
•

2017 Spring Simulation Multi-Conference (SpringSim’17)

Simulation Series Volume 49 Number 3

Virginia Beach, VA, USA
23 - 26 April 2017

Editors:

Lukas Polok William Thacker
Masha Sosonkina Josef Weinbub

ISBN: 978-1-5108-3822-2

(HPC 2017)

Welcome Letter

Welcome from the SpringSim’17 Conference Chairs

On behalf of the Organizing Committee, it is our pleasure to welcome you to the 2017 Spring

Simulation Multi-conference in Virginia Beach, Virginia. Virginia Beach is in the Hampton Roads area,

which is home to NASA Langley, the Virginia Modeling Analysis and Simulation Center (VMASC) and

over 20 military installations from the Army Navy and Coast Guard. Hampton Roads is also the

historical hub of the Colonial era of America filled with ancient cities, wineries and civil war sites. The

conference is organized by the Society for Modeling and Simulation International (SCS), the World’s

oldest international M&S society, which, from its inception in 1952, has effectively engaged our

community and continues to play a significant role in advancing research and its contribution to

practice. SpringSim’17 covers state-of-the-art developments in M&S methodology, technology and

application in disciplines as diverse as applied computing, communications and networking,

medicine, adaptive and autonomous systems. This year, SpringSim is co-located with MODSIM World

Conference, chaired by Eric Weisel. SpringSim’17 and MODSIM together provide an excellent

opportunity to learn the state-of-the-art in modeling and simulation.

We have an excellent program to offer our attendees this year. This includes presentation of peer-

reviewed original research papers, posters, work in progress, PhD student colloquium, keynote

speeches, featured speeches, and tutorials delivered by experts. This year’s conference consists of

the following eight symposia: Agent-Directed Simulation Symposium (Chaired by Yu Zhang and

Gregory Madey), Annual Simulation Symposium (Shafagh Jafer and Jose J. Padilla), Communications

and Networking Symposium (Abdolreza Abhari and Hala ElAarag), High Performance Computing

Symposium (Lucas Polok and Masha Sosonkina), Symposium on Modeling and Simulation in

Medicine (Jerzy Rozenblit and Johannes Sametinger), Symposium on Theory of Modeling and

Simulation (Fernando Barros and Xiaolin Hu), Simulation of Complexity in Intelligent, Adaptive and

Autonomous Systems (Saurabh Mittal and Jose L. Risco Martin) and a new symposium for

SpringSim’17 - Chaired by Andrea D’Ambrogio and Umut Durak - Model-driven Approaches for

Simulation Engineering. We would like to thank the organisers of the symposia and their respective

technical program committees and reviewers for their effort in putting together the exciting program.

As a Multi-conference, our success depends on their contribution.

We have an exciting line-up of distinguished keynote speakers; we would like to express our

gratitude to Benoit Montreuil and Pieter Mosterman for accepting our invitation to deliver keynote

speeches.

This year we are launching two new initiatives: Featured Speakers and Student M&S Demo Session.

The Featured Speakers series brings spotlight to the authors of invited papers in selected symposia.

This emphasizes the state-of-the-art contributions the Featured Speaker is making in the chosen

field, as considered by the Chairs in the particular symposium. This year we have Bernard P. Zeigler

as the Honorary Featured Speaker, along with Andreas Tolk, Neal Wagner, Eric Nielsen, Wes Bethel,

Theodore A. Bapty, Umut Durak, Navonil Mustafee and Janet Roveda. We thank our Featured

Speakers in defining the bleeding-edge. The Demo Session replaces the earlier Mobile App

Competition. It is led by Salim Chemlal and Mohammad Moallemi. It encourages students to

showcase their running simulations that they have authored in the contributed papers. We plan to

grow the M&S Demo towards an online archive so that each simulation article has an accompanying

simulation “execution” to inform the reader in a better way.

We would like to thank our sponsors who have donated money, software licences and books and

which has made it possible for us to recognise best papers in the conference, support student travel,

and provide an enhanced conference experience for our delegates. We sincerely thank VMASC, Old

Dominion University, MOSIMTEC, Institute for Simulation and Training, University of Central Florida,

and VMASC Industry Association.

Our sincere gratitude goes to our Organization Committee. We would like to thank Deniz Cetinkaya,

Marina Zapater and Marc Banghart (Proceedings Co-Chairs), Saikou Diallo (Sponsorship Chair),

Navonil Mustafee (Awards Chair), Andrew Collins (Publicity Chair), Umut Durak (Tutorial Chair), Murat

Gunal (WIP Chair), Caroline C. Krejci (Poster Session and Student Colloquium Co-Chair) and Salim

Chemlal and Mohammad Moallemi (Student M&S Demo Session Co-Chairs). We would also like to

thank SCS Executive Director, Oletha Darensburg and Carmen Ramirez for their conference

coordination activities and Mike Chinni for his help with the proceedings and digital libraries.

Thank you for making SprimSim’17 a success through your participation. We look forward to your
continued participation in SpringSim’18.

 Saurabh Mittal Gregory Zacharewicz Andrea D’Ambrogio

 General Chair Vice-General Chair Program Chair

 The MITRE Corporation University of Bordeaux University of Rome Tor Vergata

 USA France Italy

HPC’17 CHAIRS’ MESSAGE
Welcome to the 2017 High Performance Computing Symposium!

This is the 25th special symposium devoted to the impact of high performance computing
and communications on computer simulations. The symposium encompasses a wide
variety of topics with a focus on tools and applications for the simulation of physical and
engineering systems.

Advances in multicore and many-core architectures, networking, high end computers, large
data stores, and middleware capabilities are ushering in a new era of high performance
parallel and distributed simulations. Along with these new capabilities come new challenges
in computing and system modeling. The goal of HPC 2017 is to encourage innovation in
high performance computing and communication technologies and to promote synergistic
advances in modeling methodologies and simulation. It will promote the exchange of ideas
and information between universities, industry, supercomputing centers, and national
laboratories about new developments in system modeling, high performance computing and
communication, scientific computing as well as simulation.

Sincerely, Lukas Polok General Chair Masha Sosonkina General Vice-Chair
William I. Thacker Program Chair Josef Weinbub Program Vice-Chair

Karl Rupp Publicity Chair

MATRIX-FREE FINITE-ELEMENT COMPUTATIONS ON GRAPHICS PROCESSORS
WITH ADAPTIVELY REFINED UNSTRUCTURED MESHES

Karl Ljungkvist

Department of Information Technology

Division of Scientific Computing

Uppsala University

Box 337

SE-751 05 Uppsala, Sweden

karl.ljungkvist@it.uu.se

SpringSim-HPC 2017, April 23-26, Virginia Beach, VA, USA
c©2017 Society for Modeling & Simulation International (SCS)

ABSTRACT

This paper concerns efficient matrix-free finite-element algorithms on modern manycore processors such
as graphics cards (GPUs) as an alternative to sparse matrix-vector products. In matrix-free finite element
algorithms, the assembly and solution phases are merged, yielding a significantly lower memory bandwidth
footprint, with a corresponding increase in efficiency on bandwidth limited processors. Additionally, no
system matrix must be assembled or stored in memory.

We present a GPU parallelization of the matrix-free method including a novel algorithm for resolving hanging-
node constraints on the GPU, capable of simulation on adaptively refined grids. For second-order elements
and higher in 3D, our GPU implementation of the adaptive algorithm is between 1.8 and 2.3 times faster than
an existing optimized CPU version, on comparable hardware. Compared to a matrix-based implementation
using CUSPARSE, we get a speedup of 8 and can solve problems 8 times larger in 3D.

Keywords: finite element methods, GPU, matrix free, adaptive refinement, hanging nodes.

1 INTRODUCTION

The finite element method is a popular choice for numerical simulation due to its capability to easily
handle complicated geometries and incorporate adaptive mesh refinement. The conventional procedure
for finite-element computations is to first assemble a system of equations, and solve this using an iterative
method. However, this two-step approach performs poorly when executed on modern multicore and manycore
processors.

The computational core of a finite-element solver is a product between the large and sparse system matrix and
a vector, which is performed a large number of times inside the iterative solver. This operation, the sparse-
matrix vector product (SpMV), needs to fetch an 8-byte double for only every 2 floating point operations
(flops) performed, whereas the memory system of most modern CPUs and GPUs can only deliver one double
for every 32-64 flops. This means that the performance of the SpMV operation will be solely limited by
the available memory bandwidth, and most of the computational hardware will be wasted (see, e.g., Gropp,
Kaushik, Keyes, and Smith 1999). In addition to this, the system matrix must be stored in memory which can
be a quite severe limit on how large problems can be solved, in particular on GPUs which typically have an

Ljungkvist

order of magnitude smaller memory. Also, the matrix assembly itself can amount to a substantial portion of
the total simulation time, especially in applications where frequent reassembly is necessary.

Motivated by these shortcomings a matrix-free approach has been suggested, for the first time already in
1986 for computer systems with limited memory (Carey and Jiang 1986). This idea builds on the important
observation that, within the iterative linear solver, the matrix entries are not needed explicitly, but only a
recipe for computing the product of the matrix times a vector. The matrix-free multiplication algorithm
is especially interesting for finite elements with tensor-product basis functions, such as quadrilateral and
hexahedral elements, since for such elements the element-local numerical integration can be performed very
efficiently using a sum-factorization approach. As shown by Cantwell, Sherwin, Kirby, and Kelly (2011), the
matrix-free approach accesses less data than when using SpMV for elements of order two and higher, whereas
the converse is true for first-order elements. Consequently, for order two and higher, the matrix-free algorithm
can be expected to perform better on modern bandwidth-limited processors. In Brown (2010), a matrix-
free approach is used for a high-order Jacobian combined with an assembled lower-order preconditioner.
In Kormann and Kronbichler (2011), the authors present a generic framework for matrix-free computations
as part of the open-source finite-element library deal.II (Bangerth et al. 2016). The framework uses
vectorization, task-based parallelization, and message passing to achieve good performance in a quantum
mechanics computation on distributed and shared-memory systems (Kronbichler and Kormann 2012).

Early work on finite-element computations on GPUs focused either on the SpMV operation in the solve
phase (Göddeke, Strzodka, and Turek 2005, Dehnavi, Fernandez, and Giannacopoulos 2010), or on the matrix
assembly (Cecka, Lew, and Darve 2011, Markall et al. 2013). The matrix-free approach was first used on
GPUs in high-order discontinuous Galerkin (DG) or spectral element methods for explicit time stepping of
hyperbolic problems. In Klöckner, Warburton, Bridge, and Hesthaven (2009), high-order DG elements are
used in a simulation of Maxwell’s equations on conservative form. In Komatitsch, Erlebacher, Göddeke, and
Michéa (2010), the authors simulate seismic wave propagation in 3D using fourth-order spectral elements on
several GPUs. We are not aware of any previous effort conducting finite-element computations with hanging
nodes on GPUs.

In a previous paper, we have studied the performance of a matrix-free operator application for a Cartesian
mesh where a constant local matrix can be used (Ljungkvist 2014). The present article extends that work to
unstructured meshes, and to adaptively refined meshes with hanging nodes. We have implemented the method
as a general framework with an underlying GPU parallelization based on CUDA (NVIDIA Corporation
2016), which is in the process of being made officially available as part of deal.II. With a unified interface
for CPU and GPU backends, which will be the focus of an upcoming publication, we can run the same
application code efficiently on both systems, and at the same time offer great flexibility for the application
programmer.

The remainder of this paper is structured as follows. In Section 2, we describe the matrix-free algorithm in
detail, as well as how we parallelize it for GPUs. In Section 3, our algorithm for resolving hanging-node
constraints on the GPU is described. In Section 4, we elaborate on the data structures used. In Section 5, we
present benchmark experiments evaluating the performance of our method. Section 6 concludes this work.

2 MATRIX-FREE MULTIPLICATION

The linear system originating from a finite-element discretization of a PDE has a system matrix A which
is assembled as a sum of local matrices ak on all elements k in the mesh. For a thorough introduction to
finite-element methods, see, e.g., Brenner and Scott (2002). Inside the linear solver, we want to compute the
product of A with a vector u of unknowns, or degrees of freedom (DoFs). Now, instead of using a precomputed
A, the matrix-free multiplication algorithm is formed by merging the matrix assembly into the multiplication
resulting in the following three steps for each element k,

Ljungkvist

1. Read the local unknowns uk from the global input vector u
2. Evaluate the local matrix multiplication, vk = akuk
3. Assemble the local contribution vk into the global result vector v

2.1 Local Matrix Multiplication

In Ljungkvist (2014), we showed that for a Cartesian mesh where all the ak are equal, using a single
precomputed local matrix a gives a competitive algorithm as long as a is small enough to fit in the GPU
cache. However, for a general mesh, the distinct ak would amount to more memory than the corresponding
assembled sparse matrix, and thus cannot be favorable neither in terms of storage space nor in terms of
reduced bandwidth usage. In this case, a more advanced approach is necessary.

To simplify the discussion, we will now assume that the original PDE is a Poisson equation with variable
coefficients. While this is a simple model problem, it serves the purpose of illustrating the method, and can
readily be extended to, for instance, a vector valued or non-linear problem. It also appears as part of many
more complicated applications, such as in projection-correction methods in computational fluid dynamics.

For the Poisson equation the local matrix is defined by

ak
i j =

∫
Ωk

∇ϕi ·A(x)∇ϕ jdx , (1)

where A(x) is a variable coefficient. If we evaluate the integral by transforming to a reference element and
integrating numerically using Gaussian quadrature, we obtain

ak
i j = ∑

q

(
J−1

k (ξξξ q)∇ξξξ ϕi(ξξξ q)
) ·A(ξξξ q)

(
J−1

k (ξξξ q)∇ξξξ ϕ j(ξξξ q)
)

wq|detJk(ξξξ q)| , (2)

where the ξξξ q and wq are reference-element quadrature points and weights respectively. Furthermore, J−1
k

is the inverse Jacobian of the transformation from element k to the reference element, and ∇ξξξ denotes a

reference-space gradient. Here, we see that only the variable coefficient A(ξξξ q), the inverse Jacobians and
Jacobian determinant need to be stored individually for each element. For Qp elements in d dimensions

integrated using (p+1)d quadrature points, these amount to (d2 +2)(p+1)d entries which is less than the
(p+1)d(p+1)d entries of the local matrix already for element degree p > 1.

Motivated by this observation, we plug (2) into the local multiplication,

vi = ∑
j
∑
q

(
J−1

k (ξξξ q)∇ξξξ ϕi(ξξξ q)
) ·A(ξξξ q)

(
J−1

k (ξξξ q)∇ξξξ ϕ j(ξξξ q)
)

wq|detJk(ξξξ q)|u j . (3)

Rearranging the summations, this operation can be performed by three successive steps. In the first one, we
compute the gradients at reference quadrature points,

∇ξξξ uq = ∑
j

∇ξξξ ϕ j(ξξξ q)u j . (4)

In the second step, we perform quadrature-point-wise operations; we first transform to the real element, then
perform any local operations – in this case multiplying by the coefficient A(ξξξ q), transform back to reference
element and multiply by quadrature weights and Jacobian determinant,

sq = wq|detJk(ξξξ q)|J−T
k (ξξξ q)A(ξξξ q)J

−1
k (ξξξ q)∇ξξξ uq . (5)

In the last step, we multiply by basis function gradients and integrate,

vi = ∑
q

∇ξξξ ϕi(ξξξ q) · sq . (6)

Ljungkvist

2.2 Evaluation Using Sum-Factorization

As we saw, formulating a matrix-free algorithm leads to a significant reduction in the bandwidth footprint,
but this comes at the price of additional operations. In particular, both when evaluating the quadrature point
gradients in (4) and when performing the final integration in (6), d matrix-vector products with vectors of
size (p+1)d must be performed. However, for tensor-product elements, such as quadrilateral and hexahedral
elements, considerable simplifications can be made.

For such elements, the reference-element shape functions are tensor products of one-dimensional shape
functions, i.e. in 3D,

ϕi(ξξξ) = ψμ(ξ)ψν(η)ψσ (ζ) , (7)

where we have introduced a multi index (μ,ν ,σ) corresponding to the single index i, with each component
running from 1 to p+1. For the basis function gradients, we get

∇ξξξ ϕi(ξξξ) =

⎛
⎝ψ ′

μ(ξ)ψν(η)ψσ (ζ)
ψμ(ξ)ψ ′

ν(η)ψσ (ζ)
ψμ(ξ)ψν(η)ψ ′

σ (ζ)

⎞
⎠ . (8)

Similarly, the 3D quadrature points can be defined by a tensor product of the one-dimensional points,

ξξξ q = (ξα ,ξβ ,ξγ) , (9)

where q → (α,β ,γ) is another multi index. Note that we consistently use μ,ν ,σ to index in DoF space,
and α,β ,γ as indices for quadrature points. Using these new indices and the shorthands ψαμ = ψμ(ξα) and
ϑαμ = ψ ′

μ(ξα), we can factorize the sum in (4) and get

∇ξξξ uαβγ = ∑
μ

⎛
⎝ϑαμ

ψαμ
ψαμ

⎞
⎠∑

ν

⎛
⎝ψβν

ϑβν
ψβν

⎞
⎠∑

σ

⎛
⎝ψγσ

ψγσ
ϑγσ

⎞
⎠uμνσ , (10)

where the vector products are to be understood as element-wise multiplication. The same series of operations
are obtained for the integration in (6), but with a summation over the quadrature indices instead. In (10),
we have a series of d consecutive (p+ 1)2 × (p+ 1)d tensor contractions for each d components, which
have an operational complexity of O

(
2d2(p+1)d+1

)
altogether, compared to O

(
2d(p+1)2d

)
for the large

matrix-vector products in (4). For more details on the sum-factorization evaluation, see Kronbichler and
Kormann (2012).

2.3 Parallelization

The matrix-free operator application algorithm contains several types of parallelism. The most apparent one
is that the result is computed as a sum of independent contributions from each element. It is thus natural
to parallelize the algorithm over the elements, i.e., divide the list of elements into chunks and compute the
contribution from each chunk of elements in parallel.

This leads to fairly coarse-grained parallel work tasks consisting of all the local operations on an element.
For each element, we first read the local DoF values into local variables and then evaluate values and/or
gradients at quadrature points. Then, quadrature-point-local operations such as multiplication with a variable
coefficient need to be performed. Finally, we perform numerical quadrature to obtain DoF values, and write
back the local DoF values. Throughout these computations, each thread needs to store the local DoF values

Ljungkvist

and the values and/or gradients at quadrature points, plus any additional intermediate variables. These can
amount to quite a large quantity of memory per thread.

On a multicore CPU, having a coarse-grained parallelization is usually desirable since per-task overhead
is often quite substantial. Also, the amount of local data needed is not an issue, since the threads have
a relatively large local memory in the form of cache, which can accommodate all the variables that are
necessary for the local operations.

On a GPU on the other hand, parallelism is used to hide memory latency by having more threads than
cores so that when a high-latency instruction is encountered, instructions from other threads can be executed
instead. Therefore, a higher level of parallelism is often sought for when targeting GPUs. In addition, the
per-core local memory is relatively limited, so a too high memory requirement per thread will put a limit on
the number of threads per core that can be in flight at once. This motivates looking for more fine-grained
alternatives to a parallelization over elements.

From Section 2.2, we recall that the sum-factorization resulted in a series of dense tensor contractions, each
of which is of the form

vανσ = ∑
μ

ψαμuμνσ . (11)

Noting that this operation is essentially a matrix-vector product of ψ with each of the “rows” of v along a
given coordinate direction, it is clear that the tensor contractions offer another, more fine-grained level of
parallelism. We therefore propose to introduce one thread per DoF on each element, and let threads cooperate
in computing each tensor contraction. With this approach, the DoF values and gradients are shared between
all the threads in a block, and thus the necessary memory per thread is reduced considerably.

Table 1: Number of cells per CUDA block for different elements Qp in 2D and 3D

Q1 Q2 Q3 Q4

2D 32 8 4 4

3D 8 2 1 1

For low-order elements which have few DoFs per cell, a single cell will constitute a very small CUDA
block with too few threads for favorable occupancy. In this case, we pack several elements into one block
(see Table 1).

When the contributions from different elements should be assembled into the final result vector, many DoFs
will be updated by several threads. To avoid race conditions we use a graph coloring approach, where only
sets of elements without shared DoFs are processed in parallel. We use the graph coloring algorithm readily
available in deal.II, which is described in Appendix A of Turcksin, Kronbichler, and Bangerth (2016).

3 TREATMENT OF HANGING NODES

When using a triangular or tetrahedral mesh, adaptive refinement is easily achieved by subdividing the
elements flagged for refinement, and also a small number of surrounding elements in order to keep the mesh
conforming. When using quadrilateral and hexahedral elements, this cannot be done as straightforwardly,
as subdividing these have a greater impact on the surrounding elements. Instead, for such meshes, a non-
conforming refinement strategy is often used, which allows for hanging nodes, i.e. nodes on an edge which
only belong to one of the elements sharing the edge. In order to enforce the standard smoothness properties
of the solution, the unknowns located on these nodes are not actually independent, but must fulfill some
linear constraint coupling it to other unknowns. In this paper, we assume the common case that neighboring
cells differ in refinement level by at most one, which guarantees that a hanging node is only coupled to

Ljungkvist

non-hanging nodes. See Section 3.3 in Bangerth, Burstedde, Heister, and Kronbichler (2011) for more details
on hanging-node constraints.

For matrix-based methods, it is conceptually simple to first perform the assembly as usual, and then eliminate
rows and columns of constrained DoFs from the system. However, it is more efficient to eliminate these on
the fly during the assembly itself (see Section 3.3.1 in Bangerth, Burstedde, Heister, and Kronbichler 2011).

With the matrix-free approach, one cannot eliminate the constrained unknowns from the mesh since the
sum-factorization evaluation requires each element to have a full set of DoFs. Instead, these constraints
must be applied every time the affected unknowns are accessed. In deal.II, this is done using a list of
local constrained DoFs, which during the access are not simply read from a single global DoF, but computed
according to the constraint. This approach has been used successfully for multicore CPUs (Kronbichler and
Kormann 2012).

On GPUs, processing the constraints one by one in succession is not compatible with our parallelization with
one thread per DoF in each element, since its low parallelism would introduce a serial or almost serial section
in the otherwise highly parallel algorithm. Instead, we propose a method which exploits specific properties of
hanging-node constraints on tensor-product elements, allowing the threads within an element to cooperate in
resolving all constraints at once.

Figure 1: Hanging nodes on a face in 3D, with an extracted 2D view of the face

In Figure 1, we see a typical situation in which constrained DoFs arise in a hexahedral mesh. The DoFs
on the fine side (orange dots) are all constrained, and the values they must have to maintain continuity are
determined by the value of the basis functions on the coarse side (teal squares). Specifically, the values are
computed by evaluating the coarse-side function at the fine points. Since only the basis functions associated
with the DoFs on the face are non-zero on the face, only those DoFs will have non-zero weights in the
constraint.

