretized by means of a finite volume 
technique. The discretization pattern is based on ideas coming from propagator expansions 
for electromagnetic field calculations. The computational domain is divided into cells in r-
direction, for which the discretized von-Neumann equation is formulated consisting of a 
discretized diffusion and drift operator. For each cell, the solution in r’-direction is expanded 
dependent on the eigensolutions of the discretized diffusion operator, which represent inflow 
and outflow waves. Self-energies accounting for open boundary conditions in r’-direction can 
be incorporated. The matrices for each cell can be combined to form a system matrix for the 
whole computational domain. The resulting matrix equation describes the numerical problem 
dependent on the r-direction and dependent on the boundary conditions in r-direction. Due to 
the introduction of inflow and outflow waves, additional self-energies in r-direction can be 
defined. The basis of the discretized diffusion matrix can be chosen in a way that the 
eigensolutions correspond to the Weyl transform, so that the characteristics of the 
conventional Wigner-transport equation can be preserved.  

The von-Neumann equation is self-consistently solved along with the Poisson equation for a 
resonant tunneling diode (Fig. 1) at an applied voltage of 0.11V. The density matrices are 
determined for the proposed approach and the conventional approach solving the Wigner-
transport equation based on an upwind difference scheme. These methods are compared with 
each other, whereby for both methods the real (Fig. 2) as well as the imaginary part (Fig. 3) of 
the density matrices are depicted as a function of the center-mass coordinates. The difference 
between both approaches can be observed from both figures. The results achieved with the 
proposed approach correspond very precisely to the solution obtained by the Schrödinger 
equation, so the results of the latter approach are not shown. The current density cannot be 
correctly determined by the conventional Wigner-Weyl approach. This statement can be 
concluded from the imaginary part of the density matrix (Fig. 3b) due to the different derivatives 
in r '-direction when considering the location r' = 0. 

Finally, an approach is presented, which avoids the above mentioned major problems of 
conventional numerical methods for solving the Wigner-transport equation and exploits the 
advantages of the self-energy-concept, which is quiet common when using non-equilibrium 
Green’s function approaches. The approach offers the possibility to allow a computationally 
efficient design of nanoelectronic devices. 

mailto:dirk2.schulz@tu-dortmund.de


 

 

 

      39 

 

IW2 2017   978-3-200-05129-4 

1. P. Ellinghaus et al., J. Comput. Electron., 151-1162, doi: 10.1007/s10825-014-0635-3 (2015). 
2. C. Carey et al., Appl. Math. Modelling, 263-270, doi: 10.1016/0307-904X(93)90048-L (1993). 
3. J. M. Sellier al., Math. Comput. Simul., 108-119, doi: 10.1016/j.matcom.2014.06.001 (2015). 
4. D. Schulz et al., J. Quantum Electron., 8700109, doi: 10.1109/JQE.2015.2504086 (2016). 
 

  

Fig. 1: Energy band EC for the RTD 
and doping concentration Nd

. 
Fig. 2: Real parts of the density matrix for the proposed 
approach (a) and the Wigner-transport equation (b). 

 

Fig 3: Imaginary parts for the proposed approach (a) and the Wigner-transport equation (b). 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

      40 

 

IW2 2017   978-3-200-05129-4 

Wigner Analysis of Surface Roughness in Quantum Wires 

 
Paul Ellinghaus1, Mihail Nedjalkov1, Josef Weinbub2, and Siegfried Selberherr1 

1Institute for Microelectronics, TU Wien, Austria 
2Christian Doppler Laboratory for High Performance TCAD at the  
  Institute for Microelectronics, TU Wien, Austria 
Mihail.Nedialkov@TUWien.ac.at 
 
Surface roughness (SR) is the low field electron mobility limiting mechanism in confined 
structures. Classical (Monte Carlo) transport models describe the effect of the electron 
interaction with the surface imperfections in terms of the Fermi Golden Rule, characterized by 
the stationary (long time) limit of the interaction process giving rise to the energy conserving 
delta function, and a statistical averaging which provides a position-independent scattering 
probability. An alternative approach, which allows a deep insight in the processes governing 
time-dependent, quantum electron dynamics in presence of SR, is based on the signed 
particle model [1], which provides an equivalent autonomous formulation of the Wigner theory 
[2]. The model retains many classical notions like phase space and point-like particles which 
drift and scatter like Boltzmann particles. The quantum information is carried by positive or 
negative sign [3] used to evaluate the physical averages. Particles generate - according to 
rules defined by the Wigner potential - couples of novel signed particles. Their inertial motion 
is not affected by the potential, in particular the electric field does not cause any acceleration. 
The signed particle model is utilized via ViennaWD [4] for a comparative study of quantum 