For the constrained face shown in Figure 1, each constrained DoF ui will in general be computed as a unique
linear combination of the coarse-side DoFs v j, weighted by the (p+1)2 shape-function values at that location,

ui = ∑
j

ϕ j(xi)v j , (12)

where the xi = (xi,yi)
T are the fine-side DoF locations. This is a relatively large, dense matrix-vector product.

However, for the tensor-product elements under consideration, we know that the shape functions factorize
into a product of one-dimensional shape functions. This, combined with the similar tensor-product structure
of the DoF locations, allows us to make the replacements

ϕ j(xi)→ ψα(xμ)ψβ (yν) (13)

where multi-index substitutions i → (μ,ν) and j → (α,β) have been made. If we now insert this into (12),
we see that just like in the case of the evaluation of basis functions described in Section 2.3, we can split

Ljungkvist

this operation up into a series of one-dimensional interpolations performed in succession. Using the same
multi-indices, the constrained DoFs can be computed as

uμν = ∑
α

aμα ∑
β

bνβ vαβ (14)

where aμα = ψα(xμ) and bνβ = ψβ (yν). This two-step interpolation approach is illustrated in Figure 2.

Figure 2: Our method for resolving hanging nodes in a sum-factorization manner; we first interpolate along

one coordinate direction, and then the other one.

This approach for the resolution of hanging-node constraints lends itself well to the same fine-grained
parallelization as we are using for the basis function evaluation, albeit now restricted to only the DoFs on the
face. While this leads to a quite a large number of idle threads, it is still better than the fully serial approach
used previously.

In addition to the presently described case of a single constrained face, to which the overwhelming majority of
constraints belong, we also include treatment of the exceptional cases where (i) several faces of one element
are constrained, and where (ii) only DoFs along an edge of an element are constrained. We do this extending
our two-step method to a general three-step process where each step interpolates in one of the coordinate
directions, thereby including all applicable constraints on any side or edge at once. In our implementation, we
use a 9-bit mask for each element to encode the presence and type of constraints in an efficient and compact
manner.

4 DATA STRUCTURES

To optimize the utilization of the GPU memory system, it is very important to choose a data layout which
achieves maximum coalescing of memory accesses (NVIDIA Corporation 2016). The memory used in the
algorithm can be divided into three types: per-quadrature data which is unique to each quadrature point of
each element, such as local-to-global DoF index mappings or coefficients; per-DoF data such as input and
output solution vectors; and element-independent data.

With our parallelization with one thread per local DoF, optimal coalescing is achieved if we use an array-of-
structure data layout for the per-quadrature data, rather than a structure-of-array format which is usually
preferred for GPUs. The inverse Jacobian, must be treated in a slightly altered way, since it contains D2

entries for each quadrature point that are read in succession by the same thread. In this case, an “array-of-
structure-of-array” approach is appropriate where for each element we first store the J00 components for all
quadrature points, then all J01 components, etc. In addition, we make sure that memory is properly aligned
by padding each chunk of memory to 128 byte boundaries.

For a general mesh, the per-DoF solution vectors will be read in a very irregular manner. The fact that many
DoFs are shared between elements leads to a conflict of interests where different elements have different
opinions on what would be a good ordering of the DoFs, essentially making it impossible to lay out data in a
way to coalesce all access. This becomes even more severe for a general unstructured mesh with hanging
nodes. The situation becomes somewhat better with higher element order since that increases the portion

Ljungkvist

of non-shared DoFs. However, the solution vectors amount to much less data than the per-quadrature data,
namely 2(pn+ 1)d/

(
(d2 +2)(p+1)dnd

)
for a d-dimensional mesh with n elements of order p in each

dimension, which is roughly 2 - 20% for the elements under consideration. Therefore, we think this issue is
not significant in practice.

For element-independent data, such as the values and gradients of one-dimensional shape functions at
quadrature points, we first tried using constant memory to allow for caching in the L1 read-only cache.
However, it turned out to be more favorable to explicitly stage relevant parts of these in registers.

5 BENCHMARK EXPERIMENTS

We evaluate the performance of our parallelization by running a number of numerical benchmark experiments.
In these, we measure the time to compute a multiplication using our matrix-free method by applying the
operation 100 times and computing the average time. We do not include time needed to set up the data
structures and the time for transferring data from the CPU to the GPU, as in an iterative solver, all the
data would reside on the GPU throughout the whole computation. We are using double-precision numbers
throughout, since this is necessary for proper convergence of iterative linear solvers.

The benchmarks are based on the same Poisson problem considered earlier, with a 2D or 3D hyper ball
domain, homogeneous Dirichlet conditions, and a variable coefficient defined by A(x) = 1/

(
0.05+2‖x‖2

)
.

This geometry ensures a mesh with non-Cartesian elements, making it general enough to be representable
for more complicated geometries. The relatively coarse base mesh is refined uniformly to create a series
of successively finer meshes, which lets us study how performance scales with problem size. To see the
performance impact of our treatment of hanging-node constraints, we also run the benchmark on a series
of meshes with adaptive refinement. Specifically, the coarsest mesh is refined on a series of non-aligned
spherical shells, which simulates adaptive refinement along some wave fronts. An example of such a mesh
can be seen in Figure 3. Table 2 lists the largest meshes used for each element configuration.

Figure 3: The adaptively refined mesh used to benchmark our method for resolving hanging-node constraints.

We compare our GPU implementation of the matrix-free method with the highly optimized CPU implementa-
tion of same matrix-free method by Kronbichler and Kormann (2012), which is readily available in deal.II.
We also compare against a sparse-matrix-based version for GPU using Nvidias official sparse-matrix library

Ljungkvist

Table 2: Meshes used in the experiments

(a) Uniform refinement

d p # cells # DoFs

2 1 20971520 20975617

2 2 5242880 20975617

2 3 5242880 47192065

2 4 1310720 20975617

3 1 1835008 1847617

3 2 1835008 14729857

3 3 229376 6221281

3 4 229376 14729857

(b) Adaptive refinement

d p # cells # DoFs % HN

2 1 18271217 18572584 3.23

2 2 4847393 19992109 4.51

2 3 4847393 44680720 3.37

2 4 1350302 22356367 4.70

3 1 1223845 1522469 38.3

3 2 1223845 11564225 25.4

3 3 180964 5784259 24.8

3 4 180964 13205632 19.6

CUSPARSE (NVIDIA Corporation 2013). The GPU experiments were run on a server with an Nvidia Tesla
K40, an Intel Core i5-3550 quad-core, 16 GB RAM and CUDA 8 RC. The CPU experiments were run on a
system with two Intel Xeon E5-2680 eight-core processors, and 64 GB RAM. The K40 GPU has a TDP of
235 W whereas the two Xeon processors has a combined TDP of 260W.

(a) First order elements (b) Second order elements

(c) Third order elements (d) Fourth order elements

Figure 4: Throughput vs problem size for the 2D uniformly refined mesh.

In Figure 4 and 5, the results for the uniformly refined mesh are shown. To facilitate comparison across
different problem sizes and implementations with different memory and compute patterns, we present
performance as throughput in terms of DoFs processed per second, rather than flop/s or bandwidth. Firstly, we
see that, as expected from theory, the matrix-free method is slower than the SpMV version for Q1 elements,
and faster for second order elements and higher. In 2D, the performance gain is very small for second order
elements (≈ 3%), but from third order we see speedups of 2.3 - 3.4×. In 3D, we get substantial speedups of
2 - 8.2× already from second order elements. Secondly, our implementation is consistently faster than the
CPU version; between 15% and 61% in 2D, and between 1.8× and 2.3× in 3D. Finally, we note that when
using a matrix, we get problems fitting it in memory for elements of order 3 and higher in 2D as indicated by

Ljungkvist

(a) First order elements (b) Second order elements

(c) Third order elements (d) Fourth order elements

Figure 5: Throughput vs problem size for the 3D uniformly refined mesh.

the truncated lines for SpM. In 3D, this happened already from second order elements. In Figure 6, we have
summarized the results for the largest problems considered.

(a) 2D (b) 3D

Figure 6: Performance for the largest problems solved (uniform refinement). The missing bars for SpM

(GPU) indicate that the matrix did not fit in memory.

If we compare Figure 6 with Figure 7, which shows the corresponding results for the adaptively refined mesh,
we see that there is a moderate overhead from resolving the hanging nodes. Specifically, the overhead is
about 10 - 40% for our GPU implementation, which is lower than the overhead of the CPU version which
reaches 70% for some meshes. The matrix-based version eliminates the constrained DoFs once and for all
during the assembly, and thus does not see any noticeable overhead. Still, the much better efficiency of our
method makes it continue outperforming the matrix-based one from element order 3 in 2D (2 - 2.6×), and
from element order 2 in 3D (34% - 4.6×).

Ljungkvist

(a) 2D (b) 3D

Figure 7: Performance for the largest problems solved on the adaptively refined ball.

Finally, we add that for Q4 in 3D the matrix-free version achieves 35% bandwidth utilization out of the
specified 288 GB/s, compared to 52% when using SpMV. Considering that 13× less memory is accessed, this
is a notably small reduction in bandwidth utilization. Still, there is clearly room for further improvements.

6 CONCLUSIONS

We have developed a framework for matrix-free finite-element computations on graphics processors, sup-
porting adaptively refined meshes with hanging nodes. As expected, our method is faster than highly a
matrix-based version from elements of order two and higher, reaching speedups of up to 8× over the highly
optimized CUSPARSE library. Compared to a state-of-the-art CPU implementation of the same matrix-free
algorithm, our implementation for GPUs is 15% - 61% faster in 2D, and 1.8× - 2.3× faster in 3D. Comparing
highly optimized implementations of the same algorithm on GPUs and CPUs of similar power consumption,
this suggests that GPUs are about 2 times more power efficient than CPUs for this kind of computations in
3D. While our algorithm for resolving hanging node constraints on the GPU introduces some overhead, this
overhead is relatively low, both compared to the overhead of the matrix-free CPU implementation, and in
the sense that we still outcompete the CUSPARSE version for elements of order 3 and higher in 2D, and
for elements 2 and higher in 3D. Finally, we note that the matrix-free method has the additional benefit of
eliminating the matrix assembly, and allowing for solution of problems at least 4 times larger in 2D and 8
times larger in 3D, on a given GPU.

Ongoing work includes implementation of a multigrid linear solver to enable competitive full PDE solution
on GPUs. Also, we are working on further generalization to systems of equations allowing for simulation of
more general applications, such as fluid flow and structural mechanics. Finally, there is an ongoing effort
towards an official inclusion of the GPU implementation in deal.II.

ACKNOWLEDGMENTS

The author thanks M. Kronbichler, TU Munich, for valuable discussions and advice. All experiments have
been executed on hardware provided by the Linnaeus center of excellence UPMARC, Uppsala Programming
for Multicore Architectures Research Center.

REFERENCES

Bangerth, W., C. Burstedde, T. Heister, and M. Kronbichler. 2011. “Algorithms and data structures for
massively parallel generic adaptive finite element codes”. ACM Trans. Math. Softw. vol. 38, pp. 14/1–28.

Ljungkvist

Bangerth, W., D. Davydov, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and
D. Wells. 2016. “The deal.II Library, Version 8.4”. Journal of Numerical Mathematics vol. 24.

Brenner, S. C., and L. R. Scott. 2002. The mathematical theory of finite element methods. Springer.

Brown, J. 2010. “Efficient Nonlinear Solvers for Nodal High-Order Finite Elements in 3D”. Journal of
Scientific Computing vol. 45 (1), pp. 48–63.

Cantwell, C. D., S. J. Sherwin, R. M. Kirby, and P. H. J. Kelly. 2011. “From h to p efficiently: Strategy
selection for operator evaluation on hexahedral and tetrahedral elements”. Computers & Fluids vol. 43
(1, SI), pp. 23–28.

Carey, G. F., and B.-N. Jiang. 1986. “Element-by-element linear and nonlinear solution schemes”. Communi-
cations in Applied Numerical Methods vol. 2 (2), pp. 145–153.

Cecka, C., A. J. Lew, and E. Darve. 2011. “Assembly of finite element methods on graphics processors”.
International Journal for Numerical Methods in Engineering vol. 85, pp. 640–669.

Dehnavi, M. M., D. M. Fernandez, and D. Giannacopoulos. 2010, AUG. “Finite-Element Sparse Matrix
Vector Multiplication on Graphic Processing Units”. IEEE Transactions on Magnetics vol. 46 (8), pp.
2982–2985. 17th International Conference on the Computation of Electromagnetic Fields (COMPUMAG
09), Santa Catarina, Brazil, Nov 22-26, 2009.

Göddeke, D., R. Strzodka, and S. Turek. 2005, Sept. “Accelerating Double Precision FEM Simulations with
GPUs”. In Proceedings of ASIM 2005 – 18th Symposium on Simulation Technique, pp. 139–144.

Gropp, W. D., D. K. Kaushik, D. E. Keyes, and B. F. Smith. 1999. “Towards Realistic Performance Bounds
for Implicit CFD codes”. In Proceedings of Parallel CFD’99, Elsevier.

Klöckner, A., T. Warburton, J. Bridge, and J. S. Hesthaven. 2009. “Nodal discontinuous Galerkin methods on
graphics processors”. Journal of Computational Physics vol. 228 (21), pp. 7863–7882.

Komatitsch, D., G. Erlebacher, D. Göddeke, and D. Michéa. 2010. “High-order finite-element seismic wave
propagation modeling with MPI on a large GPU cluster”. Journal of Computatinal Physics vol. 229 (20),
pp. 7692–7714.

Kormann, K., and M. Kronbichler. 2011. “Parallel Finite Element Operator Application: Graph Partitioning
and Coloring”. In E-Science (e-Science), 2011 IEEE 7th International Conference on, pp. 332–339.

Kronbichler, M., and K. Kormann. 2012. “A Generic Interface for Parallel Cell-Based Finite Element Operator
Application”. Computers & Fluids vol. 63 (0), pp. 135–147.

Ljungkvist, K. 2014. “Matrix-Free Finite-Element Operator Application on Graphics Processing Units”. In
Euro-Par 2014: Parallel Processing Workshops, Volume 8806 of Lecture Notes in Computer Science, pp.
450–461. Springer International Publishing.

Markall, G. R., A. Slemmer, D. A. Ham, P. H. J. Kelly, C. D. Cantwell, and S. J. Sherwin. 2013, JAN 10.
“Finite Element Assembly Strategies on Multi-Core and Many-Core Architectures”. International Journal
for Numerical Methods in Fluids vol. 71 (1), pp. 80–97.

NVIDIA Corporation 2013, July. CUDA CUSPARSE Library.

NVIDIA Corporation 2016, September. NVIDIA CUDA C Programming Guide. Version 8.0.

Turcksin, B., M. Kronbichler, and W. Bangerth. 2016, August. “WorkStream – A Design Pattern for Multicore-
Enabled Finite Element Computations”. ACM Trans. Math. Softw. vol. 43 (1), pp. 2:1–2:29.

AUTHOR BIOGRAPHY

KARL LJUNGKVIST is a PhD Student at Uppsala University. His research interests lie in high-performance
computing and development of scientific software. His email address is karl.ljungkvist@it.uu.se.

EFFICIENT ALGORITHMS FOR ASSORTATIVE EDGE SWITCH IN LARGE
LABELED NETWORKS

Hasanuzzaman Bhuiyan

Department of Computer Science

Network Dynamics and Simulation Science Laboratory

Biocomplexity Institute of Virginia Tech

Blacksburg, VA, USA

mhb@bi.vt.edu

Maleq Khan

Department of Electrical Engineering

and Computer Science

Texas A&M University—Kingsville

Kingsville, TX, USA

maleq.khan@tamuk.edu

Madhav Marathe

Department of Computer Science

Network Dynamics and Simulation Science Laboratory

Biocomplexity Institute of Virginia Tech

Blacksburg, VA, USA

mmarathe@bi.vt.edu

ABSTRACT

An assortative edge switch is an operation on a labeled network, where two edges are randomly selected and
the end vertices are swapped with each other if the labels of the end vertices of the edges remain invariant.
Assortative edge switch has important applications in studying the mixing pattern and dynamic behavior of
social networks, modeling and analyzing dynamic networks, and generating random networks. In this pa-
per, we present an efficient sequential algorithm and a distributed-memory parallel algorithm for assortative
edge switch. To our knowledge, they are the first efficient algorithms for this problem. The dependencies
among successive assortative edge switch operations, the requirement of maintaining the assortative coef-
ficient invariant, keeping the network simple, and balancing the computation loads among the processors
pose significant challenges in designing a parallel algorithm. Our parallel algorithm achieves a speedup of
68−772 with 1024 processors for a wide variety of networks.

Keywords: assortative edge switch, random network generation, network dynamics, parallel algorithms.

1 INTRODUCTION

Networks (or graphs) are simple representations of many complex real-world systems. Analyzing various
structural properties of and dynamics on such networks reveal useful insights about the real-world sys-
tems (Newman 2002). Assortative edge switch is an important problem in the analysis of such networks and
has many real-world applications. An edge switch (or edge swap, edge flip, edge shuffle, edge rewiring) is
an operation on a network where two edges are selected randomly and the end vertices are swapped with
each other. More formally, it selects two edges (a,b) and (c,d) uniformly at random and replaces them with
edges (a,d) and (c,b), respectively. We refer to this operation as the regular edge switch. It is easy to see
that this operation preserves the degree of each vertex. It is repeated either as many times as required or a
specific criterion is satisfied. Edge switch can be used in the generation of random networks with a given

Bhuiyan, Khan, and Marathe

degree sequence (Cooper et al. 2007), independent realizations of graphs with a prescribed joint degree
distribution using a Markov chain Monte Carlo approach (Ray et al. 2012), modeling and studying various
dynamic networks (Feder et al. 2006) and in many other network analytic problems.

Many variations of the edge switch problem (Cooper et al. 2007, Feder et al. 2006, Ray et al. 2012) have
been studied. In this paper, we present efficient sequential and parallel algorithms for such a variant, referred
to as the assortative edge switch, which is an operation on a labeled network, where each vertex u has an
associated label L(u). Such labels can be discrete characteristics (e.g., language, race, and gender in social
networks) or scalar properties (e.g., age and degree) of the vertices. An assortative edge switch operation
selects two edges (a,b) and (c,d) randomly, and replaces them with edges (a,d) and (c,b), respectively, if
L(a) = L(c) and L(b) = L(d). For each vertex u, the degree, as well as the distribution of the labels of the
adjacent vertices of u, remains invariant under an assortative edge switch process.

An assortative edge switch operation preserves the assortative mixing of a given network, which is a funda-
mental network feature measuring the tendency of the vertices to associate with similar or dissimilar vertices
and is quantified by a metric named the assortative coefficient (Newman 2003). In other words, assortativity
measures the correlation of vertices based on the vertex labels. Newman (2002) showed that assortative
mixing is a pervasive phenomenon found in many real-world networks and has a profound impact on the
structural properties and functionalities of the networks. For instance, social (e.g., co-authorship) networks
exhibit positive assortativity—more association among the similar types of vertices—whereas technologi-
cal (e.g., Internet and WWW) and biological (e.g., food-web) networks show negative assortativity—more
association among the dissimilar types of vertices (Newman 2002). Assortative edge switch can be used to
assess and analyze the sensitivity of mixing patterns and network structural properties on dynamics over a
network, such as disease dynamics over a social contact network (Eubank et al. 2010). Random network
models often do not capture many structural properties (e.g., assortative mixing) of real-world networks; as
a result, to be more realistic, modeling random networks with a prescribed assortative coefficient has gained
popularity in the research community (Milo et al. 2003). Assortative edge switch can be combined with
regular edge switch process to generate random networks with a prescribed assortative coefficient from a
given network (Xulvi-Brunet and Sokolov 2004).

The recent growth of real-world data due to the rapid progression of science and technology poses signif-
icant challenges towards efficient processing of massive networks. Dealing with these huge amounts of
data efficiently and effectively motivates the need for parallel computing. NetworkX (Hagberg et al. 2008)
has a sequential implementation of regular edge switch; however, it does not have an implementation of
assortative edge switch. A parallel algorithm for regular edge switch has been presented in (Bhuiyan et al.
2014). However, no effort was given to design a parallel algorithm for assortative edge switch in a network.
Although the algorithm by Bhuiyan et al. (2014) can be applied to perform assortative edge switch oper-
ations in a network, it can lead to a slow and inefficient algorithm. To perform an edge switch operation
in (Bhuiyan et al. 2014), the edges are selected randomly from the entire network, irrespective of the vertex
labels, which can result in many failed attempts for an assortative edge switch operation due to dissatisfying
the constraint on the vertex labels. As a result, we need a completely new and efficient algorithmic approach.

Our Contributions. In this paper, we first present a sequential algorithm for assortative edge switch; then
we present a parallel algorithm based on our sequential algorithm. The dependencies among successive
assortative edge switch operations and the requirement of keeping the network simple as well as maintaining
the same assortativity during the assortative edge switch process pose significant challenges in designing a
parallel algorithm. Moreover, achieving a good speedup through a well-balanced load distribution among
the processors seems to be a non-trivial challenge for this problem. For various network size and diverse
distribution of the labels, the parallel algorithm provides speedup ranging between 68 and 772 with 1024
processors. To our knowledge, they are the first efficient sequential and parallel algorithms for the problem.

Bhuiyan, Khan, and Marathe

Organization. The remainder of the paper is organized as follows. The preliminaries and datasets used
in the paper are briefly described in Section 2. The problem of assortative edge switch and the sequential
algorithm are discussed in Section 3. We present the parallel algorithm along with the performance analysis
in Section 4. Finally, we conclude in Section 5.

2 PRELIMINARIES AND DATASETS

Below are the notations, definitions, datasets, and computation model used in this paper.

2.1 Notations and Definitions

We are given a simple, labeled network G= (V,E,L), where V is the set of vertices, E is the set of edges, and
L : V →N0 is the label function. A simple network is an undirected network having no self-loops or parallel
edges. A self-loop is an edge from a vertex to itself. Parallel edges are two or more edges connecting the
same pair of vertices. There are a total n = |V | vertices with vertex ids 0,1,2, . . . ,n−1 and m = |E| edges in
G. Each vertex u ∈V has an associated label L(u). There are a total of � distinct vertex labels with label ids
0,1,2, . . . , �−1, i.e., for each u ∈V , L(u) ∈ [0, �−1]. For an edge (u,v) ∈ E, we say u and v are neighbors
of each other. The adjacency list of a vertex u contains all the neighbors of u and is denoted by N(u), i.e.,
N(u) = {v ∈ V |(u,v) ∈ E}. The degree of u is du = |N(u)|. We use K, M, and B to denote thousands,
millions, and billions, respectively; e.g., 1B stands for one billion. For the parallel algorithm, let there be P
processors with ranks 0,1,2, . . . ,P−1, where Pi denotes the processor with rank i.

Definition 1. An edge switch operation selects two edges e1 = (u1,v1) and e2 = (u2,v2) randomly from E
and replaces them with new edges e3 = (u1,v2) and e4 = (u2,v1), if the resultant network remains simple.

u1

u2 v2

v1 u1 v1

u2 v2

e1

e2

e3

e4

L(u1) = l

L(u2) = l L(v2) = l′

L(v1) = l′

l l′

l l′

Figure 1: An assortative edge switch operation replaces two randomly selected edges e1 = (u1,v1) and

e2 = (u2,v2) by new edges e3 = (u1,v2) and e4 = (u2,v1), if L(u1) = L(u2) and L(v1) = L(v2).