evolution in ideal and rough-surface wires. Identical Wigner states 𝑓𝑤 =
𝑁𝑒𝑥𝑝{− (𝑟 − 𝑟𝑜)2 2𝜎2⁄ } exp{−(𝑘 − 𝑘0)22𝜎2}, injected with a period of 5 𝑓𝑠, are centered in the 

source contact of the wire. The governing physical process is tunneling, there are no artificial 
walls which stop or reflect the particles: On the contrary, particles are removed after reaching 
the domain boundaries. Fig.1 shows that the electron density is not evenly distributed even in 
the ideal case. The initial penetration into the walls is followed by a reflection and further 

shrinking of the channel towards the drain (𝑦 = 𝑦𝑚𝑎𝑥). The SR pattern in Fig.2 (left) is 

generated by the function 𝐿0 exp{− 𝛥𝑥 𝑐𝑙⁄ } [5] with the mean offset 𝐿0 and the correlation length 
𝑐𝑙. The electron evolution is retarded by the roughness so that the density at the drain becomes 
stationary after 200 𝑓𝑠. It is well seen how the density is reshaped by the variations of the 

potential. Fig.3 presents the difference between the ideal and rough marginal distributions 

𝑓𝑖𝑤(𝑘𝑦 ,∗) − 𝑓𝑟𝑤(𝑘𝑦 ,∗) where ∗ denotes the integration over 𝑥, 𝑦 and a sum over (the discrete 

values of) 𝑘𝑥. The fact that 𝑓𝑖𝑤(𝑘𝑦 ,∗) remains unaffected during the evolution (due to the y-

independence of the potential) provides a reference for the analysis: The existence of negative 
wave vector values prompts for quantum reflection, where 𝑓𝑖𝑤(𝑘𝑦 ,∗) values dominate. The 

major conclusions are that far from equilibrium the conditions along the wire become 
inhomogeneous and that quantum reflections are caused by the SR. Another effect is the 
reduction of the speed in the transport direction as confinement keeps the density away from 
the interface thus reducing the SR effect. 

 
1. M. Nedjalkov et al., Appl. Phys. Lett. 102, DOI: 10.1063/1.4802931 (2013). 
2. J. M. Sellier et al., Phys. Rep. 577, DOI: 10.1016/j.physrep.2015.03.001 (2015). 
3. P. Ellinghaus, PhD Thesis, http://www.iue.tuwien.ac.at/phd/ellinghaus/ (2016).  
4. ViennaWD: http://viennawd.sourceforge.net/ 
5. S. Goodnick and D.K. Ferry, Phys. Rev. B 32, DOI: 10.1103/PhysRevB.32.8171 (1985). 
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Fig.  1: The ideal wire walls are formed by 5 𝑛𝑚 wide 0.8 𝑒𝑉 potential strips which smoothly drops to 0 in 

the next 2 𝑛𝑚 towards 𝑥 = 10 𝑛𝑚. The injected states use 𝑟0 =  (10, −4𝜎) 𝑛𝑚 and 𝜎𝑥,𝑦 of 2 𝑛𝑚 corresponds 

to the equilibrium at 300 𝐾. A stationary picture of the density (in arbitrary unit) is reached after 175 𝑓𝑠 

injection, when the current enters the 3 % limits around its mean value. 

Fig.  2: The SR density (in arbitrary unit) pattern with 5 𝑛𝑚 correlation length and 0.5 𝑛𝑚 mean offset causes 

a reduction of the current, given on the right picture for three different values of 𝑘0,𝑦; 𝛥𝑘 corresponds to 

1 𝑚𝑒𝑉. 

Fig.  3: The difference between the ideal and rough marginal ky-distributions shows a reduction of the speed 