Definition 2. An assortative edge switch operation imposes an extra constraint on the labels of the end
vertices of the two selected edges in addition to the regular edge switch constraints. That is, it randomly
selects two edges e1 = (u1,v1) and e2 = (u2,v2) from E, and replaces them by new edges e3 = (u1,v2) and
e4 = (u2,v1) (see Figure 1), if the following constraints are satisfied.

• Simple network: It does not create self-loops or parallel edges, i.e., u1 �= v2, u2 �= v1, u1 �∈ N(v2),
v2 �∈ N(u1), u2 �∈ N(v1), and v1 �∈ N(u2).

• Vertex labels: The two edges have the same end vertex labels, i.e., L(u1) = L(u2), L(v1) = L(v2).

Definition 3. Some edges of the given network G are changed (or visited) due to assortative edge switch
operations, and some edges do not participate in any such operations and remain unchanged (or unvisited).
We define the visit rate (x) as the fraction of edges of G that have been changed by a sequence of assortative
edge switch operations, i.e., x = m′

m , where m′ is the number of edges changed due to assortative edge
switches. To achieve a given visit rate x, the expected number of assortative edge switch operations τ to be
performed in G is τ = 1

2
m lnm for x = 1, and τ =− 1

2
m ln(1− x) for 0 < x < 1 (Bhuiyan et al. 2014).

Bhuiyan, Khan, and Marathe

Table 1: Datasets used in the experiments. K, M, and B denote thousands, millions, and billions, respec-

tively.

Network Type of Vertices Edges Bins Assort. edge switch

network Deg. assort. Age assort. (Visit rate = 1.0)

New York Social Contact 17.88M 480.1M 85.7K 4186 4.80B
Los Angeles Social Contact 16.23M 459.3M 83.1K 4186 4.58B
Miami Social Contact 2.09M 51.50M 66.1K 4186 457.2M
Sweden Social Contact 9.46M 406.2M 83.2K - 4.03B
Orkut Social 3.07M 117.2M 2.46M - 1.09B
Facebook Social 3.10M 23.67M 378K - 200.9M
LiveJournal Social 4.80M 42.85M 802K - 376.5M
ErdosRenyi Erdős-Rényi 1.00M 500.00M 36.62K - 5.0B
SmallWorld Small World 4.80M 48.00M 161 - 424.5M
PA Pref. Attach. 100.0M 1.00B 1.58M - 10.36B

2.2 Datasets and Computation Model

We use both artificial and real-world networks for the experiments. A summary of the networks is given in
Table 1. New York (NY), Los Angeles (LA), Miami, and Sweden are synthetic, yet realistic social contact
networks (Barrett et al. 2009). Each vertex represents a person in the corresponding city or country and
has an associated label denoting the age of the individual, and each edge represents any ‘physical’ contact
between two persons within a 24 hour time period. Orkut is an online social network, Facebook is an
anonymized Facebook friendship network, and LiveJournal is a social network blogging site (Abdelhamid
et al. 2012). The SmallWorld, ErdosRenyi, and PA networks are random networks generated using the
Watts-Strogatz small world network (Watts and Strogatz 1998), Erdős-Rényi network (Bollobás 1998), and
Preferential Attachment network (Barabási and Albert 1999) models, respectively. For all the networks,
we perform degree-assortative edge switch operations, where the degree of each vertex is considered as its
label. In addition, we perform age-assortative edge switch operations on the social contact networks of
Miami, NY, and LA, where each person’s age is considered as its label. The age information for the other
networks is either inappropriate or unavailable.

We develop algorithms for distributed memory parallel systems, where each processor has its own local
memory. The processors do not have any shared memory and can communicate with each other by ex-
changing messages.

3 A SEQUENTIAL ALGORITHM
We are given a network G = (V,E,L) and the number of assortative edge switch operations τ to be per-
formed. A naïve approach to perform an assortative edge switch operation is selecting two edges (u1,v1)
and (u2,v2) uniformly at random from E and swapping the end vertices of the edges if the constraints are
satisfied. If any of the constraints is not satisfied, the selected pair of edges is discarded and a new pair
is selected. For a large and relatively sparse network, the number of such discarded attempts (or pairs of
edges) due to dissatisfying the constraint of keeping the network simple is almost negligible; however, for
the constraint on the vertex labels, the number of discarded attempts can be very large, as shown in Table 2.
For example, to perform 10K degree-assortative edge switch operations on the LA network, the numbers of
discarded attempts due to the constraints on the simple network and vertex labels are 1 and 179.4M, respec-
tively. Assume that there are � = 100 different labels uniformly distributed among the vertices of a given
network, i.e., for any label i, the number of vertices with label i is n

100
. Then the probability of randomly

selecting two edges (u1,v1) and (u2,v2) satisfying the constraint on the vertex labels is (1
100

)2, which is very

Bhuiyan, Khan, and Marathe

Table 2: Number of discarded attempts (due to dissatisfying the two constraints) to perform 10K age- and

degree-assortative edge switch operations on different networks.

Constraints Miami-Age LA-Deg Facebook LiveJournal ErdosRenyi

Simple network 2 1 148 34 23

Vertex labels 30.3M 179.4M 617.2M 165.2M 125.4M

small. As a result, the number of discarded attempts can be very large, and it can make the algorithm slow.
To deal with this difficulty, we present an efficient sequential algorithm using a new and efficient algorithmic
approach.

3.1 An Efficient Sequential Algorithm

Let us denote a bin Zi j to be the set of all edges having the same end vertex labels (i, j), where 0≤ i, j ≤ �−1,
i.e., for an edge (u,v) ∈ E, if L(u) = i and L(v) = j, then (u,v) ∈ Zi j. For an undirected network, Zi j = Z ji,
and we use Zi j such that j ≤ i. Note that the bins are disjoint and

⋃
j≤i Zi j = E. For convenience, we relabel

the bins from two indices (i, j) to a single bin number k. Let bk be the new label of the bin Zi j, where

k = i(i+1)
2

+ j. Assume that there are Y such bins and let us denote them as b0,b1, . . . ,bY−1; there can be at

most Y =
(
�
2

)
+ �= O(�2) such bins. The size of a bin bi is the number of edges in bi and is denoted by mi,

i.e., mi = |bi|. Then the number of possible pairs of edges in bi is ai = mi
2. Note that the set of edges in

a bin bi changes dynamically during the course of an assortative edge switch process, although mi remains
invariant throughout the process.

First, the algorithm constructs the bins bi from G. Then an assortative edge switch operation is performed
as follows: (i) a bin bi is chosen randomly, where the probability of selecting bi is qi =

ai

∑Y−1
j=0 a j

, (ii) a pair of

edges is selected uniformly at random from bi, and (iii) the end vertices of the edges are swapped with each
other. This operation is repeated until τ pairs of edges are switched. Note that this algorithm guarantees that
both of the edges for an assortative edge switch operation are always selected from the same bin irrespective
of how many bins there are, thus overcoming the drawback of the naïve approach. A pseudocode of the
algorithm is given in Figure 2.

1: Partition E into minimum number of disjoint bins b0,b1, . . . ,bY−1, where for any i and for any

pair of edges (u1,v1),(u2,v2) ∈ bi, L(u1) = L(u2) and L(v1) = L(v2).
2: for k = 1 to τ do
3: bi ← a random bin in [b0,bY−1] with a probability of qi =

ai
∑Y−1

j=0 a j

4: (u1,v1),(u2,v2)← two uniform random edges in bi
5: if u1 = v2, u2 = v1, u1 ∈ N(v2), or u2 ∈ N(v1) then
6: continue

7: Replace (u1,v1) and (u2,v2) by (u1,v2) and (u2,v1)

Figure 2: A sequential algorithm for assortative edge switch.

Theorem 1. The time complexity of the sequential algorithm is O(m+Y + τ logdmax).

Proof. Partitioning the set of edges E into the Y bins (line 1 in Figure 2) takes O(m+Y) time as initializing
the bins takes O(Y) time and the bins are constructed from E in O(m) time. The adjacency list of a vertex
u can be maintained using a balanced binary tree, and searching (for parallel edges) and updating such
a tree takes O(logdu) time. Hence, an assortative edge switch operation (lines 3− 7) can be performed

Bhuiyan, Khan, and Marathe

Table 3: Runtime comparison of our sequential algorithm and the naïve approach on various networks.

Experiments performed with a visit rate of 0.01.

Network Runtime (min.) Faster by a

Naïve approach Our algo. factor of

Miami-Age 8.8 0.14 62.86

LA-Deg 929 1.88 494.1
Facebook 69.1 0.08 863.75

LiveJournal 48.87 0.15 325.8
ErdosRenyi 342.5 2.22 154.3

in O(logdmax) time, where dmax = maxu du and τ such operations (lines 2 − 7) take O(τ logdmax) time.
Therefore, the time complexity of the algorithm is O(m+Y + τ logdmax). �

Theorem 2. The space complexity of the sequential algorithm is O(m+Y).

Proof. Storing all the m edges into the Y bins takes O(m+Y) space. �

3.2 Performance Evaluation of the Sequential Algorithm

Table 3 demonstrates the runtime comparison of our algorithm with the naïve approach. We use current
calendar time as a random seed and a visit rate of 0.01 for the experiments since the naïve approach takes a
large amount of time with a visit rate of 1.0. Our algorithm shows very good overall performance, e.g., for
degree-assortative edge switch on the LA network, our algorithm is 494 times faster than the naïve approach.

4 THE PARALLEL ALGORITHM

A parallel algorithm for regular edge switch is presented in (Bhuiyan et al. 2014); however, this algorithm
can be very slow for assortative edge switch for the same reasons as explained in Section 3. In this section,
we present a novel parallel algorithm for assortative edge switch, which is based on our sequential algorithm,
as shown in Figure 2. Recall that the sequential algorithm selects both of the edges for an assortative edge
switch operation from the same bin. Hence, assortative edge switch operations in a bin are independent
of the other bins. The parallel algorithm exploits this property to perform simultaneous assortative edge
switch operations in parallel in different bins. The bins are distributed among the processors such that
the computation load distribution is well-balanced. If a bin is very large compared to the other bins, the
algorithm might need to partition and distribute the bin among multiple processors, which is discussed later
in Section 4.3. For now, assume that each bin is entirely assigned to a single processor.

4.1 The Parallel Algorithm with Each Bin Assigned to a Single Processor

The parallel algorithm should distribute the bins to processors such that the computation cost is equally
distributed among the processors. Therefore, we need to estimate the computation cost associated with each
bin, which is the number of assortative edge switch operations performed in a bin bi. It raises the question
of how many assortative edge switch operations among the total τ operations are performed in bi? Let us
denote Xi be the number of assortative edge switch operations performed in bi by the sequential algorithm.
Recall that to perform an assortative edge switch operation, the sequential algorithm randomly selects a bin
bi, and then chooses two edges randomly from bi. Hence, a sequential algorithm does not need to know Xi
in advance. However, in the parallel algorithm, all of the processors perform simultaneous assortative edge
switch operations in parallel and different processors may need to work on different bins at the same time.
As a result, for each i, Xi needs to be determined in advance for the parallel algorithm. It is easy to see that

Bhuiyan, Khan, and Marathe

1: for i = 0 to P−1 do
2: Wi ← 0

3: Bi ← /0

4: Sort the bins in non-increasing order of Xj
5: Assume that X0 ≥ X1 ≥ . . .≥ XY−1

6: for j = 0 to Y −1 do
7: Let Pi be the processor with rank i= argmink Wk
8: Bi ← Bi

⋃ {b j}
9: Wi ←Wi +Xj

Figure 3: A load balancing algorithm assigning the

Y bins to the P processors.

1: for each bin b j ∈ Bi do
2: for k = 1 to Xj do
3: (u1,v1),(u2,v2) ← two uniform random

edges in b j
4: if u1 = v2, u2 = v1, u1 ∈ N(v2), or u2 ∈ N(v1)

then
5: continue

6: Replace (u1,v1) and (u2,v2) by (u1,v2) and

(u2,v1)

Figure 4: A processor Pi performing assortative

edge switch operations in the parallel algorithm.

the random variables Xi are the multinomial random variables generated by a multinomial distribution with
parameters (τ,q0,q1, . . . ,qY−1), that is,

〈X0,X1, . . . ,XY−1〉 ∼ M(τ,q0,q1, . . . ,qY−1) (1)

where τ is the number of assortative edge switch operations and qi =
ai

∑Y−1
j=0 a j

is the probability of selecting

a bin bi. The time complexity of the best known sequential algorithm, known as the conditional distributed
method (Davis 1993), for generating multinomial random variables is Θ(τ). To have an efficient parallel
algorithm for assortative edge switch, we need a parallel algorithm for generating multinomial random
variables. We use the algorithm presented in (Bhuiyan et al. 2014), which has a runtime of O

(τ
P +Y logP

)
.

Each processor independently computes the multinomial distribution of τ
P and then the results are aggregated

by exploiting a property of the multinomial distribution. An overview of the parallel algorithm is as follows:

• Step 1: Generate multinomial random variables Xi in parallel with parameter (τ,q0,q1, . . . ,qY−1) to
estimate the computation cost associated with each bin.

• Step 2: Using the estimated costs Xi, partition the bins b0,b1, . . . ,bY−1 among the P processors such
that the computation load distribution is well-balanced.

• Step 3: Each processor Pi simultaneously performs assortative edge switch operations in parallel in
the bins assigned to it.

Now we describe the last two steps of the algorithm.

Partitioning (Step 2). Let Bi be the set of bins, Yi = |Bi| be the number of bins and Mi = ∑b j∈Bi m j be the
number of edges assigned to a processor Pi. Then the workload (or load) Wi in Pi is the summation of the
computation costs associated with the bins in Bi, i.e., Wi = ∑b j∈Bi Xj. Let W be the maximum load among all
of the processors, i.e., W = maxiWi. Now the goal is to distribute the Y bins among the P processors such
that the maximum load W is minimized. Finding an assignment of the bins for the optimum solution is an
NP-hard problem (Kleinberg and Tardos 2006). The best known approximation algorithm for this problem
is presented in (Kleinberg and Tardos 2006), which has an approximation ratio of 1.5. This greedy algorithm
sorts the bins in non-increasing order of the loads. To do so, we use a parallel version of quick sort (Grama
2003). Then the algorithm makes one pass over the sorted bins to assign each bin to a processor having the
minimum load at the time of the assignment, as shown in Figure 3.

Switching Edges (Step 3). Each processor Pi constructs the bins in Bi and then simultaneously performs Wi
assortative edge switch operations in parallel, as shown in Figure 4. The program terminates when all of the
processors complete their assortative edge switch operations.

Theorem 3. The time complexity in each processor Pi is O(τ
P +Y logP+ Y

P logY + log2 P+P+Yi +Mi +
Wi logdmax).

Bhuiyan, Khan, and Marathe

 0

 250

 500

 750

 1000

 0 250 500 750 1000

Sp
ee

du
p

Number of processors

ErdosRenyi
Sweden

LA
NY

Miami
Facebook

LiveJournal
Orkut

PA
SmallWorld

(a) Degree-assortative

 0

 25

 50

 75

 100

 0 250 500 750 1000

Sp
ee

du
p

Number of processors

Miami
LA
NY

(b) Age-assortative

Figure 5: Strong scaling of the parallel algorithm.

 0
 25
 50
 75

 100

Miami-Age

NY-Age

LA-Age

Miami-Deg

NY-Deg

LA-Deg

Sweden

Facebook

LiveJournal

Orkut
ErdosRenyi

SmallW
orld

PA%
 o

f t
ot

al
 ti

m
e

Networks

Multinomial
Partition

Assort. edge switch

(a) Time taken by individ-

ual steps of the algorithm

 0
 25
 50
 75

 100

Miami-Age

NY-Age

LA-Age

Miami-Deg

NY-Deg

LA-Deg

Sweden

Facebook

LiveJournal

Orkut
ErdosRenyi

SmallW
orld

PA

(A
vg

./m
ax

. t
im

e)
%

Networks

Assort. edge switch

(b) Ratio of the avg. and

max. time in the third step

Figure 6: Time at different steps of the algorithm.

 0
 0.5

 1
 1.5

 2
 2.5

 0 250 500 750 1000

Ti
m

e
(s

ec
.)

Rank of processors

LA
NY

Miami
Orkut

ErdosRenyi

(a) Degree-assortative

 0
 3
 6
 9

 12
 15

 0 250 500 750 1000

Ti
m

e
(s

ec
.)

Rank of processors

LA
NY

Miami

(b) Age-assortative

Figure 7: Execution time of the individual proces-

sors in the third step of the algorithm.

 0

 10

 20

 30

 0 15 30 45 60 75 90N
o.

 o
f e

dg
es

 (x
10

4)

Rank of bins (x103)

LA

(a) Degree-assortative

 0

 100

 200

 300

 0 1 2 3 4 5N
o.

 o
f e

dg
es

 (x
10

4)

Rank of bins (x103)

LA

(b) Age-assortative

Figure 8: Distribution of edges among the bins for

the LA network.

Proof. In step 1, multinomial random variables are generated in parallel in O
(τ

P +Y logP
)

time. In step 2,

the parallel version of quick sort and the assignment of the bins take O
(Y

P logY + log2 P
)

and O(P+Y logP)
time, respectively. In step 3, each processor Pi constructs the Yi bins in O(Yi +Mi) time and then performs
the assortative edge switch operations in O(Wi logdmax) time. �

Theorem 4. The space complexity in each processor Pi is O(Yi +Mi).

Proof. Each processor Pi stores all the Mi edges in Yi bins using O(Yi +Mi) space. �
4.2 Performance Analysis of the Parallel Algorithm with Each Bin Assigned to a Single Processor

In this section, we analyze the performance of the parallel algorithm. Table 1 provides a summary of the
number of bins and assortative edge switch operations performed on the ten networks. We use a HPC cluster
consisting of 64 compute nodes. Each node has a dual-socket Intel Sandy Bridge E5-2670 2.60GHz 8-core
processor (16 cores per node) with 64GB memory. The algorithms are developed with MPICH2 (v1.9),
optimized for Qlogic QDR Infiniband cards.

4.2.1 Strong Scaling
Figure 5a and 5b illustrate the strong scaling performance for degree- and age-assortative edge switch,
respectively, on various networks. The algorithm achieves a speedup between 12 and 772 with 1024 proces-
sors. For some networks, the speedup is poor compared to the other networks. Next, we investigate the load
distribution among the processors to understand the reason for this poor performance.

4.2.2 Load Distribution
First, we measure the time taken by each of the three steps (step 1: multinomial, step 2: partitioning, step 3:
assortative edge switch) of the algorithm with 1024 processors, as shown in Figure 6a. The assortative edge
switch step takes the largest amount of time among the three steps for all the networks, except Facebook,
LiveJournal, and Orkut, in which, the number of bins Y is significantly higher than that of the other networks
(see Table 1). Therefore, generating the multinomial random variables and partitioning the bins take more

Bhuiyan, Khan, and Marathe

time for these three networks. Unlike the first two steps, where every processor takes almost an equal amount
of time, the execution time of the individual processors in the third step can vary significantly because of a
poor load distribution. Figure 6b demonstrates the ratio of Tavg and Tmax, where Tavg is the average execution
time of the processors in the assortative edge switch step and Tmax is the maximum time among them. The
maximum value of the ratio is 100% for a perfectly-balanced load distribution in the ideal case. A higher
value implies a well-balanced load distribution, whereas a lower value indicates a poor load distribution
among the processors. We observe a well-balanced load distribution for degree-assortative edge switch on
the Miami, NY, LA, Sweden, LiveJournal, Orkut, and ErdosRenyi networks. In contrast, we observe a poor
load distribution for age-assortative edge switch on the Miami, NY and LA networks and degree-assortative
edge switch on the PA and SmallWorld networks. For the PA network, the poor load distribution in the third
step causes the step to take the largest amount of time despite having a large number of bins, which is in
contrast to the scenario for the Facebook, LiveJournal, and Orkut networks. For the Facebook network, a few
processors contain many small-size bins (with a few edges) and the number of discarded attempts in these
bins are very high, yielding a larger execution time in these processors (hence, Tmax is large). As a result, we
observe a low ratio despite each processor performing roughly an equal number of assortative edge switch
operations and the low ratio is not a consequence of load balancing. The observations are further supported
by Figures 7a and 7b, which show the individual execution time of the processors in the third step of the
algorithm. For a better understanding, we analyze the load distribution in detail for the LA network.

Figures 8a and 8b illustrate the distribution of the sizes of the bins for degree- and age-assortative edge
switch, respectively, on the LA network. The distribution for age-assortative edge switch is highly skewed,
having a few very large bins and many small bins, which in turn makes a poor load distribution among the
processors, as shown in Figure 7b. A few processors containing the larger bins are taking significantly more
time than the processors containing the smaller bins, which results in a low speedup. On the other hand,
for degree-assortative edge switch, there is a good number of both larger and smaller bins among the total
83.1K bins and the differences between the larger and smaller bins are substantially smaller than that of the
age-assortative counterpart. The algorithm assigns a few larger bins along with many smaller bins to each
processor and consequently exhibits a well-balanced load distribution, as shown in Figure 7a, thus resulting
in a good speedup. Note that if the number of bins is less than the number of processors, i.e., Y < P, then
some processors remain idle in the third step of the computation; and we observe this phenomenon for
the SmallWorld network. To deal with the poor load distribution, we present a parallel algorithm with an
improved load balancing scheme in the next section.

4.3 The Parallel Algorithm with Improved Load Balancing
As we discussed earlier, some bins can have higher computation costs, i.e., the number of assortative edge
switch operations Xi performed in a bin bi can be significantly larger than τ

P , which can cause a poor load
distribution. For a better load balancing, such a bin may need to be partitioned and distributed among
multiple processors. Let Δ be some threshold such that Δ is larger than τ

P . We call a bin large if Xi ≥ Δ, and
small, otherwise. Let Q be the total number of processors assigned for the large bins. First, we explain how
to perform assortative edge switch operations in a single large bin with multiple processors.

Assume that a large bin bi is partitioned among the processors Px,Px+1, . . . ,Py, where x ≤ j,k, l ≤ y. The
bin bi is partitioned such that a subset of vertices, having consecutive vertex ids, along with their incident
edges in bi are assigned to a partition and each such partition contains almost an equal number of edges. A
vertex u’s partial adjacency list in bi, i.e., Ni(u) = {v ∈V |(u,v) ∈ bi}, entirely belongs to a unique partition.
Then each processor Pj performs simultaneous assortative edge switch operations in parallel. Assortative
edge switch in a bin is similar to the regular edge switch because the end vertices of the edges in a bin have
the same labels. A parallel algorithm for regular edge switch has been presented in (Bhuiyan et al. 2014).
We use this algorithm to switch the edges in a large bin. A summary of an assortative edge switch operation
performed by a processor Pj is as follows. Pj selects an edge (u1,v1) randomly from its own partition. The

Bhuiyan, Khan, and Marathe

other edge (u2,v2) is chosen in two steps: (i) Pj selects a processor Pk with a probability proportional to
the number of edges belonging to Pk, and (ii) Pj requests Pk to select (u2,v2) randomly from its partition.
Then Pj and Pk work together to check whether switching the edges (u1,v1) and (u2,v2) creates any loop or
parallel edge. If it creates any loop or parallel edge, the selected pair of edges is discarded, and a new pair
is chosen by Pj. Otherwise, Pj and Pk work together to update (u1,v1) and (u2,v2) by (u1,v2) and (u2,v1),
respectively. In fact, Pj and Pk may require updating an edge in another processor Pl (Pj �= Pl �= Pk). The
details can be found in (Bhuiyan et al. 2014).

Now, we discuss how to determine Δ and Q. Apparently, it seems that any bin bi with Xi >
τ
P needs to be

partitioned and distributed among multiple processors. However, partitioning a bin incurs communication
and synchronization overhead due to the need for exchanging messages among multiple processors even
for a single edge switch operation. Thus, we partition a bin among multiple processors only when Xi is
significantly larger than τ

P , i.e., when the gain achieved by partitioning a bin is larger than the communi-
cation and synchronization cost incurred by partitioning the bin. We assume Δ = α × τ

P for some constant
α > 1. Similarly, to perform Xi assortative edge switch operations in a large bin bi, we should ideally assign
� Xi

τ/P processors for bi. However, due to communication overhead, we need to assign a larger number of

processors. Hence, we assign Qi = �β ×Xi× P
τ processors for a large bin bi for some constant β > 1. Then

Q = ∑i Qi and the number of processors assigned for the small bins is S = P−Q. The performance of the
algorithm greatly depends on Δ and Q, thusly on α and β . We experimented with many different types of
networks and find that for α ∈ [2.4,2.75] and β ∈ [12,15], the algorithm exhibits good performance, which
is very close to the optimal performance, as shown in the next section.

4.4 Performance Analysis of the Parallel Algorithm with Improved Load Balancing
Figure 9 shows the strong scaling performance of the parallel algorithm and Figure 10 demonstrates a
comparison of the speedup improvement. The algorithm achieves a speedup of 277 for age-assortative edge
switch on the Miami network with 1024 processors, which is a four-fold improvement achieved by a well-
balanced load distribution among the processors, as shown in Figure 11. Next, we analyze the effect of α
and β (thus Δ and Q) on the speedup.

Figure 12 shows how the speedup varies with different values of α and β for age-assortative edge switch
on the Miami network with 1024 processors. For a fixed value of β (say β = 14) and with the increase of
α , more large-size bins are getting partitioned among the same number of processors, yielding a speedup
increase up to some value of α , referred to as optimal α (optimal α = 2.5 for β = 14), beyond which the
speedup starts decreasing because of the increase of communication and synchronization overhead incurred
by the increasing number of bins partitioned. We observe a similar pattern for a fixed value of α and with
the increase of β as well. For lower values of β , less number of processors are working on the large bins.
As a result, the execution times of the Q processors are higher than that of the S processors working on
the small bins. This is further illustrated in Figure 13, which shows the execution time of the individual
processors with varying β and a fixed α = 2.5. We observe a pattern of many horizontal flat segments,
where each horizontal segment is the time taken by the processors working on the same large bin. With
the increase of β , thusly Q, the amount of work for each of the Q processors decreases, whereas the times
taken by the S processors increase as fewer processors are dealing with the small bins. The highest speedup
is achieved when the maximum execution time among the Q processors is somewhat balanced with that of
the S processors. We observe similar phenomena for the other networks as well and recommend using a
α ∈ [2.4,2.75] and β ∈ [12,15], for which the algorithm achieves a good speedup.

In principle, the parallel algorithm is designed such that it stochastically produces the same effect (by using
the multinomial distribution) on a network as the sequential algorithm would do. We also experimentally
verify this by showing that the average clustering coefficient and the average shortest path distance of a
network change similarly with assortative edge switches by the sequential and parallel algorithms (see Fig-

Bhuiyan, Khan, and Marathe

 0

 100

 200

 300

 400

 0 250 500 750 1000

Sp
ee

du
p

Number of processors

Miami-Age
LA-Age
NY-Age

SmallWorld
PA

Figure 9: Strong scaling

of the parallel algorithm

with improved load bal-

ancing.

 0

 100

 200

 300

Miami-Age

LA-Age
NY-Age

SmallWorld

PA

Sp
ee

du
p

Networks

Previous
Improved

Figure 10: A compari-

son of speedup improve-

ment with 1024 proces-

sors.

 0

 0.3

 0.6

 0.9

 0 250 500 750 1000

Ti
m

e
(s

ec
.)

Rank of processors

Previous
Improved

Figure 11: A compar-

ison of runtime of the

individual processors for

Miami-Age.

 0
 100
 200
 300
 400

 2 6 10 14 18 22

Sp
ee

du
p

β

2.00
2.25
2.50
2.75

3.00
3.25
4.50

3.00
3.25
4.50

Figure 12: Speedup with

increasing β for Miami-

Age using different val-

ues of α .

 0

 0.3

 0.6

 0.9

 0 250 500 750 1000

Ti
m

e
(s

ec
.)

Rank of processors

2
7

12
17
22

Figure 13: Runtime of

the individual processors

with different values of

β for Miami-Age using

a fixed α = 2.5.

 0
 0.1
 0.2
 0.3
 0.4

 0 0.25 0.5 0.75 1A
vg

. c
lu

st
er

in
g

co
ef

fic
ie

nt

Visit rate

NY-Age-Seq
NY-Age-Par

Facebook-Seq
Facebook-Par

Orkut-Seq
Orkut-Par

Figure 14: Average

clustering coefficient

changes similarly with

assort. edge switches

by the sequential and

parallel algorithms.

 3.5
 4.5
 5.5
 6.5
 7.5

 0 0.25 0.5 0.75 1A
vg

. s
ho

rte
st

 p
at

h
di

st
an

ce
Visit rate

NY-Age-Seq
NY-Age-Par

Facebook-Seq
Facebook-Par

Orkut-Seq
Orkut-Par

Figure 15: Average

shortest path distance

changes similarly with

assort. edge switches

by the sequential and

parallel algorithms.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.25 0.5 0.75 1

A
ss

or
t.

co
ef

fic
ie

nt
 (d

eg
.)

Visit rate

p = 0.00
p = 0.25
p = 0.50
p = 0.75
p = 1.00

Figure 16: Varying

degree-assort. coef-

ficient by age-assort.

edge switch on the

Miami network through

a parameter p ∈ [0,1].

ure 14 and 15). We use the NY, Orkut, and Facebook networks and vary the visit rate from 0.025 to 1. For
both properties, the changes by the sequential and parallel algorithms are very similar; in fact, they overlap
with each other, and it is difficult to distinguish them in the figures. We also demonstrate how assortative
edge switch can be used to generate random networks by keeping one assortative coefficient A1 invariant and
varying another assortative coefficient A2 to a desired level through a parameter p (0 ≤ p ≤ 1). Xulvi-Brunet
and Sokolov (2004) proposed one such algorithm, where with probability p, an edge switch operation con-
nects the two higher degree vertices with an edge and the two lower degree vertices with another edge. With
probability (1− p), the edges are switched randomly. Figure 16 shows how the degree assortative coefficient
changes for different value of p with the age-assortative edge switch process on the Miami network.

5 CONCLUSION
We have developed efficient sequential and parallel algorithms for assortative edge switch in massive net-
works. They can be used to study the sensitivity of network topology on the dynamics over a network as
well as to generate network perturbations of a given network by maintaining the same degree sequence and
assortative coefficient.

ACKNOWLEDGMENTS
This work has been partially supported by DTRA CNIMS Contract HDTRA1-11-D-0016-0001, DTRA
Grant HDTRA1-11-1-0016, NSF NetSE Grant CNS-1011769, NSF SDCI Grant OCI-1032677, NIH MI-
DAS Grant 5U01GM070694-11, NSF DIBBs Grant ACI-1443054, and NSF Big Data Grant IIS- 1633028.

REFERENCES
Abdelhamid, S. E., R. Alo, S. Arifuzzaman, P. Beckman, M. H. Bhuiyan et al. 2012. “CINET: A cyber-

infrastructure for network science”. In Proceedings of the 8th International Conference on E-Science
(e-Science), pp. 1–8.

Bhuiyan, Khan, and Marathe

Barabási, A.-L., and R. Albert. 1999. “Emergence of scaling in random networks”. Science vol. 286 (5439),
pp. 509–512.

Barrett, C. L., R. J. Beckman, M. Khan et al. 2009. “Generation and analysis of large synthetic social contact
networks”. In Proceedings of the 2009 Winter Simulation Conference (WSC), pp. 1003–1014.

Bhuiyan, H., J. Chen, M. Khan, and M. V. Marathe. 2014. “Fast parallel algorithms for edge-switching to
achieve a target visit rate in heterogeneous graphs”. In Proceedings of the 43rd International Conference
on Parallel Processing (ICPP), pp. 60–69.

Bollobás, B. 1998. “Random graphs”. In Modern Graph Theory, pp. 215–252. Springer.

Cooper, C., M. Dyer, and C. Greenhill. 2007. “Sampling regular graphs and a peer-to-peer network”. Com-
binatorics, Probability and Computing vol. 16 (4), pp. 557–593.

Davis, C. S. 1993. “The computer generation of multinomial random variates”. Computational Statistics &
Data Analytics vol. 16 (2), pp. 205–217.

Eubank, S., A. Vullikanti, M. Khan et al. 2010. “Beyond degree distributions: Local to global structure
of social contact graphs”. In Proceedings of the Third International Conference on Social Computing,
Behavioral Modeling, and Prediction, pp. 1–1.

Feder, T., A. Guetz, M. Mihail, and A. Saberi. 2006. “A local switch Markov chain on given degree graphs
with application in connectivity of peer-to-peer networks”. In Proceedings of the 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 69–76.

Grama, A. 2003. Introduction to parallel computing. Pearson Education.

Hagberg, A., P. Swart, and D. Schult. 2008. “Exploring network structure, dynamics, and function using
NetworkX”. In Proceedings of the 7th Python in Science Conference (SciPy), pp. 11–15.

Kleinberg, J., and É. Tardos. 2006. Algorithm design. Pearson Education.

Milo, R., N. Kashtan, S. Itzkovitz, M. E. Newman, and U. Alon. 2003. “On the uniform generation of
random graphs with prescribed degree sequences”. arXiv preprint cond-mat/0312028.

Newman, M. E. 2002. “Assortative mixing in networks”. Physical Review Letters vol. 89 (20), pp. 208701.

Newman, M. E. 2003. “Mixing patterns in networks”. Physical Review E vol. 67 (2), pp. 026126.

Ray, J., A. Pinar, and C. Seshadhri. 2012. “Are we there yet? When to stop a Markov chain while generating
random graphs”. In Proceedings of the 9th Workshop on Algorithms and Models for the Web Graph
(WAW), pp. 153–164.

Watts, D. J., and S. H. Strogatz. 1998. “Collective dynamics of ‘small-world’ networks”. Nature vol. 393
(6684), pp. 440–442.

Xulvi-Brunet, R., and I. M. Sokolov. 2004. “Reshuffling scale-free networks: From random to assortative”.
Physical Review E vol. 70 (6), pp. 066102.

AUTHOR BIOGRAPHIES

HASANUZZAMAN BHUIYAN is a Ph.D. candidate in the Network Dynamics and Simulation Science
Laboratory and Department of Computer Science at Virginia Tech. His email address is mhb@bi.vt.edu.

MALEQ KHAN is currently an Assistant Professor in the Department of Electrical Engineering and Com-
puter Science at Texas A&M University—Kingsville. His email address is maleq.khan@tamuk.edu.

MADHAV MARATHE is the Director of the Network Dynamics and Simulation Science Laboratory and
Professor of Computer Science at Virginia Tech. His email address is mmarathe@bi.vt.edu.

COMPARING ALLINEA’S AND INTEL’S PERFORMANCE TOOLS FOR HPC

Glenn R. Luecke
Department of Mathematics

Iowa State University
Ames, IA, 50011, USA

grl@iastate.edu

Brandon M. Groth
Department of Mathematics

Iowa State University
Ames, IA, 50011, USA
bmgroth@iastate.edu

Nathan T. Weeks
Department of Computer Science

Iowa State University
Ames, IA 50011, USA

weeks@iastate.edu

Marina Kraeva
Information Technology Services

Iowa State University
Ames, IA, 50011, USA

kraeva@iastate.edu

ABSTRACT

To efficiently use HPC machines, it is critical to optimize applications for high performance. To accomplish
this, HPC developers must utilize performance tools to find and correct performance problems within
large, complex scientific applications. Allinea and Intel offer vendor-supported performance tools that are
regularly updated to capture important performance metrics on the latest hardware. In this paper, the authors
evaluated and compared Allinea’s MAP performance tool and Intel’s performance tools to aid in application
optimization. The authors found that Allinea’s MAP provided useful performance metrics necessary to
diagnose and fix performance problems using an intuitive, easy-to-use user interface. Intel’s performance
tools provided a more detailed and customizable view of application performance, at the expense of a more
complicated user interface. The comparison presented in this paper will help HPC developers decide which
performance tool is best for them.

Keywords: MAP, Performance Reports, Trace Analyzer, VTune

1 INTRODUCTION

Training application developers to write high performance applications is increasingly important for today’s
commercial, government and research organizations. This is challenging since HPC architectures and pro-
gramming models are rapidly changing. Being able to evaluate an application’s performance without special
tools can be a difficult and time-consuming task. Performance tools are needed to evaluate application per-
formance and identify bottlenecks, but if the tools are difficult to use, then few will use them. The purpose
of this study is to evaluate and compare Allinea’s and Intel’s performance tools not only for the functionality
needed to optimize applications, but also for ease-of-use.

SpringSim-HPC 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)

Luecke, Groth, Weeks, and Kraeva

Allinea offers two tools: Allinea MAP and Allinea Performance Reports. MAP and Performance Reports are
currently being used at many universities and US government labs such as Oak Ridge National Laboratory,
Los Alamos National Laboratory, and the National Energy Research Scientific Computing Center (NERSC).
Intel offers Intel Parallel Studio, which contains the following performance tools used in this study: Intel
Profile Function and Loop Execution Time, Intel Trace Analyzer and Collector, and Intel VTune Amplifier.
Many organizations use Parallel Studio because it contains Intel’s compilers, performance analysis tools,
and their optimized libraries.

Some other tools available are TAU (University of Oregon), HPCToolkit (Rice University), Scalasca
(Forschungszentrum Jülich), and Vampir (Dresden University of Technology). While TAU, HPCToolkit,
and Scalasca are freely available, vendors and the HPC support staff at Iowa State University currently do
not support them. Thus, we did not include these tools in this study.

In 2010, Marowka reported on the functionality and ease-of-use of the Intel Thread Profiler for Windows
(Marowka 2010). In 2004, Collette et al. published a summary and comparison of many debuggers and
performance tools used in HPC at the time (Collette, Corey, and Johnson 2004). Furthermore, Appelbe et al.
in 1996 gave a summary of current software as well as recommendations for future improvements (Appelbe
and Bergmark 1996). In addition, Moore et al. published a review of performance analysis tools for MPI in
2001 (Moore et al. 2001). The authors are not aware of any recent study dealing with Allinea’s or Intel’s
performance tools.

This paper is organized as follows. Section 2 discusses our methodology and introduces the epiSNP bioin-
formatics code used in this study. Sections 3 and 4 discuss Allinea’s MAP and Performance Reports. Sec-
tions 5, 6, and 7 discuss Intel’s Profile Function and Loop Execution Time (PFLET), Trace Analyzer and
Collector, and VTune Amplifier, respectively. Sections 8 contains the summary and conclusions.

2 METHODOLOGY

The evaluations in this study are for serial programs, and programs using MPI, OpenMP, or both
MPI+OpenMP. The following evaluation categories represent what the authors consider to be most im-
portant when using a performance tool in an HPC educational environment:

• Was the tool easy to use when compiling and running applications?
• Is the GUI easy to use?
• Does the tool clearly present profiling data for lines, functions, and loops?
• Does the tool clearly present CPU, memory, and I/O data?
• Can the tool detect MPI and OpenMP load-balancing problems?
• Can the tool handle long-running jobs?

The evaluation was performed with a bioinformatics Fortran application comprised of 2000+ lines of code,
called epiSNP, written by Ma (Ma et al. 2008) and optimized by Weeks (Weeks et al. 2016) aided by Allinea
MAP and Intel’s PFLET. There are several versions of the optimized epiSNP, including a serial version and
a hybrid MPI+OpenMP version. For this study, we used the optimized serial epiSNP with PFLET and the
optimized MPI+OpenMP epiSNP for all other tools. epiSNP was launched on 4 nodes with two 8-core
sockets using 1 MPI rank per socket and 8 OpenMP threads per MPI rank. All runs were performed on Iowa
State University’s CyEnce Cluster (see http://www.hpc.iastate.edu/systems). The MPI+OpenMP epiSNP
ran with this configuration had an approximate runtime of 7 hours with the 4.4GB data set used in Weeks
(Weeks et al. 2016).

The following lists the versions of the software used for this study:

Luecke, Groth, Weeks, and Kraeva

• Allinea Forge version 6.0
• Allinea Performance Reports version 6.0
• Intel Parallel Studio XE 16.0

Allinea MAP and Intel VTune can be used with accelerators, however we did not evaluate this feature for
the following reasons. Allinea Forge requires an additional license, which we did not have at Iowa State
University. Furthermore, we were not able to run VTune with the Intel Xeon Phi on CyEnce, even though
we carefully followed the Intel documentation.

3 ALLINEA MAP

Allinea MAP is a performance tool that collects statistical samples for each line of code in an application.
MAP offers profiling support for code written in Fortran, C, and C++.

To use MAP on an MPI+OpenMP Fortran program, called prog.f90, the only requirement is to compile the
application with the "-g" compiler option to add symbolic debugging information to the executable:
mpiifort -g -qopenmp prog.f90
map ./a.out

The map command will launch the MAP Run Window via X11 forwarding and produce a .map file after
the job has completed. When using MPI or OpenMP, one will have to provide the appropriate configuration
before submitting the job. MAP can also be run without a GUI from a job script, by prefixing the run
command with "map --profile", for p MPI processes:
map --profile mpirun -np p ./a.out

At the end of execution with "--profile", a .map file will be generated. Once a .map file has been created, it
can be used to examine MAP performance data without rerunning the application. This is accomplished by
selecting Load Profile Data File in the Start Menu or by issuing:
map ./<MAP_file>.map

The “--profile” option is useful for long-running jobs, since the profile data will be lost if the interactive X
session is interrupted by network connection loss.

The GUI is laid out as follows:

• Top panel (Metric View): View a time line of several metrics (Figure 1).
• Middle panel (Source Code View): View statistical timing information for each line of the source

code (Figure 2).
• Bottom panel (Stacks View): View a top-down tree of longest running lines/functions of code in an

application (Figure 3).

In the Metric View, users can zoom in on a certain time interval by performing a "click-and-drag" on the
metric’s desired time frame. The other views will update to use this interval of time for execution time
percentages and hotspots. Load imbalance between MPI processes or OpenMP threads can also be inferred
by using the Metrics View.

MAP also has the ability to edit and recompile the source code within the GUI. It has built-in text editing
options such as undo, redo, copy, paste, etc. The MAP GUI will not update to any changes until the edited
code has been saved, compiled, and profiled.

Luecke, Groth, Weeks, and Kraeva

The MAP GUI uses an X connection. Alternatively, users can download the Allinea Forge Remote Client to
connect to remote clusters via SSH without X11 forwarding. The Remote Client provides a more responsive
GUI by avoiding the latency of X11 forwarding. This is especially useful when there is a high-latency
connection between the workstation and the cluster.

Figure 1: MAP Metric View with default metrics.

Figure 2: MAP Source Code View and Selected Line View (right).

Figure 3: MAP OpenMP Stack.

3.1 Evaluation

The user can choose between launching the GUI interface on the cluster using a standard job script or using
the Remote Client to profile an application. The authors found that the remote client was helpful in keeping
the GUI responsive between workstation and remote cluster. With X11 forwarding, the authors experienced
slow response times to any actions performed on the GUI. Whereas, with the remote client, the response
time dramatically improved.

The authors found that the initial data view was easy to navigate and the time interval feature of the Metric
View was especially useful. With statistical changes occurring in all three views for a particular time frame,
this can help pinpoint local bottlenecks in source code, as well as what may be causing the bottleneck based
on performance metrics. Furthermore, a user can find load imbalance in their application by using this

Luecke, Groth, Weeks, and Kraeva

technique. Also, the pre-made groups in the drop-down menu provide good coverage of important metrics
such as vectorization, memory usage, MPI communication, and OpenMP synchronization.

The authors felt that MAP was easy to use, as well provided the functionality needed to optimize programs.
However, MAP lacks the ability to track cache misses, whereas Intel VTune does have this functionality
(see section 7).

4 ALLINEA PERFORMANCE REPORTS

Allinea Performance Reports (Reports) is a low-overhead tool that produces a one-page report summarizing
CPU, MPI, I/O, OpenMP, memory, and energy performance information. In addition, Performance Reports
gives high-level suggestions for improving performance. Reports can be used on applications written in C,
C++, and Fortran. Performance Reports does not offer performance data at the line, function, or loop levels.

To run Performance Reports, one adds “perf-report” before the run command, e.g.:

perf-report mpirun -np p ./a.out

The user does not have to recompile with the "-g" option, as Performance Reports doesn’t collect data at the
source-code level. After running, Performance Reports generates text and HTML files containing identical
information, but the HTML file has accompanying graphics. The text file can be opened with any text editor,
while the HTML file can be opened with any web browser. For each of these breakdowns in Figure 4, a
message follows telling how well the area performed and gives advice on improving performance, as well
what to look for when profiling.

Figure 4: Performance Report Breakdowns.

Luecke, Groth, Weeks, and Kraeva

4.1 Evaluation

Allinea Performance Reports is different from other tools included in this survey. To start, there is only one
step necessary to use Performance Reports - prefixing the command to be profiled. Users do not have to
recompile the application to use Performance Reports. There is no learning curve for viewing the output
as it comes in text or a viewable web page. Also, the authors found the optimization advice given for
each category to be helpful. Another benefit of Performance Reports is having an idea of the bottlenecks
in a user’s application before using a full-featured performance tool like Allinea MAP (section 3) or Intel
VTune (section 7). Knowing whether an application is memory, compute, or communication bound makes
it easier to focus on the most important performance metrics when using a profiler that provides more
detailed performance information.

5 INTEL PROFILE FUNCTION OR LOOP EXECUTION TIME

The Intel compiler contains a performance tool called "Profile Function or Loop Execution Time" (PFLET),
which is a serial profiler. Information provided by PFLET can help one to decide which code portions to
optimize and which to parallelize.

To profile with PFLET, issue

ifort -profile-loops=all prog.f90
./a.out

Here, “-profile-loops=all” enables the compiler to time function calls and loops in the program.
Also, the “-profile-loops-report=2” option uses additional instrumentation to record loop itera-
tion counts and reports min, max, and average iteration counts.