in the transport direction and a reflection caused by the SR varying potential. 
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Quantum mechanical effects in the carrier transport processes have to be accounted for during 
the development of modern and future electronic devices. A convenient formulation is provided 
by the Wigner formalism [1,2]. Especially for problems where phase-space quantities vary 
over several orders of magnitudes deterministic solution methods [3] are favored over 
stochastic approaches. The problematic discretization of the diffusion term triggered the 
development of an approach which utilizes an integral formulation of the Wigner equation [4]. 
In general, the developed method describes the evolution in time as the superposition of the 
time evolution of several fundamental wave packages.  
Major considerations are necessary to overcome the memory and time demands typical for 
the modeling of any quantum transport method [5].  
Through an examination of the resulting equations it was possible to dramatically reduce the 
complexity of the equation system and a final reduced set of equations resulted. However, 
due to the computational costs of the solving mechanism a parallelization of the procedure is 
essential and through this approach made possible. Depending on the problem type several 
solution approaches are feasible which affect the discretization and offer further possibilities 
for optimization.  
Several aspects of the numerical consequences of this approach will be discussed.  
For simple problems with a time invariant setup each fundamental evolution can be computed 
independently, collecting all fundamental solutions to the entire one. Parallelization among the 
partial processes is made possible.  
If a dependence of the partial evolutions is caused, for instance by scattering, the partial 
processes may be calculated in parallel but the synchronization of and the communication 
between the processes is required.  
If the applied potential stays constant, the partial updates stay constant as well. In this case 
the partial updates may be calculated only once and applied to the distributions of the previous 
time-step. However, In this case a communication of the actual solution among the processes 
has to be triggered.  
Depending on the chosen method different computational issues may arise. To achieve the 
results in reasonable time attention has to be kept on the (at least) second order dependence 
of spatial and k-space resolution on calculation times. Due to the high dynamic of the solution 
it may be also necessary to apply a dense time-spacing. Accordingly, in areas of low velocities, 
due to numerical reasons, the discrete trajectories may stop evolving.  
This aspect may not be harmful using stochastic methods. These areas move their discrete 
position with low probability. In the deterministic version this instance is accounted for by 
adapting the velocities by their cumulative error in the trajectory in time.  
However, for the one-step method, the trajectory update is only calculated once. In this case 
an interpolation of the solution achieves a result. Attention has to be paid to the fact that 
information is lost and edges may broaden during this interpolation. In Fig. 1 sample 
simulations by applying the developed method are shown for a wave packet passing through 
a 0.1eV potential barrier and through two 0.05V potential barriers. 
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Fig. 1: Two simulations of a wave packet passing through a 0.1eV potential barrier and two 

0.05eV barriers are shown at time=0s and after 100fs. In this case the one-step algorithm, 

in combination with interpolation, achieves best results. 
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The Due to the higher dimensionality and the oscillating structure of the Wigner function, highly 
accurate deterministic numerical simulations have been almost exclusively confined in 2D 
phase space and few results are reported in a higher dimensional phase space, even for a 4D 
system. Recently, we proposed an advective-spectral-mixed method for the 4D problem with 
a bounded and fast decay potential [Ref: SIAM J. Sci. Comput. 38 (2016) B491-B520].  In 
virtue of the operator splitting technique, we now extend the method into the problems with 
non-decay potentials and obtain accurate Wigner functions in dealing with the the double-well 
potential as well as in simulating directly the double-slit experiment and others.  
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Towards to an efficient Wigner branching random walk (i.e., signed particle Wigner Monte 
Carlo) simulation in high dimensional (>=6D) phase space, the resampling procedure (particle 
cancelation) plays a key role, which is usually made up of two parts: an appropriate particle 
reduction method to control the particle number and an accurate sampling strategy from the 
resulting density estimation. By exploiting the idea of non-parameter density estimation 
method in statistics, we would like to formulate the resampling as a histogram approximation, 
as well as a piecewise constant reconstruction of the Wigner function. Theoretical analysis 
validates the consistency of the proposed method and numerical results demonstrate the 
reliability when the dimension of phase space is moderately large (for instance, 4D). However, 
we also point out the potential weakness and challenges of such resampling strategy in higher 
dimensional problems. 
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The quantum dynamical decoherence of a “heavy” particle interacting with a single “light” 
particle, is studied in detail in Ref. [1]. Starting from this two-body problem, we consider a 
quantum particle that interacts with a gas of light particles, and we derive the effective 
evolution of the reduced Wigner function. Our model includes in a natural way a decoherence 
mechanism, which turns out to be the generalization of analogous mechanisms already 
considered by Joos and Zeh [2], and even proposed by Wigner himself [3]. However, our 
extended formalism allows to introduce, at least on a phenomenological ground, a “saturation” 
of the decoherence process in the long run.  