After the execution ends, PFLET will generate up to two .dump files (one for functions and one for loops), as
well as .xml files containing the same data. Using any text editor, users can open the .dump files to view the
results (see Table 1). The output is formatted into a table, where each row corresponds to a single function
or loop labeled as file:line in the last column.

Table 1: PFLET Dump File Output.

time(abs) time(%) self(abs) self(%) loop_entries function function_file:line loop_file:line
5745418040135 52.1 5745418040135 52.1 1080869265 episnp_mod_mp_two_snp_test_..0 episnp_mod.F90:57 episnp_mod.F90:92
1535455501662 13.9 1535455501662 13.9 518803997 episnp_mod_mp_two_snp_test_..0 episnp_mod.F90:57 episnp_mod.F90:109
493391216573 4.5 493391216573 4.5 1080869265 episnp_mod_mp_two_snp_test_..0 episnp_mod.F90:57 episnp_mod.F90:77
446037342805 4.0 446037342805 4.0 1080869265 episnp_mod_mp_two_snp_test_..0 episnp_mod.F90:57 episnp_mod.F90:92
351345228991 3.2 351345228991 3.2 1353462421 bpser_ cdflib.f:2307 cdflib.f:2397
201603090096 1.8 201603090096 1.8 518813997 episnp_mod_mp_partition_ episnp_mod.F90:125 episnp_mod.F90:369
66765839894 0.6 57666794224 0.5 721888762 bgrat_ cdflib.f:2714 cdflib.f:2775
46256515042 0.4 46256515042 0.4 518803997 episnp_mod_mp_two_snp_test_..0 episnp_mod.F90:57 episnp_mod.F90:109

5.1 Evaluation

PFLET is designed to only profile loops and functions, and not at the statement level. The text output is easy
to interpret, as it doesn’t require using a GUI. The authors consider the lack of statement-level profiling to
be major drawback, especially for applications with large function or loop bodies. Furthermore, PFLET was
not designed to use OpenMP. For these reasons, this tool’s utility is limited to identifying loops or functions
in a serial program that may benefit from parallelization or other optimizations.

Luecke, Groth, Weeks, and Kraeva

6 INTEL TRACE ANALYZER AND COLLECTOR

Intel Trace Analyzer and Collector (ITAC) is a graphical tool used for understanding MPI application be-
havior. ITAC can help identify load imbalances and investigate communication correctness using traces.

To compile and collect performance data for ITAC, issue:

mpiifort -g -qopenmp prof.f90
mpirun -trace -np p ./a.out

The “-trace” option will create trace files, one per MPI process, containing information through the entire
execution of the application, including MPI communication. To launch the ITAC GUI, issue:

traceanalyzer ./a.out.stf

where .stf is a Structured Trace File (STF) generated by “-trace”. On start up, ITAC will open the
Summary Page for the application, which contains a Ratio bar and a list of longest-running MPI calls (see
Figure 5). This allows one to quickly see if the application is compute-bound or communication-bound.

Continuing from the Summary Page, the ITAC GUI opens with the Flat Profile tab on the left. The Load
Balance tabs shows ratios of user-code and MPI communication for each MPI process. This data can be
viewed in a series of bar graphs or pie charts per MPI process (see Figure 6). There is also a Call Tree and
Call Graph in the Flat Profile, where both show different MPI calls executed throughout program. However,
we did not find these features to be useful for our application.The Event Timeline displays MPI process
activity as MPI communication (red) and user code (blue), with black lines connecting processes that are
communicating. Through the Event Timeline, by right-clicking on an MPI process and navigating through
a series of windows, users can determine the current line of code.

Figure 5: ITAC Summary Page.

6.1 Evaluation

Once past the Summary Page, the features of ITAC are hidden behind blank panels. The window is filled
with a large amount of unused blank space, with essentially no data displayed. Furthermore, many of
the drop-down “arrows" require two clicks for data to be shown. Another issue occurs when using the
Application and MPI tables in the Function Profile. By clicking on the first arrow, it makes the second arrow
(MPI) move below a list of all MPI ranks. Because of this, the authors consider profiling a job with many
MPI processes to be difficult. These are all GUI design flaws that slow user interaction with the profile data.

Luecke, Groth, Weeks, and Kraeva

Figure 6: ITAC Load Balance Graph. Figure 7: ITAC Event Timeline Chart.

The authors found the Load Balance Graph (Figure 6) and the Event Timeline Chart (Figure 7) to be the
most useful in identifying and locating MPI communication problems. The Load Balance Function Profile
helps one identify poorly-performing MPI ranks by looking at how long they spend doing computation and
communication. The Event Timeline then helps identify when and where the problem occurs. When finding
a performance problem with the Event Timeline, one needs to find the source code causing the problem.
The authors were unable to access this data, despite following the documentation instructions and found the
process of accessing the source code to be unintuitive and tedious. Furthermore, the documentation says
that OpenMP regions are viewable from the Event Timeline, but we were unable to activate them.

7 INTEL VTUNE AMPLIFIER

Intel VTune Amplifier XE (VTune) is a performance tool that gathers performance data of serial or shared
memory applications using threads. VTune offers support for applications written in C, C++, C#, Fortran,
Java, assembly, as well as applications using accelerators such as the Intel Xeon Phi coprocessor and GPUs
with OpenCL. Furthermore, VTune supports OpenMP, Intel Threading Building Blocks, and Intel Cilk Plus.
VTune supports MPI, however it only stores performance data for MPI processes without communication.
To profile communication among MPI processes, MAP or ITAC can be used (see Section 3 or Section 6).

Intel has chosen to use the command “amplexe” instead of the common name Vtune for job submission.
To profile a serial or pure OpenMP application, the VTune GUI can launch the application for data collection
(amplxe-gui). To profile MPI or MPI+OpenMP applications with VTune, one must use the command
line interface to collect the data (amplxe-cl). To compile and collect Basic Hotspots performance data
on serial or pure OpenMP code, issue

ifort -g -qopenmp prog.f90
amplxe-cl -quiet -collect hotspots ./a.out

For MPI+OpenMP jobs, this changes to:

mpiifort -g -qopenmp prog.f90
mpirun -np p amplxe-cl -quiet -collect hotspots -result-dir my_dir ./a.out

The “-result-dir" option is required for MPI profiling, as VTune holds each MPI rank’s profile data
in different directories. For long-running jobs it is recommended to use the “-quiet” option. This will
disable VTune’s status I/O.

Besides Basic Hotspots, VTune offers many different collection options. These collection options are broken
into three groups: Algorithm Analysis, Microarchitecture Analysis, and Platform Analysis. The different
collections for each of these groups are as follows:

Luecke, Groth, Weeks, and Kraeva

• Algorithm Analysis: Basic Hotspots, Advanced Hotspots, Concurrency, Locks and Waits, HPC
Performance Characterization.

• Microachitecture Analysis: General Exploration, Memory Access, SGX Hotspots, TSX Hotspots,
TSX Exploration.

• Platform Analysis: CPU/GPU Concurrency, System Overview.

A feature of interest of relevant interest to HPC is the HPC Performance Characterization. This option
collects performance metrics relevant to HPC applications such as CPU usage, FPU usage, GFLOPS, and
memory bandwidth information. As of Parallel Studio 2016, this was a preview feature that was not available
on our cluster. Intel has since added this into Parallel Studio 2017, but we were unable to test it.

After the collection job has completed, analysis can be performed by using the VTune GUI or command line
regardless how the data was collected. For programs on remote servers, the command line version may be
faster than the GUI due to X11 forwarding. However, not all of the data that VTune collects can be reported
through command line. To view the collection results of rank “<rank>” issue

amplxe-gui my_dir.<rank>

To use the command line with an appropriate report type, issue

amplxe-cl -report <report-type> -result-dir my_dir.<rank>

Since most people will be using the GUI to analyze the performance data, we continue to use amplxe-gui.

The sections within the Summary pane show execution time, function hotspots, OpenMP execution time,
OpenMP hotspots, and OpenMP load balancing. For additional information on each of these sections, see
the Intel VTune User Guide.

In addition to the Summary pane, there are other windows that use a different format. These windows are:

• Bottom-up: Displays self timings for lines, functions, and loops.
• Caller/Callee: Displays parent and child function calls.
• Top-down Tree: Displays both self timings and total timings.
• Tasks and Frames: Displays a time line for tasks (logical unit of work) and frames (period of time

between beginning and end points).

The Bottom Up pane only displays self timings, while the Top Down pane displays both self and total
timings. For this reason, the Top Down pane is sufficient for code analysis (Figure 9). Furthermore, by right-
clicking and selecting "View Source", one can see the function call site or the largest bottleneck contained
within the function if the call site is a call leaf. The order of this tree is controlled by selecting a Call Stack
metric, which is in the rightmost drop down menu. The main metrics are CPU Time (default), Wait Time,
Wait Count, Spin Time, Context Switch Time, and Task Time. There are also more specialized metrics
based on these main metrics, as well as specific hardware event collection metrics.

7.1 Evaluation

Intel VTune is a performance tool that allows users to find problems with computation, memory, and thread
performance. It has a steep learning curve because the tool offers many options to the user and the GUI is

Luecke, Groth, Weeks, and Kraeva

Figure 8: VTune Summary.

Figure 9: VTune Top-Down Tree Window.

often not intuitive. The VTune’s Basic Hotspots analysis presents performance data that is usually sufficient
to optimize a program.

Once data collection has been completed, users can further choose between the GUI or the command line to
view the data analysis. The authors found the Summary and Top-down Tree windows to provide the most
useful performance data. The Summary window does a good job covering generic metrics for a program, in-
cluding interesting items such as parallel Potential Gain. Furthermore, it offers an easy-to-read load balance
chart for OpenMP, which many users will find useful. Statistical timing information for functions and lines
of code can be viewed in the Top-down and Bottom-Up Windows. The table format needs improvement
as it often contains many columns of data that are empty.There are options to view the source code within
VTune by using the “View Source” (via right-click) for particular functions and lines. The authors feel it
should be easier to see the source code along with the performance data.

Luecke, Groth, Weeks, and Kraeva

For jobs that have long execution times, the Hardware Event-Based Sampling collection types may lead to
significant amounts of data collected. For example, profiling epiSNP with the Advanced Hotspots analysis
resulted in large 64GB directories per MPI rank, with four MPI processes used for the job, one per node.
When trying to open files this large, the GUI would become unresponsive. It was much simpler using the
command line report feature and forgoing the graphics than dealing with the slow response times of the GUI.

8 SUMMARY AND CONCLUSIONS

Using the hybrid MPI+OpenMP version of epiSNP, the authors evaluated Allinea and Intel performance
tools for functionality and ease-of-use. Table 2 contains the tool Functionality Summary.For our function-
ality criteria, the tool that scored the best was MAP, as it contained the features needed for application
optimization. MAP has an Yes∗ for detecting MPI load imbalance because the Metric View can imply a
load imbalance, but does not offer direct detection like in ITAC. Intel Trace Analyzer and Collector (ITAC)
scores poorly in this category, as it lacks detailed source code support, memory metrics, and I/O metrics.
However, the authors felt that ITAC’s MPI functionality, specifically the Event Timeline Chart and the Load
Balance Graph, were especially useful.

Table 2: Functionality Summary.

Category MAP Reports PFLET ITAC VTune
Profiling Lines? Yes No No No Yes

Profiling Functions? Yes No Yes Yes Yes
Profiling Loops? Yes No Yes No No

CPU Performance Data? Yes Yes Yes Yes Yes
Memory Performance Data? Yes Yes No No Yes

I/O Performance Data? Yes Yes No No Yes
Detect MPI Load Imbalance? Yes∗ No No Yes No

Detect OpenMP Load Imbalance? Yes Yes No No Yes

To evaluate the performance of an MPI application using Intel’s performance tools, one must use two tools:
ITAC for MPI communication and either VTune or PFLET to pinpoint bottlenecks in source code.Whereas,
Allinea MAP is a single tool that provides both performance data for MPI communication and source-
code-level profiling information. The authors consider this an advantage of MAP over ITAC or VTune.
Furthermore, the authors consider MAP’s user interface to be more intuitive than either ITAC’s or VTune’s
dissimilar interfaces.

Allinea also has a high-level, easy-to-use performance tool called Performance Reports. This tool does
not require recompilation. Combined, the ITAC and VTune summary pages provide similar information
compared to Performance Reports, but this requires the application to be run twice (once for each tool). In
addition, Performance Reports provides suggestions for performance enhancements, whereas Intel’s tools
do not. The authors feel that these suggestions are valuable and hope that other tools will implement similar
analyses to aid in program optimization. However, to find performance problems after using Performance
Reports, additional runs with other tools requiring source code compilation will likely be needed.

GUI responsiveness is another important consideration. The Remote Client for MAP provides a significant
improvement in usability, as it reduces communication lag compared to X11 forwarding. It also reduces the
load on the login node of the cluster, as image rendering is moved to the user’s workstation. The Ease-of-Use
Summary (Table 3) contains the authors impressions of using the various tools. In this table, we gave two
ratings: Satisfactory (S) and Needs Improvement (NI). Here, Performance Reports and Intel Performance
Function or Loop Execution Time (PFLET) do not use GUIs, so they were categorized as N/A.

Luecke, Groth, Weeks, and Kraeva

Table 3: Ease-of-Use Summary. S stands for Satisfactory and NI stands for Needs Improvement.

Category MAP Reports PFLET ITAC VTune
Navigation of GUI S N/A N/A NI S
Data Presentation S S NI S NI

Handles Long-running Jobs S S S NI NI

ACKNOWLEDGMENTS

The research reported in this paper is partially supported by the HPC@ISU equipment at Iowa State Univer-
sity, some of which has been purchased through funding provided by NSF under MRI grant number CNS
1229081 and CRI grant number 1205413. Personnel time was fully funded by Iowa State University.

AUTHOR BIOGRAPHIES

GLENN R. LUECKE received his Ph.D. in mathematics from the California Institute of Technology. He
is currently Professor of Mathematics and director of HPC education and training at Iowa State University.

BRANDON GROTH is a research assistant in the Department of Mathematics HPC group at Iowa
State University. His research interests include scientific computing, mathematical applications in the
sciences, and numerical analysis.

NATHAN WEEKS is currently pursuing a Ph.D. in Computer Science at Iowa State University.
His research interests include parallel computing, software application optimization, and bioinformatics.

MARINA KRAEVA received her Ph.D. in Computer Science from the State Technical University
of Novosibirsk, Russia in 1999 and joined the High Performance Computing group at Iowa State
University.

REFERENCES

Appelbe, B., and D. Bergmark. 1996. “Software Tools for High Performance Computing: Survey and Rec-
ommendations”. Scientific Programming vol. 5, pp. 239–249.

Collette, M., B. Corey, and J. Johnson. 2004, December. “High Performance Tools & Technologies”. Tech-
nical report, Lawrence Livermore National Laboratory.

Ma, L., H. B. Runesha, D. Dvorkin, J. R. Garbe, and Y. Da. 2008. “Parallel and serial computing tools for
testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies”.
BMC Bioinformatics vol. 9 (1), pp. 315.

Marowka, A. 2010, July. “A Study of the Usability of Multicore Threading Tools”. International Journal of
Software Engineering and Its Applications vol. 4 (3).

Moore, S., D. Cronk, K. London, and J. Dongarra. 2001, September. “Review of Performance Analysis
Tools for MPI Parallel Programs”. Recent Advances in Parallel Virtual Machine and Message Passing
Interface.

Weeks, N. T., G. R. Luecke, B. M. Groth, M. Kraeva, L. Ma, L. M. Kramer, J. E. Koltes, and J. M. Reecy.
2016, July. “High-performance epistasis detection in quantitative trait GWAS”. The International Jour-
nal of High Performance Computing Applications .

TO SHARE OR NOT TO SHARE: COMPARING BURST BUFFER ARCHITECTURES

Lei Cao
Bradley W. Settlemyer

High Performance Computing
Los Alamos National Laboratory

Los Alamos, NM, USA
{leicao88124,bws}@lanl.gov

John Bent
Seagate Government Systems

Los Alamos, NM, USA
john.bent@seagategov.com

ABSTRACT

Modern high performance computing platforms employ burst buffers to overcome the I/O bottleneck that
limits the scale and efficiency of large-scale parallel computations. Currently there are two competing burst
buffer architectures. One is to treat burst buffers as a dedicated shared resource, The other is to integrate
burst buffer hardware into each compute node. In this paper we examine the design tradeoffs associated
with local and shared, dedicated burst buffer architectures through modeling. By seeding our simulation
with realistic workloads, we are able to systematically evaluate the resulting performance of both designs.
Our studies validate previous results indicating that storage systems without parity protection can reduce
overall time to solution, and further determine that shared burst buffer organizations can result in a 3.5x
greater average application I/O throughput compared to local burst buffer configurations.

Keywords: Checkpoint-Restart, Burst Buffers, Storage Systems, File Systems and I/O

1 INTRODUCTION

The overwhelming majority of high-performance computing applications are tightly-coupled, bulk-
synchronous parallel simulations that run for days or weeks on supercomputers. Due to both the tight-
coupling and the enormous memory footprints used by these application several complexities emerge. One
complexity is that the interruption of any process destroys the distributed state of the entire application. Un-
fortunately, as supercomputers become increasingly powerful, interruptions become more frequent and the
size of the distributed state grows. To ensure forward progress these applications use checkpoint-restart, the
conceptually simple technique of persisting their distributed state at regular time intervals, such that when
an application process fails progress can be restarted from the most recently saved checkpoint. A second
complexity is that capturing a consistent view of the distributed state is difficult due to messages in flight. To
construct a consistent view of the simulation state, applications quiesce messaging and pause their forward
progress for the duration of the checkpoint. These large, frequent bulk-synchronous checkpoints require
ever more powerful storage systems capable of ingesting parallel data at massive rates.

Burst buffers, specialized high bandwidth storage tiers composed of relatively expensive solid state media,
have arisen to address this performance requirement (Liu, Cope, Carns, Carothers, Ross, Grider, Crume,
and Maltzahn 2012, Kimpe, Mohror, Moody, Van Essen, Gokhale, Ross, and de Supinski 2012, Wang, Oral,
Wang, Settlemyer, Atchley, and Yu 2014). However, these tiers are too expensive to satisfy the capacity re-
quirements of supercomputers, thus a less expensive, larger disk-based backing storage system with longer
data retention and high reliability is also needed. Simple in concept, there are myriad possible configurations
for these systems and no systematic means to compare them. For example, while procuring the Department

SpringSim-HPC 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)

Cao, Settlemyer, and Bent

of Energy’s first extreme-scale production supercomputer with burst buffers, Los Alamos National Labora-
tory’s (LANL’s) Trinity, we encountered several storage system design alternatives but had few capabilities
to compare alternatives beyond ensuring vendor offerings satisfied our minimum requirements.

In this paper we describe a small portion of the rich design space of possible burst buffer architectures
and compare their efficiency using event-driven simulation. In order to ensure accurate measurements of
efficiency, we generate realistic workloads based on the Alliance for Application Performance at Extreme
Scale (APEX) Workflows document (LANL, NERSC, and SNL 2016), which describes patterns of I/O
exhibited by scientific applications over periods of several months. Our results compare the efficiency of
multiple burst buffer designs, and in doing so, allows us to identify several new critical design elements of
burst buffer design, including the policies used to manage data staging.

2 RELATED WORK

Due to the observation that multi-tier storage systems are the most cost-effective mechanism by which to
provide high bandwidth storage systems to HPC platforms (Bent, Settlemyer, and Grider 2016), the design
of burst buffers has been an area of recent interest. Three relevant burst buffer architectures have previously
been described, along with their relative strengths and weaknesses (Harms, Oral, Atchley, and Vazhkudai
2016). The compute node-local architecture, with storage devices on each compute node, provides exclusive
and interference-free access to the storage devices and linear scaling of bandwidth with the number of
compute nodes used by an application. However, common file access techniques, such as many readers
or writers sharing a single file (called N-to-1 file access) are difficult to enable. The second model, where
burst buffer storage is available on dedicated I/O nodes, supports the N-to-1 access model more easily,
and provides opportunities for simpler resilience. However, if more than a single job is running on the
supercomputer (a common occurrence), then the jobs must share access to the burst buffer nodes, and risk
unpredictable performance due to interference. The final described model co-located the fast storage on the
nodes hosting long-term storage. This model creates an off-platform burst buffer, which may not provide
the highest absolute performance, but may provide significant ease of use benefits via transparent caching.
Although in this paper we only explore the first and second models, our simulator has the flexibility to
explore additional paradigms such as network-attached storage, rack-local storage, and hybrids between all
of these possibilities.

Both analytical models and simulation have been used to better evaluate the tradeoffs within burst buffer
storage systems. An analytical modeling exercise determined that unlike traditional HPC storage systems, a
burst buffer provides the most forward progress by providing no reliability (Bent, Settlemyer, DeBardeleben,
Faibish, Ting, Gupta, and Tzelnic 2015). Although an unreliable burst buffer may repeatedly fail in such a
manner that a long running simulation must restart from the very beginning, the probability is quite low and
the improved performance provided by disabling parity protection improves overall throughput enough to
offset this possibility. In this paper we replicate this result via simulation.

In simulations of a shared burst buffer architecture for the IBM BlueGene/Q supercomputer (Peng, Divanji,
Raicu, and Lang 2016), it was determined that network bottlenecks were likely to be the largest performance
limiter. In our simulated architecture, it does not appear that network performance is a limiting factor, but
the Cray architecture is quite dissimilar from the simulated IBM architecture. Ongoing work using the
ROSS simulator (Carothers, Bauer, and Pearce 2000), is similar to ours in that it focuses on creating a set
of realistic I/O workloads (Liu, Cope, Carns, Carothers, Ross, Grider, Crume, and Maltzahn 2012). We are
not aware of any other work that generates a realistic HPC workload using historical data and detailed user
interviews such as those summarized in the APEX workflow documentation.

Cao, Settlemyer, and Bent

Table 1: The subset of the workload information provided by the APEX workflows document used to
construct our simulator workload.

Workflow EAP LAP Silverton VPIC
Workload Percentage 60 5 15 10
Walltime (hours) 984 20 192 144
Hero Run Cores 65536 32768 131072 65536
Routine Number of Cores 32768 4096 32768 32768
Number of Workflow Pipelines per Allocation 125 35 36 24
Anticipated Increase In Problem Size By 2020 10 to 12x 8 to 12x 8 to 16x 8 to 16x
Anticipated Increase In Workflow Pipelines Per Allocation By 2020 2x 1x 1x 1x
Storage APIs POSIX POSIX POSIX POSIX
Routine Number of Analysis Datasets 100 100 225 150
Checkpoint Style N to 1 N to 1 N to 1 N to N

3 METHODS

The goal of our simulation is to provide high quality estimates of the performance trade offs associated with
several candidate burst buffer architectures. While in our past work we used analytical methods to evaluate
storage system design points (such as reliability), here we use simulation to better capture the performance
dynamics in the presence of randomly generated errors and faults.

We implemented our simulator based on the Simpy discrete-event simulation framework (Matloff 2008).
Events operate on the following entities: a scheduler, jobs, compute nodes, burst buffers nodes, a fault
generator, and a parallel file system. Note that burst buffer nodes are only included when simulating shared
burst buffer configurations; for local configurations, the burst buffers are on the compute nodes and thus not
represented independently by the simulator.

3.1 Workload Generation

In order to build a workload generator for our simulation, we have mined requirements from the APEX
Workflows white paper (LANL, NERSC, and SNL 2016). One limitation of the APEX Workflow analysis
is that large proportions of the possible laboratory workloads were not well described. While some details
for the other sites are provided, and we could speculatively extrapolate projections, we instead chose to
simply use the descriptions provided by LANL to construct our entire simulated workload. We recognize
that even for LANL’s supercomputers this is an overly simplistic assumption as fully two-thirds of LANL’s
computational cycles are generated by external users.

Table 1 shows a subset of the LANL workload information provided in the workflow document. The APEX
workflows paper goes into great detail describing the concepts of campaigns, workflows, pipelines, jobs, and
checkpoint strategies. In this paper we will briefly define a workflow as the computational process a scientist
uses to answer some scientific inquiry. Within a scientific workflow, the scientist then uses some number of
workflow pipelines (Thain, Bent, Arpaci-Dusseau, Arpaci-Dusseau, and Livny 2003), which are dependent
sets of jobs, to simulate and evaluate their hypothesis. For example, a cosmologist may be interested in
exploring relativistic particle trajectories as two plasmas move through space. The workflow then would use
the Vector Particle-in-Cell (VPIC) code to simulate the plasmas and particles, and the workflow may require
multiple pipelines as the cosmologist explores multiple types of plasma intersections and collisions. Each
of the initial plasma setup pipelines may take weeks of computational time, though multiple pipelines can
be executed in parallel (as large series of parallel jobs).

Cao, Settlemyer, and Bent

The LANL workload includes 4 major workflows (EAP, LAP, Silverton, and VPIC). Each of these codes
can be used to explore multiple physical phenomena; however, the APEX descriptions indicate that the
scale of the computational jobs is consistent per pipeline, and the I/O requirements are approximately fixed
for each pipeline. In order to generate computational jobs approximating the provided workload, we have
constructed a random workload generator that creates 60 workflows that preserve the workflow percentages
and the job size distribution described by the APEX workflows. We do not vary the checkpoint sizes, though
we are aware that some codes simulate varying levels of entropy over time.

Finally, we have also simplified our workload evaluation by only simulating checkpoint/restart dumps. Note
that the APEX authors also described some of the additional outputs for analysis data and emphasize that
analysis data is scientifically valuable in and of itself. Therefore a burst buffer may also benefit the in-
put/output of analysis data; however, even without a fast storage subsystem, analysis data will be generated
and stored. Further, the workflows described for analysis data are much more complicated than check-
point/restart interactions, and thus its not clear that our efforts could adequately characterize interactions for
scientific analysis data. Because the authors were members of the APEX Workflows team, our future work
will include improving the analysis workflows to further improve our simulation results.

3.1.1 Basic Simulator Execution

The simulation begins by selecting a job from the queue of available jobs. As described above, each job
includes requirements for the number of processors, the requested runtime, and the percentage of memory
required to create a checkpoint. Job’s are scheduled onto the simulated cluster using a first-fit algorithm.
While simple, first-fit achieves a high degree of system utilization and is appropriate when we are not
evaluating scheduling efficiency metrics such as job turnaround time.

The jobs are then simulated as a series of compute cycles followed by checkpoint phases that store data
into the burst buffer system. Checkpoints are created at the near-optimal interval as described by Young and
Daly (Daly 2006). As enforced by policy on Trinity, no job is allowed to request a “walltime” longer than 24
hours, so pipelines that require weeks of system time must be decomposed into shorter running jobs. While
the first job of a campaign pipeline does not restore itself from an existing checkpoint, all subsequent jobs
in that pipeline must read the most recent checkpoint file and restart from that point in the simulation.

We also provide a Poisson-based fault generation process that interrupts system nodes (both compute and
burst buffer) causing any process currently using that node to fail. In the case of a failed burst buffer node, the
checkpoint process fails; however, the application process continues and will attempt to write an additional
checkpoint in the future. When a compute node fails, the entire application must stop, and a job is immedi-
ately inserted at the head of the queue to attempt to recoup the progress from the last checkpoint. We used
the empirically observed mean time to interrupt (MTTI) from the Trinity supercomputer to parameterize the
random arrival process with each node having an equivalent probability of failure.

3.2 Shared Burst Buffer Simulation

For shared burst buffers, simulation of flows both in and out of the burst buffer are critical. Each burst
buffer polls for incoming requests. For each request received, it starts an executor process to handle that
request. The processing time of a request is computed using the minimum of the burst buffer bandwidth and
the compute node bandwidth. A burst buffer node’s bandwidth is affected by the number of its concurrent
requests; a compute node’s bandwidth is affected by the number of its burst buffer partitions. A burst buffer
node will notify all of its active executors that there is a change in its bandwidth when either a new executor
begins or an existing executor finishes. As compute nodes write to multiple burst buffer nodes they split their

Cao, Settlemyer, and Bent

available bandwidth evenly across them. When any write finishes, the available bandwidth is re-partitioned
across the remaining writes and those burst buffers are informed that additional client bandwidth is available
which may cause those writes to speed up if those burst buffers have available excess bandwidth.

3.3 Local Burst Buffer Simulation Flow

The local burst buffer simulation is very similar to the shared burst buffer simulation, but with a much
simpler implementation. There are no separate burst buffer nodes; instead each compute node has an SSD
whose bandwidth comes from the input parameter. When there is a fault, this fault will bring down both the
compute node and the burst buffer on that node.

3.4 Simulation Configuration

Table 2: Simulation parameters based on LANL’s Trinity Supercomputer. Parameters which were varied in
order to study their effects are in red italics.

Number of Compute Nodes 9500
Compute Node Memory 128 GB

Compute Node Network Bandwidth 15 GBs
Burst Buffer Type Local | Shared

Number of Burst Buffer Nodes If local 9500; if shared 276
Aggregate Burst Buffer Read Bandwidth 1600 GBs
Aggregate Burst Buffer Write Bandwidth 1400 GBs

Parity Overhead 0 | 10 | 20 | 30 | 40 | 50
Burst Buffer Stripes per File If local 1; if shared 2

Fault Rate One node per day
Node Recovery Time 1 second | 1 hour

The specification for all simulated shared and local burst buffer architectures is listed in Table 2. Aggregate
burst buffer performance is based on empirical measurements using IOR (Various 2016). Similarly, the fault
rate is based on the measurement of Trinity’s mean time to interrupt (23.8 hours). In order to compare local
and shared burst buffer architectures fairly, our local burst buffer simulation splits the aggregate burst buffer
bandwidth evenly between each compute node.

4 RESULTS

As discussed in Section 1, our goal in building a burst buffer simulator is to explore various hardware
and software design alternatives. Within this study we are limiting ourselves to an exploration of just two
possible burst buffer architectures: node-local and shared I/O nodes; however, even within that constraint
we have identified several interesting areas of evaluation. In particular we are interested in examining the
system impacts related to three different factors. We first examine the impact of whether data in burst buffers
is protected with parity, then examine the impact of how long failed nodes take to recover, and finish our
evaluation by examining the impact of whether burst buffers are shared or local. The parameters studied are
those shown in italicized red in Table 2.

Cao, Settlemyer, and Bent

���

���

���

���

����

� �� �� �� �� ���
�
��
�
���
�
��
��
�
�
�
���
��
��
�
�

����������������������������������

�����������
��������������

(a) Analytical Model

���

���

���

���

����

� �� �� �� �� ��

����������������������������������

�����������������
��������������������

(b) Simulated Local BB

���

���

���

���

����

� �� �� �� �� ��

����������������������������������

������������������
���������������������

(c) Simulated Shared BB

Figure 1: These 3 graphs show the percentage of time dedicated to checkpoint/restart for different burst
buffer reliability overheads. Graph (a) shows the analytical results derived in an earlier work, while (b)
and (c) show the checkpoint overheads for local and shared burst buffers, respectively. We can see that
the simulation results support the earlier analytical result in finding that unreliable burst buffers reduce the
overhead related to checkpoint/restart.

4.1 To Protect or Not To Protect

In this portion of our study, we explore the effects of using parity to protect data within the burst buffers.
We use BBSim to revisit our earlier analytical study (see Section 2) which showed that unreliable burst
buffers (i.e. those that do not add parity protection to data) outperform reliable burst buffers because the
performance overhead of adding parity protection outweighs the reliability benefits.

To measure performance, we use the metric of scientific productivity which is the amount of time that a
job makes forward progress divided by the total amount of time that the job is running. When measuring
time spent making forward progress, we exclude checkpointing, restarting, and work that was redone due
to failure recovery. Time spent checkpointing and restarting is work required only because the platform is
unreliable. The application developers have no interest in checkpoint/restart; rather it is required because
long-running simulations cannot complete in the time between job interruptions. Because checkpoint/restart
is such a popular technique, some scientists have resorted to analyzing checkpoint files as a sort of crude
analysis data, but our current simulation studies are ignoring the costs related to analysis data.

Similarly, we must consider time spent reading the checkpoint data in order to restore the application state
as pure overhead. This is slightly unfair as LANL’s HPC administrators enforce a scheduler policy that
limits jobs to 24 hours of wall clock time for a variety of reasons (fair-sharing, routine maintenance, etc.),
and thus restoring from checkpoints is mandatory for any scientific simulation that runs for longer than 24
hours. However, from a pure scientific productivity standpoint we cannot consider time spent reading the
most recent checkpoint as directly advancing scientific progress.

Finally, we exclude re-work. Re-work occurs when a job experiences a fault and must be restarted from a
prior checkpoint. Although re-work is valid scientific simulation work, it is overhead required only due to
the unreliability of the platform and the discrete nature of restoring progress via checkpoint/restart.

In our earlier analytical work, we noted that given a fixed quantity of storage resources, the system could
be designed to dedicate some of the resources to storing parity data to improve the system reliability at
the cost of some storage system performance (e.g. a 10% parity overhead would result in a 10% storage
system slowdown). Although an unreliable storage system will lead to lost checkpoints that result in larger
quantities of re-work, the models found that checkpoint overhead was lowest with an unreliable burst buffer
due to the much higher incidence of checkpointing to re-work. In Figure 1(a) we present the results from
that analysis along with simulation experiments that examine the reliability overheads for local and shared

Cao, Settlemyer, and Bent

Table 3: Overall platform efficiency for burst buffer configurations using a 1 second repair/recovery time
and a 1 hour repair/recovery time.

Simulation Configuration Local, 1 Second Local, 1 Hour Shared, 1 Second Shared, 1 Hour
Total Campaign Node-Hours

(In Thousands) 18442.563 18696.147 18831.216 18453.385

Productive Compute Node-
Hours

(In Thousands)
16216.593 16215.224 16447.527 16448.516

Platform Productivity (%) 87.9 86.7 87.3 89.1

burst buffers (Figures 1(b) and 1(c) respectively). The earlier models assumed shared burst buffers; with
our simulator, we can now reinforce that finding and extend it to local burst buffers as well: burst buffers,
whether local or shared, should not add parity protection for checkpoint data.

Compared to the analytical results, the simulations find higher scientific productivity due to the smaller
percentage of memory stored in each checkpoint for the simulated workloads compared to the assumptions
included in the analytical models. Note that unlike the analytical study, our simulation results are unable to
explore the effects of a reliable burst buffer with 0% reliability overhead, and thus the lines do not cross.

4.2 Effects of Repair/Recovery Time on Overall Productivity

We explore the repair time of nodes because current heuristics to estimate machine productivity have ig-
nored this parameter (essentially assuming that repairing a failed node takes no time). This metric, called
JMT T I/Delta, is used when procuring HPC platforms and measures the ratio between the mean time to
interrupt for a job running across the entire machine and the time to checkpoint that job. In general, a
JMT T I/Delta ratio in excess of 200 results in an estimated platform productivity greater than 90%. That is,
even in the face of faults causing job restarts and lost work, a job running across the entire machine should
make forward progress 90% of the time when JMT T I/Delta is greater than 200.

Although this simple metric is useful in comparing multiple vendor offerings during a procurement cycle,
we have long recognized that it is an incomplete picture of the overall scientific productivity of an HPC
platform. In addition to other simplifications, it excludes time lost due to repairing failed nodes. However,
typical large HPC platforms can have repair/replace times of up to one hour. Therefore, we wanted to check
whether JMT T I/Delta can still achieve 90% platform productivity even with repair times up to an hour.

Table 3 shows the results of our simulation studies using a simple model that allows failed nodes (whether
a compute node, burst buffer node, or both) to be repaired following a fault in either 1 second or 1 hour.
For local burst buffers, we see that productivity decreases slightly with longer repair times as expected. For
shared burst buffers, we see a surprising result that productivity increases with longer repair times. Upon
closer examination, we discovered that this surprising result was due to randomness within our simulator;
specifically, faults within our simulation of 1 hour repair times happened unluckily to disproportionately
affect larger jobs causing a larger quantity of total cost work. In other words, this unexpected increase in
efficiency is due to noise in the simulator.

We therefore generally conclude that the efficiency differences are not very sensitive to recovery time, and
rather the mix of jobs and the mean time to interrupt seem to have dominating impacts on overall platform
efficiency. In future workloads, with a majority of jobs using extremely large allocations it is likely that
we would need to revisit this analysis, but these simulation results indicate that our current JMT T I/Delta
procurement metric is likely sufficient.

Cao, Settlemyer, and Bent

Table 4: Job checkpoint bandwidths varying both the burst buffer architecture (shared vs. local) and the
storage system reliability (unreliable vs. 20% parity overhead.

Simulation Configuration Local, Unreliable Local, 20% Parity Shared, Unreliable Shared, 20% Parity
Min Application Checkpoint Bandwidth (GB/s) 18.0 14.8 36.1 28.8
Max Application Checkpoint Bandwidth (GB/s) 1424.8 1139.8 1080.4 884.6

Mean Overall Campaign Checkpoint Bandwidth (GB/s) 206.8 165.6 614.54 485.0
Median Overall Campaign Checkpoint Bandwidth (GB/s) 184.8 147.4 645.3 510.6

4.3 To Share or Not to Share

Finally, we examine the effects of organizing the burst buffer into a set of node-local storage devices or as a
collection of shared, dedicated burst buffer nodes. In Table 4 we see that the average checkpoint bandwidth
encountered throughout the campaign is approximately 3x greater for a shared burst buffer. This is as
expected; jobs running with local burst buffers get the exact same percentage of the burst buffer nodes as
they do the compute nodes whereas jobs using a small percentage of the compute nodes can use a larger
percentage of the shared burst buffer nodes. A more complicated, and interesting, result is that the maximum
bandwidth achieved with local burst buffers is higher than the maximum bandwidth achieved with shared.
This is because full system jobs using local burst buffers have no resource contention. Our simulation
chooses two random burst buffer nodes for each compute node in the shared burst buffer model; this results
in some burst buffer nodes being overloaded. The lesson from this result is that shared burst buffers are
better for HPC systems that run many small jobs and that shared burst buffers for systems running large jobs
need careful mechanisms to reduce contention.

5 CONCLUSION

In this paper we presented BBSim, a simulator for exploring the various effects on scientific productivity
arising from the organization of burst buffer storage system. To generate results that go beyond analyti-
cal models we used the APEX workflows document to construct a simulation workload derived from real
data center workloads. With BBSim we have determined that for the presented workload repair/recovery
time following a fault does not have a significant impact on overall platform efficiency. However, in con-
firmation of earlier analytically derived results, we determined that unreliable burst buffers result in less
checkpoint/restart overhead compared to reliable burst buffer configurations. Further, our simulation results
validated this conclusion for both shared burst buffer and local burst buffer configurations. Finally, we de-
termined that shared burst buffers result in better overall application checkpoint bandwidth, providing an
average storage system bandwidth 3.5x greater than a similarly configured local burst buffer configuration.

In addition to the results published here we have used BBSim to examine the scientific productivity delivered
by future system configuration, including hypothetical configurations not currently fielded. BBSim is one
of many steps to move our storage system procurement process toward a quantitative evaluation of scientific
productivity. The addition of the simulation of analysis and visualization data set creation and access, as
well as more robust simulation of the storage system software are two of the key remaining factors aspects
needed to gain greater insight into the effects of storage systems to overall scientific productivity.

ACKNOWLEDGMENTS

This work is funded by the RAMSES project, Office of Advanced Computing Research, U.S. Department of
Energy and the Ultrascale Systems Research Center (USRC) at Los Alamos National Laboratory supported
by the U.S. Department of Energy contract DE-FC02-06ER25750.

Cao, Settlemyer, and Bent

This publication has been assigned the Los Alamos National Laboratory identifier LA-UR-17-20080.

REFERENCES

Bent, J., B. Settlemyer, N. DeBardeleben, S. Faibish, D. Ting, U. Gupta, and P. Tzelnic. 2015, July. “On the
Non-Suitability of Non-Volatility”. In 7th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 15). Santa Clara, CA, USENIX Association.

Bent, J., B. Settlemyer, and G. Grider. 2016. “Serving Data to the Lunatic Fringe: The Evolution of HPC
Storage”. ;login: The USENIX Magazine vol. 41 (2), pp. 34–39. An optional note.

Carothers, C. D., D. Bauer, and S. Pearce. 2000. “ROSS: A High-performance, Low Memory, Modular Time
Warp System”. In Proceedings of the Fourteenth Workshop on Parallel and Distributed Simulation,
PADS ’00, pp. 53–60. Washington, DC, USA, IEEE Computer Society.

Daly, J. T. 2006. “A higher order estimate of the optimum checkpoint interval for restart dumps”. Future
Gener. Comput. Syst. vol. 22 (3), pp. 303–312.

Harms, K., H. S. Oral, S. Atchley, and S. S. Vazhkudai. 2016, September. “Impact of Burst Buffer Archi-
tectures on Application Portability”. Technical report, Oak Ridge National Laboratory (ORNL), Oak
Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF).

Kimpe, D., K. Mohror, A. Moody, B. Van Essen, M. Gokhale, R. Ross, and B. R. de Supinski. 2012.
“Integrated In-system Storage Architecture for High Performance Computing”. In Proceedings of the
2Nd International Workshop on Runtime and Operating Systems for Supercomputers, ROSS ’12, pp.
4:1–4:6. New York, NY, USA, ACM.

LANL, NERSC, and SNL. 2016, March. “APEX Workflows”. Technical report, Los Alamos National Lab-
oratory (LANL), National Energy Research Scientific Computing Center (NERSC), Sandia National
Laboratory (SNL).

Liu, N., J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and C. Maltzahn. 2012. “On the role
of burst buffers in leadership-class storage systems”. In 012 IEEE 28th Symposium on Mass Storage
Systems and Technologies (MSST), pp. 1–11. IEEE.

Matloff, N. 2008. “Introduction to discrete-event simulation and the simpy language”. Davis, CA. Dept of
Computer Science. University of California at Davis. Retrieved on August vol. 2, pp. 2009.

Peng, J., S. Divanji, I. Raicu, and M. Lang. 2016. “Simulating the Burst Buffer Storage Architecture on an
IBM BlueGene/Q Supercomputer”.

Thain, D., J. Bent, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and M. Livny. 2003, June. “Pipeline
and Batch Sharing in Grid Workloads”. In Proceedings of High-Performance Distributed Computing
(HPDC-12). Seattle, Washington.

Various 2016. “IOR HPC Benchmark”.

Wang, T., S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and W. Yu. 2014, Oct. “BurstMem: A high-
performance burst buffer system for scientific applications”. In Big Data (Big Data), 2014 IEEE In-
ternational Conference on, pp. 71–79.

Cao, Settlemyer, and Bent

AUTHOR BIOGRAPHIES

LEI CAO is a post master student at New Mexico Consortium. He holds a M.S. degree in Electrical and
Computer Engineering from Carnegie Mellon University. His research interest is in HPC storage systems.
His email address is leicao88124@lanl.gov

BRADLEY W. SETTLEMYER is a storage systems research and systems programmer specializing in
high performance computing. He received his Ph.D in computer engineering from Clemson University
in 2009 and works as a research scientist in Los Alamos National Laboratory’s HPC Design group. He
has published papers on emerging storage systems, long distance data movement, network modeling, and
storage systm algorithms. His email address is bws@lanl.gov

JOHN BENT is the Chief Architect at Seagate Government Solutions and has researched storage and IO
throughout his career. His recent focus is on parallel storage systems for High Performance Computing. He
holds a Ph.D in computer science from the University of Wisconsin-Madison.

mailto://leicao88124@lanl.gov
mailto://bws@lanl.gov

A FRAMEWORK FOR UNIT TESTING WITH COARRAY FORTRAN

Ambra Abdullahi Hassan
University of Rome Tor Vergata

Rome, Italy
ambra.abdullahi@uniroma2.it

Valeria Cardellini
University of Rome Tor Vergata

Rome, Italy
cardellini@ing.uniroma2.it

Salvatore Filippone

Cranfield University
Cranfield, UK

salvatore.filippone@cranfield.ac.uk

ABSTRACT

Parallelism is a ubiquitous feature of modern computing architectures; indeed, we might even say that serial
code is now automatically legacy code. Writing parallel code poses significant challenges to programs,
and is often error-prone. Partitioned Global Address Space (PGAS) languages, such as Coarray Fortran
(CAF), represent a promising development direction in the quest for a trade-off between simplicity and
performance. CAF is a parallel programming model that allows a smooth migration from serial to parallel
code. However, despite CAF simplicity, refactoring serial code and migrating it to parallel versions is still
error-prone, especially in complex softwares. The combination of unit testing, which drastically reduces
defect injection, and CAF is therefore a very appealing prospect; however, it requires appropriate tools to
realize its potential. In this paper, we present the first CAF-compatible framework for unit tests, developed
as an extension to the Parallel Fortran Unit Test framework (pFUnit).

Keywords: Coarray Fortran; Test-Driven Development; Unit tests; pFUnit; Refactoring

1 INTRODUCTION

Scientific software tends to have rather peculiar characteristics (Carver, Kendall, Squires, and Post 2007): its
requirements gathering process is unique in that nature often plays a prominent role, it is often the outcome
of research projects with little or no development planning, it is often written by scientists whose primary
research interest is not software-related, and scientific software packages tend to have very long lifetimes.

Scientific software development then is rarely accompanied by techniques such as Test-Driven Development
(TDD) that are very frequent in other application areas, nor is it often the case that (semi-)automated tools
are employed. Many authors have advocated the use of disciplined design strategies in this context, see
e.g., (Rouson, Xia, and Xu 2011).

The introduction of parallel features into existing serial codes is a necessary step in today’s world; unfor-
tunately, parallel programming techniques open many opportunities to introduce subtle bugs and puzzling

SpringSim-HPC 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)

Abdullahi Hassan, Cardellini, and Filippone

behavior in the software under consideration. Therefore, we deem appropriate to also introduce development
strategies to keep these risks under control and to increase our confidence in the numerical results produced
by the software.