In our contribution we briefly report on the derivation of the model as well as on some of its 
mathematical and physical properties, including energy and momentum dissipation rates, also 
with the help of simple numerical examples. Moreover, we discuss the relationships of our 
approach with the above-mentioned references [2] and [3], and with approaches based on 
Wigner functions with finite coherence length [4]. Finally, we indicate some possible 
extensions and directions for future investigation. 
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We investigate the quantum effects induced by two dopants positioned on the electron path 
in a structure which resembles a two-dimensional quantum wire. We use the signed particle 
model for analysis, which presents an alternative heuristic formulation of the Wigner transport 
picture [1]. The major attributes of the model are that point-like particles with classical features, 
such as drift over Newtonian (field-less) trajectories, carry the quantum information by their 

positive or negative sign which contributes to the physical averages < 𝐴 >, which, apart from 
the sign, can then be calculated as in the classical case. The Wigner potential determines a 
spatial probability map, according to which any particle generates two novel counterparts with 
a positive and negative sign, while the attributes of the initial particle remains unaffected [2]. 
Contrary to Boltzmann particles, which resemble electrons, signed particles bear a mere 
numerical character. In particular, the electron density in a given phase space unit cell is 
approximated by the difference of positive and negative particles. With the double dopant 
experiment we analyze the effect on the electron density by continuously injecting identical, 

minimum uncertainty Wigner states 𝑓𝑤 = 𝑁𝑒𝑥𝑝{−(𝑟 − 𝑟𝑜)2/2𝜎2}exp {−(𝑘 − 𝑘0)22𝜎2} [3], 
aiming to maintain coherent conditions. Since any injected state may be interpreted as a 
classical distribution, we can conveniently use the Boltzmann picture as a reference frame: 
Classical particles move on un-accelerated Newtonian trajectories until closing in on the 
dopants, where they begin to feel the electric force (cf. green area in Fig. 1). After leaving the 
region the free movement continues until leaving the domain. The particle transport is mainly 
along the y-direction (from bottom to top), the correlation between the two symmetric left and 
right subdomains (i.e. 0 ≤ 𝑥 ≤ 10𝑛𝑚 and 10𝑛𝑚 ≤ 𝑥 ≤ 20𝑛𝑚) happens merely between the 
dopants and the drain (i.e. 𝑦 = 𝑦𝑚𝑎𝑥). We use quantum simulations, powered by ViennaWD 

[4], to provide a density distribution as shown in Fig. 2. In particular, 𝑟0 is centered in the source 
contact (𝑥 = 10𝑛𝑚) of the wire and 𝜎𝑥,𝑦 = 2𝑛𝑚, corresponding to the equilibrium distribution 

around 𝑘0 with the effective mass 𝑚∗ = 0.19 at 𝑇 =  300 𝐾, with a total simulation time of 
400 𝑓𝑠 and an injection period of 8 𝑓𝑠; steady state is reached after about 200 𝑓𝑠. To study 
processes giving rise to coherence, we perturb the correlation between the two subdomains 
by introducing an artificial kill zone along the vertical symmetry line within the area 9.5𝑛𝑚 ≤
𝑥 ≤ 10.5𝑛𝑚 and 22𝑛𝑚 ≤ 𝑦 ≤ 25𝑛𝑚, where negative particles are eliminated. Such a 
perturbation does not affect the classical picture since, as discussed, there is no correlation 
between the subdomains separated by the kill zone, there are no negative particles. 
Furthermore, if the action of the Wigner potential, which ensures the coherence, is weak, the 
effect of such a kill zone can only increase the electron density. Fig. 3 shows the effect of the 
kill zone on the density distribution (compare to Fig. 2). For a more detailed analysis, Fig. 4 

shows a comparison of the density along 𝑦 = 29 𝑛𝑚: For the kill zone case (red dashed line) 
the results show the opposite effect as described above - a reduction of the density. This 
demonstrates the active role of the Wigner potential in the domain around the kill zone. The 
main conclusion is, that, in contrast to the classical case, there exists an active particle 
exchange (i.e. correlation) in the horizontal x-direction, which is of crucial importance for the 
system to maintain coherence. 
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Fig. 3: Kill zone density distribution (arbitrary unit) 

after 200 𝑓𝑠. The black rectangle indicates the kill 

zone. 

Fig. 4: Comparison of density distribution 

(arbitrary unit) via a screen at 𝑦 = 29 𝑛𝑚 after 

200 𝑓𝑠. 
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Fig. 1: Potential distribution in 𝑒𝑉. The green 

region outlines the potentials of the two dopants. 

The setup is such that we can ignore a joint action 

of the corresponding forces. 

Fig. 2: After 200 𝑓𝑠 quantum evolution the density 

(arbitrary unit) approaches a stationary 

distribution. No artificial borders are introduced; 

particles leaving the simulation domain in any 

direction are eliminated. 
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