1.1 Parallelization and PGAS Languages

With the proliferation of multicore processors and many-core accelerators, any serial code is automatically
“legacy”, and ought to be parallelized in order to perform effectively (Radhakrishnan, Rouson, Morris,
Shende, and Kassinos 2013). The Message Passing Interface (MPI) offers a rich set of functionalities for
parallel applications on distributed systems, but parallelization must be handled manually by the program-
mer, and taking care of very low-level data transfer details. The Partitioned Global Address Space (PGAS)
parallel programming model is an effective and interesting alternative that combines the advantages of the
Single Program Multiple Data (SPMD) programming style for distributed memory systems with the data
referencing semantics of shared memory systems. Unified Parallel C (UPC) (UPC Consortium 2005), Coar-
ray Fortran (CAF) (Numrich and Reid 1998), Chapel (Chamberlain, B.L. 2015), X10 (Saraswat, Bloom,
Peshansky, Tardieu, and Grove 2012), SHMEM are all based on the PGAS model. In the Fortran case, this
model has been integrated in the Fortran 2008 standard with the introduction of coarrays.

CAF communications are largely abstracted at a much higher level than in MPI; moreover, code written
in CAF can easily work on both shared and distributed memory architectures. Additionally, CAF syntax
allows to express a parallel algorithm in a simpler style. CAF has been tested on different scientific appli-
cations (Ashby and Reid 2008), (Hasert, Klimach, and Roller 2011), (Cardellini, Fanfarillo, and Filippone
2016) and it has been shown that CAF code efficiency is comparable to that of MPI code. In the trade-off
between readability and efficiency, we think that CAF is a winning choice when parallelizing a scientific
legacy code.

1.2 Paper Contributions

However, CAF currently lacks the support of unit testing tools and this makes the developer task harder.
The goal of our paper is to fill this gap and to provide a contribution toward the test-driven development
of scientific applications written in CAF, in such a way to make the development schedule much more
predictable. To this end, we extend pFUnit, the parallel Fortran Unit testing framework, with the support for
CAF, thus contributing with a framework for unit testing with Coarray Fortran.

The rest of the paper is organized as follows. In Section 2 we provide some background on CAF and
testing of scientific software, including TDD and pFUnit. In Section 3 we describe the proposed extension
of pFUnit that supports CAF, also providing an example of testing a simple CAF code with pFUnit. In
Section 4 we describe a case study of unit testing related to the migration from MPI to CAF of PSBLAS,
a library of Basic Linear Algebra Subroutines for parallel sparse applications. We conclude with Section 5
providing some hints for future work.

2 BACKGROUND

2.1 Coarray Fortran

Coarray Fortran achieves a good trade-off between readability and performance: it introduces minimal
syntactic extensions, it allows for very clear specification of data movement, and it allows a smooth path
for code migration and incremental parallelization. Compared with the parallelization of application under

Abdullahi Hassan, Cardellini, and Filippone

MPI, the parallel features are easier to follow, the code tends to be far shorter, and the impact of the parallel
statements is much smaller.

CAF started as an extension of Fortran for parallel processing and is now part of the Fortran 2008 standard.
CAF adopts the PGAS model for SPMD parallel programming, where multiple “images” share their address
space; the shared space is partitioned, and each image has a local portion. The standard is very careful not
to constrain what an “image” should be, so as to allow different implementations to make use of underlying
threads and/or processes. From a logical, user-centered point of view, each CAF program is replicated across
images, and the images execute independently until they reach a synchronization point, either explicit or
implicit. The number of images is not specified in the source code, and can be chosen at compile, link or
run-time, depending on the particular implementation of the language. Images are assigned unique indices
through which the user can control the flow of the program by conditional statements, similar to common
usage in MPI. Coherently with the language default rules, image indices range from 1 to a maximum index
which can be retrieved at runtime through an appropriate intrinsic function num_images(). Each image
has its own set of data objects; some of these objects may also be declared as coarray objects, meaning that
they can be accessed by other images as well. Coarrays are declared with a so-called codimension, indicated
by square brackets. The codimension spans the space of all the images:
i n t e g e r : : i [∗]
r e a l : : a (1 0) [∗]
r e a l : : b (0 : 9) [0 : 4 , ∗]

As already mentioned, one of the main advantages of CAF over MPI is its simplicity. Much of the parallel
bookkeeping is handled behind the scenes by the compiler, and the resulting parallel code is shorter and
more readable; this reduces the chances of injecting defects in the code. As an example, let us consider the
burden of passing a non-contiguous array (for example, a matrix row in Fortran) using MPI_DATATYPE:
! D e f i n e v e c t o r
c a l l MPI_Type_vector (n , nb , n , MPI_REAL , myvector , i e r r)
c a l l MPI_Type_commit (myvector , i e r r)
! Communicate
i f (n_rank == 0) then

c a l l MPI_Send (a , 1 , myvector , 1 , 1 0 0 , MPI_COMM_WORLD, i e r r)
e n d i f
i f (n_rank == 1) then

c a l l MPI_Recv (a , 1 , myvector , 0 , 1 0 0 , MPI_COMM_WORLD, mys t a tu s , i e r r)
e n d i f

c a l l MPI_Type_free (myvector , i e r r)

All of the above code is equivalent to just a single CAF statement:
a (1 , :) [2] = a (1 , :) [1]

with no need to write separate code for sending and receiving a message.

Currently, the number of compilers implementing CAF has increased: the Intel and Cray compilers sup-
port it. The GCC compiler provides CAF support via a communication library; the base GCC distribution
only handles a single image, but the OpenCoarrays project provides an MPI-based and a GASNet-based
communication library (Fanfarillo, Burnus, Cardellini, Filippone, Nagle, and Rouson 2014).

2.2 Unit Test and Test-Driven Development

Software testing can be applied at different levels: unit tests are fine-grained tests, focusing on small portions
of the code (a single module, function or subroutine) (Osherove 2015), while regression tests are coarse-

Abdullahi Hassan, Cardellini, and Filippone

grained tests, that encompass a large portion of the implementation and are used to verify that the software
still performs correctly after a modification.

Many scientific softwares rely on regression, disregarding unit tests. This choice presents several disadvan-
tages, spanning from the impossibility to perform verification in the early stages of software’s lifecycle, to
difficulties in locating the error responsible for failure, and to a long time required to run tests.

Additionally, the search for performance through parallelism increases complexity of the code and may
cause new classes of errors: race conditions and deadlocks are two such examples.

Race conditions occur when multiple images try to access concurrently the same resource. For example, in
the code fragment:
c o u n t [1] = 0
do i =1 , n

c o u n t [1] = c o u n t [1] + 1
enddo

the final value of the variable count[1] is not uniquely determined by the code, and depends upon the
order in which the various images execute the statements.

A deadlock occurs when an image is waiting for an event that cannot possibly occur, e.g., when two images
wait for each other; as a consequence, the program makes no further progress. With CAF a deadlock occurs
in the following example:
i f (t h i s _ i m a g e == 1) then

sync images (num_images ())
e n d i f

because image 1 is waiting for synchronization with the last image, but the last image is not executing the
matching sync statement.

These new classes of errors enforce the need for systematic unit testing.

Test-Driven-Development (TDD) is a software development practice relying strongly on unit tests. TDD
combines a test-first approach with refactoring: before actually implementing the code, the programmer
writes automated unit tests for the functionality to be implemented.

Writing unit tests is a time-consuming process, and if the associated effort is perceived to be excessive, the
programmer may be inclined to reduce or skip it altogether. Unit testing frameworks are tools intended to
help the developers to write, execute and review tests and results more efficiently. Many testing frameworks
exist; they are often called “xUnit” frameworks, where “x” stands for the (initials of the) name of the
language they are developed for.Usually, a unit testing framework provides code libraries with basic classes,
attributes and assert methods; it also includes a test runner used to automatically identify and run tests,
and provides information about their number, failures, raised exceptions, location of failures. Good testing
frameworks are critical for the acceptance of TDD.

2.3 pFUnit: A Unit Testing Framework for Parallel Fortran

Given the above discussion, it should by now be clear that a unit testing framework for Coarray Fortran
applications is a desirable tool. A good basis for a CAF compatible unit testing framework ought to have
certain characteristics. First, it should be conceived for the Computational Science & Engineering (CSE)
and HPC development communities. The ideal framework should also handle parallelism and should be
able to detect the peculiar errors caused by concurrently execution of different images. Additionally, it must
be easy to extend, for example through object-oriented (OO) features.

Abdullahi Hassan, Cardellini, and Filippone

pFUnit from NASA (Clune and Rood 2011) is a tool that satisfies all of these requirements. pFUnit is a
unit testing framework implemented by keeping in mind the open source xUnit family, and is developed in
Fortran 2003, using OO design techniques. While patterned after Junit, pFUnit is tailored to the CSE/HPC
environment and supports comparison of single/double precision quantities with optional tolerance and test
for infinity and NaN (thus permitting to check for subtle numerical issues that can affect result quality).
Moreover, the available support for parallelism and its OO structure, make it an ideal starting point to start
for the creation of a CAF-compliance unit testing framework.

The simplest way to write tests using pFUnit is through a preprocessor input file. The preprocessor input file
is not written in standard Fortran and has extension ”.p f ”. It is a Fortran free format file with preprocessor
directives added. The parser automatically generates one test suite per file/module, and suite names are
derived from the file or module containing the tests. Once the preprocessor is invoked, it generates a Fortran
file that when compiled and linked with pFUnit will provide tests subroutine. Finally, pFUnit provides a
driver, that is, a short program that bundles all of the test suites, runs the tests and produces a short summary.

3 EXTENDING PFUNIT WITH CAF SUPPORT

We now present how we provide support for Coarray Fortran in pFUnit. To this end, we created a set of
CAF classes, extending those already available inside pFUnit. They are shown in Figure 1 and include:

CafTestCase This class allows a single test procedure to be executed multiple times with different input
values. By analogy with MpiTestCase, it is a special subclass of the more general ParameterizedTest-
Case and allows to run tests using pFUnit custom support for parameterized tests.

CafTestParameter This class provides procedures for setting/getting the number of images for the run-
ning test and ensures that image causing the failure is correctly reported.

CafTestMethod This class permits test fixture by specifying setUp() and tearDown() methods.
CafContext This class provides some communication routines such as gather and reduce.

Figure 1: CAF classes inside pFUnit.

In the CAF_context class, some collective operations need to be defined. Collectives for coarrays have
been proposed and scheduled for inclusion in a future revision of the Fortran standard, but are not currently
available in many compilers. For this reason a simple co_sum function and a logical reduction, as well as
some gather subroutines are provided in this class.

Abdullahi Hassan, Cardellini, and Filippone

The implementation of these collectives is not fully optimized, since they are intended to be superseded by
the runtime of the compiler, but this is not too restrictive since they will will run only once for each test
suite.

From the user perspective, CAF tests have a single, mandatory argument of type CafTestCase and with
intent(INOUT). It provides two methods getNumImages() and getImageRank(), returning the
total number of images running for the test and the rank of the current image. In CAF, test failing assertions
of any types provide information about the rank of the process (or the ranks of the processes) that detects
the failure. This permits to recover not only on the test that has failed, but on the specific image that causes
the failure.

3.1 An Example of CAF Unit Test Using pFUnit

Let us now consider a simple example of testing a CAF code with pFUnit. The example has been run
on a Linux laptop, using GCC 6.1.0, MPICH 3.2, OpenCoarrays 1.6.2 and our development version of
pFUnit. Let us assume that we have an application where the CAF images are organized in a linear array,
and our computations need to deal with elements of an index space. Let us also assume that the amount of
computation per point in the index space is constant; naturally, we want our workload to be distributed as
evenly as possible. A possible solution would be to use the following routine which determines, for each
image, the size of the local number of indices and the first index assigned to it:
s u b r o u t i n e d a t a _ d i s t r i b u t i o n (n , i l , n l)

i n t e g e r , i n t e n t (in) : : n
i n t e g e r , i n t e n t (out) : : i l , n l
i n t e g e r : : nmi
! Compute f i r s t l o c a l i n d e x IL and number o f l o c a l i n d i c e s NL . We want t h e da ta t o
! be e v e n l y spread , i . e . , f o r a l l images ! NL must be w i t h i n 1 o f n / num_images ()
! For a l l images we s h o u l d have t h a t IL [ME+1]− IL [ME]=NL
a s s o c i a t e (me=> t h i s _ i m a g e () , images =>num_images ())

nmi = mod (n , images)
n l = n / images + merge (1 , 0 , me<=nmi)
i l = min (n +1 , merge ((1 + (me−1)∗ n l) , &

& (1+ nmi ∗ (n l +1) + (me−nmi−1)∗ n l) ,&
& me <= nmi))

end a s s o c i a t e
end s u b r o u t i n e d a t a _ d i s t r i b u t i o n

It is easy to see that on NP images, this routine will assign to each image either N/NP indices or (N/NP)+1,
as necessary to make sure the indices add up to N. To check that our routine is working properly with pFUnit
we need to specify clearly which properties our data distribution is supposed to have; in our case we have:

1. The local sizes must add up to the global size N;
2. The local sizes must differ by at most 1 from N/NP;
3. For each image me<num_images(), il[me+1]-il[me] must be equal to nl.

Checking the first property is very simple when the underlying compiler (like GNU Fortran 6.1.0) supports
the collective intrinsics:

@tes t (nimgs =[s t d])
s u b r o u t i n e t e s t _ d i s t r i b u t i o n _ 1 (t h i s)

i m p l i c i t none
C l a s s (CafTes tMethod) , i n t e n t (i n o u t) : : t h i s
i n t e g e r , parameter : : g sz =27
i n t e g e r : : ngl , i n f o
i n t e g e r , a l l o c a t a b l e : : i l [:] , n l [:]

Abdullahi Hassan, Cardellini, and Filippone

a l l o c a t e (i l [∗] , n l [∗] , s t a t = i n f o)
@ a s s e r t E q u a l (i n f o , 0 , " F a i l e d a l l o c a t i o n ! ")
! S e t up c h e c k s
a s s o c i a t e (me=> t h i s _ i m a g e () , images =>num_images ())

c a l l d a t a _ d i s t r i b u t i o n (gsz , i l , n l)
! B u i l d r e f e r e n c e da ta t o check a g a i n s t
n g l = n l
c a l l co_sum (n g l)
@ a s s e r t E q u a l (ngl , gsz , " S i z e s do n o t add up ! ")

end a s s o c i a t e
end s u b r o u t i n e t e s t _ d i s t r i b u t i o n _ 1

The macro @test(nimgs=[std]) indicates that the test we are running is a CAF test that runs on
all available images. The this argument is mandatory and must have intent(inout); the assertion
@assertEqual is used to verify that the actual result matches the expected output.

The coarrays remote access facilities make it very easy to check for consistency across process boundaries.
Since the OpenCoarrays installation we are using is built on top of MPICH, we execute the tests with the
mpirun command, as shown in Figure 2. The output gives us confidence that the data distribution is
computed correctly; the run with 15 processes tells us that the border case where we have more processes
than indices (in our case 13) is being handled correctly. Since the test has been run on an quad-core laptop,
running 15 MPI processes has a substantial overhead, which is entirely normal; the run with 4 processes was
very fast, as expected.

[l o c a l h o s t CAF_pFUnit] mpirun −np 4 . / tes tCAF
. . .
Time : 0 .004 s e c o n d s
OK
(3 t e s t s)

[l o c a l h o s t CAF_pFUnit] mpirun −np 15 . / tes tCAF
. . .
Time : 6 .207 s e c o n d s
OK
(3 t e s t s)

Figure 2: Test output

What happens if there is an error? To demonstrate this, we wrapped the data_distribution routine
injecting two errors on image 2: we alter both the local number of indices as well as the starting index. The
test output is shown in Figure 3. We get a fairly precise indication of what went wrong and where:

• An error on all images because the total size does not match the expected value;
• An error on image 2 because the local number of indices is not in the expected range

(N/NP):(N/NP)+1;
• An error on images 1 and 2, because having injected an error in the start index on image 2 affects

the checks on both of these images.

3.2 Limitations: Team Support

It is often desirable to be able to run tests using varying number of processes/images; this is because some
bugs reveal themselves only when running on a certain number of processes. In pFUnit, the user is al-

Abdullahi Hassan, Cardellini, and Filippone

[l o c a l h o s t CAF_pFUnit] mpirun −np 4 . / tes tCAF
. F . F . F
Time : 0 .013 s e c o n d s

F a i l u r e in : C A F _ d i s t r i b u t i o n _ t e s t _ m o d _ s u i t e . t e s t _ d i s t r i b u t i o n _ 1 [nimgs = 4] [nimgs =4]
L o c a t i o n : [tes tCAF . p f : 2 5]

D i s t r i b u t i o n does n o t add up ! e x p e c t e d 13 b u t found : 17; d i f f e r e n c e : | 4 | . (IMG=1)

.

F a i l u r e in : C A F _ d i s t r i b u t i o n _ t e s t _ m o d _ s u i t e . t e s t _ d i s t r i b u t i o n _ 2 [nimgs = 4] [nimgs =4]
L o c a t i o n : [tes tCAF . p f : 5 0]

One image i s g e t t i n g t o o many e n t r i e s e x p e c t e d 4 to be l e s s t h a n or e q u a l to : 1 . (IMG=2)

F a i l u r e in : C A F _ d i s t r i b u t i o n _ t e s t _ m o d _ s u i t e . t e s t _ d i s t r i b u t i o n _ 3 [nimgs = 4] [nimgs =4]
L o c a t i o n : [tes tCAF . p f : 8 1]

S t a r t i n d i c e s n o t c o n s i s t e n t e x p e c t e d 4 b u t found : −4; d i f f e r e n c e : | 8 | . (IMG=1)

F a i l u r e in : C A F _ d i s t r i b u t i o n _ t e s t _ m o d _ s u i t e . t e s t _ d i s t r i b u t i o n _ 3 [nimgs = 4] [nimgs =4]
L o c a t i o n : [tes tCAF . p f : 8 1]

S t a r t i n d i c e s n o t c o n s i s t e n t e x p e c t e d 7 b u t found : 1 1 ; d i f f e r e n c e : | 4 | . (IMG=2)

FAILURES ! ! !
T e s t s run : 3 , F a i l u r e s : 3 , E r r o r s : 0

t h e r e i s an e r r o r

Figure 3: Test output with errors

lowed to control this aspect by passing an optional argument nimgs=[<list>] (in the case of CAF) or
nprocs=[<list>] (in the case of MPI): in this way the test procedure will execute once for each item
in <list>. MPI makes this possible by constructing a sub-communicator of the appropriate size for each
execution. In principle, CAF allows for clustering of images in teams, which are meant to be similar to MPI
communicators; at any time an image executes as a member of a team (the current team). Constructs are
available to create and synchronize teams.

Unfortunately, at the time of this writing, the only compiler supporting teams is the OpenUH one (Khaldi,
Eachempati, Ge, Jouvelot, and Chapman 2015). However, this compiler does not support other standard
Fortran features; most importantly, it does not support the OO programming features, and therefore cannot
be used with pFUnit. As a result, the current version of pFUnit only allows the CAF user-defined tests to be
run with all images, and the only accepted values for the optional argument nimgs is [std].

4 CASE STUDY: PSBLAS

We illustrate a case study that shows how pFUnit can be used to detect errors. We applied pFUnit to perform
unit tests on the PSBLAS library (Filippone and Colajanni 2000) (Filippone and Buttari 2012) during the
library migration from MPI to CAF. At the time of writing, we have written a total of 12 test suites and 241
unit tests. PSBLAS is a library of Basic Linear Algebra Subroutines that implements iterative solvers for
sparse linear systems and includes subroutines for multiplying sparse matrices by dense matrices, solving
sparse triangular systems, and preprocessing sparse matrices, as well as additional routines for dense matrix
operations. It is implemented in Fortran 2003 and the current version uses message passing to address a
distributed memory execution model. We converted the code gradually from MPI to coarrays, thus having
MPI and CAF coexisting in the same code. In PSBLAS, we detected three communication patterns that had
to be modified: 1) the halo exchange, 2) the collective subroutines, and 3) the point-to-point communication
in data distribution. In PSBLAS, data allocation on the distributed-memory architecture is driven by the

Abdullahi Hassan, Cardellini, and Filippone

Figure 4: Example of halo exchange on 2 images.

discretization mesh of the original PDEs. Each variable is associated to one point of the discretization
mesh. If ai j ̸= 0 we say that point i depends on point j. After the partition of the discretization mesh into
subdomains, each point is assigned to a parallel process. An halo point is a point which belongs to another
domain, but there is at least one point in this domain that depends on it. Halo points are requested by other
domains when performing a computational step (for example a matrix-vector product) : every time this
happens we perform an halo exchange operation that can be considered as a sparse all-to-all communication.

The subroutine psb_halo performs such an exchange and gathers values of the halo elements: we used
our framework to unit test this procedure. We need to run the whole suite of tests multiple times if we want
to change the number of images participating in the test. To avoid that, in each test we distributed variables
not among all the available images, but only on a subset of them. In this way, while all tests run on the same
number of images, communication actually takes place only between some of the images. Of course this has
to be taken into account when asserting equality on all images (we have to do that, otherwise a deadlock can
occur). In the following example, we test the halo exchange of a vector. The variables are distributed only
between two images. When calling the assert statement, the expected solution check and the obtained
result v are multiplied by 1 if the image takes part to the communication, 0 otherwise.
@tes t (nimgs =[s t d])
s u b r o u t i n e t e s t _ p s b _ d h a l o _ 2 i m g s _ v (t h i s)

i m p l i c i t none
C l a s s (CafTes tMethod) , i n t e n t (i n o u t) : : t h i s
i n t e g e r : : me , t r u e
r e a l (psb_dpk_) , a l l o c a t a b l e : : v (:) , check (:)
type (p s b _ d e s c _ t y p e) : : d e s c_ a
! D i s t r i b u t i n g p o i n t , C r e a t i n g i n p u t v e c t o r v and e x p e c t e d s o l u t i o n check .
. . .
! C a l l i n g t h e ha lo s u b r o u t i n e
c a l l p s b _ h a l o (v , desc_a , i n f o)
@ a s s e r t E q u a l (0 , i n f o , "ERROR i n p s b _ h a l o ")

i f ((me= = 1) . o r . (me==2)) then
t r u e = 1

e l s e
t r u e =0

e n d i f

@ a s s e r t E q u a l (t r u e ∗check , t r u e ∗v)

! D e a l l o c a t e f r e e and e x i t p s b l a s
. . .

end s u b r o u t i n e t e s t _ p s b _ d h a l o _ 2 i m g s _ v

Abdullahi Hassan, Cardellini, and Filippone

When writing a test for a given functionality, the programmer should ensure to reach the maximum code
coverage. This means to test all the implementations of a given interface and to consider all the possible
branches. Let us consider, for example, the collective subroutine psb_amx in PSBLAS which implements
a maximum absolute value reduction. By looking at its interface, we can see that for its testing we need at
least 15 different unit tests.

i n t e r f a c e psb_amx
module p r o c e d u r e psb_iamxs , psb_iamxv , psb_iamxm , psb_samxs , psb_samxv , psb_samxm ,&

& psb_camxs , psb_camxv , psb_camxm ,&
& psb_damxs , psb_damxv , psb_damxm ,&
& psb_zamxs , psb_zamxv , psb_zamxm

end i n t e r f a c e

Additionally, it admits one optional argument root indicating which image holds the final value. If
root = -1, then the final result is shared among images, thus performing an all-reduce operation. This
parameter leads to a branch in the code, thus doubling the number of unit tests needed.

i f (r o o t _ == −1) then
! A l l r ed uc e

. . .
e l s e

! Reduce , r o o t _ i s t h e r o o t p r o c e s s
. . .

e n d i f

Finally, we test the utility subroutine psb_matdist to distribute a matrix among images according to a
user defined data distribution.

s u b r o u t i n e t e s t _ p s b _ d m a t d i s t 1 (t h i s)
i m p l i c i t none
C l a s s (CafTes tMethod) , i n t e n t (i n o u t) : : t h i s
i n t e g e r : : me , np , i n f o , i u n i t =12 , nv , i ,&

& nz , l a s t , j , i row , i c o n t x t
type (p s b _ d e s c _ t y p e) : : d e s c_ a
type (p sb_dspma t_ type) : : a , a _ o u t
i n t e g e r , parameter : : m_problem = 10
i n t e g e r , a l l o c a t a b l e : : i p v (:) , i v g (:) , i a (:) , &

& j a (:) , i a _ e x p (:) , j a _ e x p (:)
r e a l (psb_dpk_) , a l l o c a t a b l e : : v a l (:) , v a l _ e x p (:) , &

& a_exp (: , :) , a_aux (: , :)
me = t h i s _ i m a g e ()
np = num_images ()
c a l l p s b _ i n i t (i c o n t x t , np ,MPI_COMM_WORLD)
c a l l mm_mat_read (a , i n f o , i u n i t = i u n i t ,&

& f i l e n a m e =" m a t r i x 1 . mtx ")
a l l o c a t e (i v g (m_problem) , i p v (np))
do i =1 , m_problem

c a l l p a r t _ b l o c k (i , m_problem , np , ipv , nv)
i v g (i) = i p v (1)

enddo

! G e t t i n g t h e e x p e c t e d s o l u t i o n
c a l l a%c s g e t r o w (1 , 1 0 , nz , i a , j a , va l , i n f o)
a l l o c a t e (i a _ e x p (nz) , j a _ e x p (nz) , v a l _ e x p (nz))
l a s t = 0
do i =1 , m_problem

i f (me == i v g (i) + 1) then
i row = i
do j =1 , nz

i f (i a (j) == i row) then
l a s t = l a s t + 1
i a _ e x p (l a s t)= i a (j)
j a _ e x p (l a s t)= j a (j)
v a l _ e x p (l a s t)= v a l (j)

e n d i f
enddo

e n d i f
enddo

i f (a l l o c a t e d (a_exp)) d e a l l o c a t e (a_exp)
a l l o c a t e (a_exp (m_problem , m_problem))
a_exp = 0 . 0 d0
do i =1 , l a s t

a_exp (i a _ e x p (i) , j a _ e x p (i)) = v a l _ e x p (i)
enddo

! T e s t s u b r o u t i n e
c a l l p s b _ m a t d i s t (a , a_out , i c o n t x t , &

& desc_a , i n f o , v= i v g)
c a l l a _ o u t%c s g e t r o w (1 , m_problem , nz , i a , j a , va l , i n f o)
! Conver t t o g l o b a l i n d i c e s
c a l l p s b _ l o c _ t o _ g l o b (i a , desc_a , i n f o)
c a l l p s b _ l o c _ t o _ g l o b (j a , desc_a , i n f o)
i f (a l l o c a t e d (a_aux)) d e a l l o c a t e (a_aux)
a l l o c a t e (a_aux (m_problem , m_problem))
a_aux = 0 . 0 d0
do i =1 , l a s t

a_aux (i a (i) , j a (i)) = v a l (i)
enddo
@ a s s e r t E q u a l (a_aux , a_exp)

! Free
d e a l l o c a t e (a_aux , a_exp , i a , j a , v a l)
d e a l l o c a t e (ipv , ivg , i a_exp , j a_exp , v a l _ e x p)
c a l l p s b _ s p f r e e (a , desc_a , i n f o)
c a l l p s b _ c d f r e e (desc_a , i n f o)
c a l l p s b _ e x i t (i c o n t x t)

end s u b r o u t i n e t e s t _ p s b _ d m a t d i s t 1

We use an auxiliary input file containing a matrix of size m_problem in the Matrix Market format. The test
runs on all images and with all input matrices as long as the parameter m_problem is changed accordingly.
We use a block partition distribution, through a call to part_block. It returns the vector vg of size

Abdullahi Hassan, Cardellini, and Filippone

m_problem: variable i belongs to process j if vg(i)=j. We use this vector to manually create the
partition, building the matrix a_exp that represents the expected solution. We then create the partition
through a call to the psb_mat subroutine, and we build an auxiliary local matrix a_aux. Finally, we
check the correctness of the solution by asserting the equality of the two matrices.

5 CONCLUSIONS

Coarray Fortran (CAF) makes parallelism syntactically simpler than using MPI, and CAF code is much
easier to write and maintain. We believe that CAF is particularly suitable for parallelization of legacy
Fortran codes, where the trade-off between readability and performance is an issue.

Support tools for CAF programmers are rare; the inadequacy of common unit testing frameworks, for ex-
ample, is a major difficulty in applying TDD techniques in the case of CAF code. To improve this situation,
we have extended the existing Parallel Fortran Unit Testing framework (pFUnit) to support CAF. pFUnit has
been proved to be well suited to this task thanks to its object-oriented architecture and its design tailored to
the needs of the HPC and CSE communities.

Future work will include the enablement of the team support as soon as it becomes available in the under-
lying compiler(s), and the collection of more usage data in the context of new application development. We
are currently in contact with the authors of pFUnit to arrange for general availability of our extensions.

ACKNOWLEDGMENTS

We wish to thank Dr. Tom Clune of NASA for giving us full access to the latest pFUnit source code, as well
as for starting the pFUnit project in the first place.

REFERENCES

Ashby, J. V., and J. K. Reid. 2008. “Migrating a scientific application from MPI to coarrays”. In Proc. of
2008 Cray User Group Conf., CUG ’08.

Cardellini, V., A. Fanfarillo, and S. Filippone. 2016. “Heterogeneous CAF-based load balancing on Intel
Xeon Phi”. In Proc. of 2016 IEEE Int’l Parallel and Distributed Processing Symposium Workshops,
IPDPSW ’16, pp. 702–711.

Carver, J. C., R. P. Kendall, S. E. Squires, and D. E. Post. 2007. “Software development environments for
scientific and engineering software: A series of case studies”. In Proc. of 29th Int’l Conf. on Software
Engineering, ICSE ’07, pp. 550–559, IEEE.

Chamberlain, B.L. 2015. “Chapel”. In Programming Models for Parallel Computing. MIT Press.

Clune, T. L., and R. B. Rood. 2011. “Software testing and verification in climate model development”. IEEE
Software vol. 28 (6), pp. 49–55.

Fanfarillo, A., T. Burnus, V. Cardellini, S. Filippone, D. Nagle, and D. Rouson. 2014. “OpenCoarrays: Open-
source transport layers supporting Coarray Fortran compilers”. In Proc. of 8th Int’l Conf. on Partitioned
Global Address Space Programming Models, PGAS ’14, pp. 4:1–4:11, ACM.

Filippone, S., and A. Buttari. 2012. “Object-oriented techniques for sparse matrix computations in Fortran
2003”. ACM Transactions on Mathematical Software vol. 38 (4), pp. 23:1–23:20.

Abdullahi Hassan, Cardellini, and Filippone

Filippone, S., and M. Colajanni. 2000. “PSBLAS: A library for parallel linear algebra computation on sparse
matrices”. ACM Transactions on Mathematical Software vol. 26 (4), pp. 527–550.

Hasert, M., H. Klimach, and S. Roller. 2011. “CAF versus MPI-applicability of coarray Fortran to a flow
solver”. In Recent Advances in the Message Passing Interface, EuroMPI ’11, pp. 228–236, Springer.

Khaldi, D., D. Eachempati, S. Ge, P. Jouvelot, and B. Chapman. 2015. “A team-based methodology of
memory hierarchy-aware runtime support in Coarray Fortran”. In Proc. of 2015 IEEE Int’l Conf. on
Cluster Computing, CLUSTER ’15, pp. 448–451.

Numrich, R. W., and J. Reid. 1998. “Co-Array Fortran for parallel programming”. ACM Sigplan Fortran
Forum vol. 17 (2), pp. 1–31.

Osherove, R. 2015. The Art of Unit Testing. MITP-Verlags GmbH & Co. KG.

Radhakrishnan, H., D. W. Rouson, K. Morris, S. Shende, and S. C. Kassinos. 2013. “Test-driven coarray
parallelization of a legacy Fortran application”. In Proc. of 1st Int’l Workshop on Software Engineering
for High Performance Computing in Computational Science and Engineering, pp. 33–40. ACM.

Rouson, D., J. Xia, and X. Xu. 2011. Scientific Software Design. Cambridge University Press.

Saraswat, V. and Bloom, B. and Peshansky, I. and Tardieu, O. and Grove, D. 2012. “The X10 language
specification, v2.2.3”.

UPC Consortium 2005. “UPC language specifications, v1.2”. Technical Report LBNL-59208, Lawrence
Berkeley National Lab.

AUTHOR BIOGRAPHIES

AMBRA ABDULLAHI HASSAN is a PhD student at the University of Rome Tor Vergata, Italy. Her
research interests include high performance computing and software for computational linear algebra.

VALERIA CARDELLINI, PhD, is Associate Professor at the University of Rome Tor Vergata, Italy. Her
research interests are in the field of distributed and parallel computing systems. She has published more than
80 papers in international conferences and journals, has served as TPC member of conferences and co-chair
of workshops and participated in EU projects on IT topics, including EoCoE and Cost Action ACROSS.

SALVATORE FILIPPONE, PhD, is a Lecturer at Cranfield University, UK. His main research interests are
in software development for High Performance Computing; he has served as TPC member of a number of
international conferences, as a reviewer and evaluator of EU projects, and is Associate Editor for the ACM
Transactions on Mathematical Software.

SCALING CONSTITUENT ALGORITHMS OF A TREND AND
CHANGE DETECTION POLYALGORITHM

Rishu Saxena Valerie A. Thomas
Layne T. Watson Randolph H. Wynne

Departments of Computer Science Department of Forest Resources and
and Mathematics Environmental Conservation

VPI & SU, Blacksburg, VA 24061 VPI & SU, Blacksburg, VA 24061
rishus@vt.edu thomasv@vt.edu

ABSTRACT

Earth observation satellites (EOS) such as Landsat provide image datasets that can be immensely useful
in numerous application domains, by extracting information via time series analysis. While the literature
is replete with algorithms, the size of the datasets itself is prohibitive, currently of the order of petabytes
and growing, which makes them computationally unwieldy — both in storage and processing. An EOS
image stack typically consists of multiple images of a fixed area on the Earth’s surface (same latitudes
and longitudes) taken at different time points. Meaningful time series analysis on one such interannual,
multitemporal stack with existing state of the art codes can take several days on multicore servers. This work
lays the foundation for a polyalgorithm based on two change detection algorithms, EWMACD and BFAST,
for time series analysis of satellite image stacks, and presents speedup results for those two algorithms.

Keywords: Time series analysis, big data, change detection, parallel computing, load balancing.

1. INTRODUCTION

Land use and land cover change (LULCC) is of crucial importance globally. With anthropogenic activities
such as deforestation and urbanization increasing exponentially through the past century, there have been
significant changes in land cover in several parts of the world [8]. Simultaneously, significant changes in
the global climate have also been observed, driven in part by LULCC (e.g., [7]). LULCC also has impacts
on a wide variety of other ecosystem services. Much research is, therefore, being directed towards Earth
monitoring.

Earth observation satellites (EOS) such as Landsat provide image datasets that, if harnessed well, can be
immensely helpful towards LULCC monitoring. These images hold valuable information that can be very
helpful in understanding and managing our natural resources.

Time series analysis (or, temporal trajectory analysis) is an excellent way of analyzing the satellite datasets
for Earth monitoring and has been receiving increasing attention in the last decade, specifically, after the
Landsat data became freely accessible in 2008 [17]. In time series analysis, several images of the scene
under consideration, taken over a period of time, are stacked together chronologically, and are subsequently
analyzed. Typically, the data set is converted into a collection of time series, each time series corresponding
to a particular spectral band for one pixel. The objective is to discover a ‘trend’ in how different relevant
variables (indicators) evolve over time. The analysis made is based on the behaviors of the time series of
these variables. When the trajectory of one or more of the variables departs from the normal (or, predicted),

HPC 2017, 2017 April 23-26, Virginia Beach, VA, USA; c©2017 Society for Modeling & Simulation International (SCS)

Saxena, Watson, Thomas, and Wynne

a change is detected. Several time series analysis algorithms have been proposed by different groups in the
remote sensing community.

While several time series analysis algorithms have been proposed, the size of the datasets itself is prohibitive,
currently of the order of petabytes and growing. An EOS image stack typically consists of multiple images of a
fixed area on the Earth’s surface (same latitudes and longitudes) taken at different time points. Experiments
on multicore servers indicate that carrying out meaningful time series analysis on a single interannual,
multitemporal stack with existing state of the art codes can take several days. An HPC platform for time
series analysis of satellite images obtained from MODIS was presented in [3]. In contrast with Landsat
images, MODIS images have much coarser spatial resolution but much better temporal resolution. Knowing
the need for scalable computations in remote sensing, several architectures have also been proposed. These
mainly include massive parallel clusters, heterogeneous clusters, grid computing, GPUs and the like [9],
[12], [14]. Considerable HPC work on classification (e.g., [13]) has also been carried out.

This paper presents parallel results for the constituents of a polyalgorithm under development for trend and
change detection in Landsat images. The polyalgorithm consists of two algorithms, fundamentally distinct
from each other, both by construction and in the phenomenon they capture. The algorithms are implemented
in the scientific programming language Fortran 2003. Parallelization across pixels is implemented and further
possibilities for speeding up the individual algorithms as well as the combined algorithm are discussed.
Experimental results of applying the codes to an image with approximately 108 pixels are presented.

The two algorithms are presented in Section 2. Results for the algorithms individually are presented and
discussed in Section 3. Section 4 describes parallel implementations, with conclusions and future work on
the polyalgorithm in Section 5.

2. ALGORITHMS AND IMPLEMENTATION
Notation and definitions: For an m×n matrix A, an n-vector x, I ⊂ {1, . . . ,m}, J ⊂ {1, . . . , n}, let AIJ

denote the submatrix of A formed from the rows indexed by I and the columns indexed by J , and xJ denote
the subvector of x indexed by J . AI· (A·J) are the rows (columns) of A indexed by I (J), respectively. An
image is an R × C matrix D, where each Drc (pixel) is an S × B matrix, whose (s, b) element (Drc)sb is
the signal value at time index s and frequency band index b.

2.1. Exponentially Weighted Moving Average Change Detection (EWMACD) [4], [5]

Algorithm EWMACD.
for band b : = 1 step 1 until B do

for row r : = 1 step 1 until R do
for column c : = 1 step 1 until C do

begin

Step 1: Write the time series data in the column (Drc)·b as (Drc)·b =

(
u
v

)
, where the M -dimensional

vector u is deemed training data and the (S −M)-dimensional vector v as the test data. Let

X =

⎡
⎣
1 sin t1 cos t1 · · · sinKt1 cosKt1
...

...
...

...
...

...
1 sin tM cos tM · · · sinKtM cosKtM

⎤
⎦

be the Gram matrix for the time points t1, . . ., tM , using K harmonics, whereM > 2K+1. The least squares
fit to the training data u is then written as u(t) = α0 +

∑K
i=1(α2i−1 sin it + α2i cos it) with coefficients

α = (XtX)
−1

Xtu and residual E(α) = u−Xα.

Saxena, Watson, Thomas, and Wynne

Remark 1. In practice α is computed via a QR factorization of X, not by computing (XtX)−1 explicitly.

Next let I = {i | |E(α)i| < γ1}, where γ1 is a user defined threshold and |I| > 2K + 1. Calculate the

coefficients for an improved fit to the underlying signal as α∗ =
(
(XI·)tXI·

)−1
(XI·)t uI . With the refined

coefficients α∗, calculate the residuals for

(i) the complete time series (Drc)·b as E∗(α∗) = (Drc)·b − X̄α∗, where X̄s· = (1, sin ts, cos ts, . . .,
sinKts, cosKts), for s = 1, . . ., S.

(ii) the outlier-free time series as
(
E∗(α∗)

)
Ī
, where Ī = {s | |E∗(α∗)s| < γ2}, γ2 is a user defined

threshold, and

(iii) the outlier-free training set Î = Ī ∩ {1, . . . ,M} as
(
E∗(α∗)

)
Î
= uÎ −XÎ·α

∗, where |Î | > 2K + 1.

Remark 2. In the present implementation,

γ2 =

{
1.5η, i ∈ [1,M],
20η, i ∈ (M,S],

where η is the standard deviation of the first M elements of the residual vector E∗(α∗).

Step 2: Define the control limit vector τ by τi = μ+σL
√

λ
2−λ

(
1− (1− λ)2i

)
, for i = 1, 2, . . ., |Ī|, where

μ = 0 is used here, σ is the standard deviation of the outlier-free training data errors
(
E∗(α∗)

)
Î
, L is the

multiple of this standard deviation σ, and λ ∈ (0, 1] is the weight given to the most recent residual in the
exponentially weighted moving average (EWMA) defined next. L is typically set to 3 or slightly smaller
depending on the value of λ.

Step 3: Let Ī = {j1, j2, . . ., j|Ī|}, j1 < j2 < · · · < j|Ī|. Define the vector z by

z1 =
(
E∗(α∗)

)
j1
, zi = (1− λ)zi−1 + λ

(
E∗(α∗)

)
ji
, i = 2, . . . , |Ī |.

This is the exponentially weighted moving average (EWMA) of the residual
(
E∗(α∗)

)
Ī
.

Step 4: Define the flag history S-vector f by

fs =

{
sgn (zi)

⌊|zi/τi|⌋, s = ji ∈ Ī ,
0, otherwise.

If there is a run of +1 or −1 in the values sgn (Δfs) = sgn (fs+1− fs) of length �, called the ‘persistence’,
signal a change at the index s beginning the (nonzero) run.

Remark 3. Missing data is automatically handled by not assuming that the time points ti are equally
spaced. Alternatively, missing data for time point tk can be handled by including tk in the sequence (t1, t2,

. . ., tS), but excluding tk from the training sequence (t1, t2, . . ., tM) and k from the sets I , Ī , and Î , which
is equivalent to treating (Drc)kb as an outlier and to setting the flag fk = 0.

end

Saxena, Watson, Thomas, and Wynne

2.2. Breaks For Additive and Seasonal Trend (BFAST) [16]
Algorithm BFAST.
Let T = (t1, . . . , tS) be the sequence of given time points and the S-vector u denote the time series data
in the column (Drc)·b, i.e., u = (Drc)·b. Assume that the general model is of the form u = V + W + ε,
where V and W denote the iteratively computed trend and seasonal components, respectively, present in
the data and ε is the noise. The trend V may be piecewise linear and the seasonal component W may be
piecewise harmonic. Let N be the maximum number of iterations, n be the iteration number, and Vn and
Wn be the trend and seasonal components, respectively, computed at the nth iteration. Let h ∈ (0, 1) denote
the proportion of data points by which two consecutive breakpoints ti and tj (including t1 and tS) must be
separated. Thus �Sh� ≤ j − i − 1. Take the length of moving windows to be �Sh�, initialize the iteration
number n := 1, and initialize the seasonal component as W0(T) = (w0

1, . . ., w0
S).

for band b : = 1 step 1 until B do
for row r : = 1 step 1 until R do

for column c : = 1 step 1 until C do
begin

Step 1.1: Determine the possibility of breakpoints in trend.
Eliminate the seasonal component from the data un = u−Wn−1(T).

The ordinary least squares (OLS) estimator for the trend is given as α = (XtX)−1Xtun where X is the
Gram matrix for linear regression given by

X =

⎛
⎝

1 t1
...

...
1 tS

⎞
⎠ .

The prediction error (or residual vector or the OLS residual) is defined as Eo = un − Xα, where the
superscript ‘o’ is used to signify the fact that these residuals are OLS regression based. Consider the process
defined by the moving sums (MOSUM) of these OLS residuals

Qo =

⎧⎨
⎩

1

σ
√�Sh�

k∑
i=k−�Sh�+1

Eo
i

⎫⎬
⎭

S

k=�Sh�

,

where σ is the sample standard deviation of all the OLS residuals.

Compute the OLS-MOSUM test statistic f̂o = max
1≤k≤S−�Sh�+1

|Qo
k| as the maximum absolute value of

this process, then compute the asymptotic critical value of the OLS-MOSUM test using the two-sided
boundary-crossing probability pT = P [fo > f̂o], where pT is read from the Brownian Bridge table.

A p-value less than a user defined parameter τV ∈ (0, 1) indicates the presence of breakpoints.

Remark 1: As discussed in [6], under the null hypothesis, the OLS-MOSUM process converges in
distribution to the increments of a Brownian Bridge process.

Step 1.2: Locate trend breakpoints.
Suppose pT ≤ τV . To locate the breakpoints, consider all possible partitions of the domain, compute OLS
fits for each partition, and settle with a partition that yields minimum squared error.

Let X[i,j] denote the matrix formed from rows i through j of the matrix X, and α[i,j] denote the least squares
coefficients computed using the matrix X[i,j] with time points ti, . . ., tj , and data un

[i,j] = un
{i,...,j}. For

Saxena, Watson, Thomas, and Wynne

i = 1, . . ., S − �Sh� + 1, consider each window [ti, . . ., tj−1], i + 2 ≤ j ≤ S, and the linear fit in this
window. The recursive residual at point tj is then defined as the weighted prediction error

Er
ij =

un
[j,j] −X[j,j]α[i,j−1]√

1 +X[j,j]

(
Xt

[i,j−1]X[i,j−1]

)−1
Xt

[j,j]

.

The superscript ‘r’ is used to signify the fact that the process/statistic is recursive residual based.

Suppose a breakpoint has been found at ti. Then the cost of placing the next breakpoint at tk is calculated

as the accumulated sum of squared recursive residuals in the interval [ti, tk−1], i.e., ρik =
∑k−1

j=i+2

(
Er

ij

)2
.

All possible positions for the breakpoints can thus be calculated by considering the moving sums of squared
recursive residuals, i.e., the process defined by

Qr =

⎧⎪⎨
⎪⎩
⎧⎨
⎩

k∑
j=i+2

(
Er

ij

)2
⎫⎬
⎭

S

k=i+2

⎫⎪⎬
⎪⎭

S−�Sh�+1

i=1

.

Given the number μ of desired interior breakpoints, let k1, . . ., kμ be integers such that ki+1 − ki > �Sh�,
k1 > �Sh� + 1, and kμ < S − �Sh�. Determine K = (1, k1, . . ., kμ, S) to minimize the moving sums of
squared recursive residuals

k1−1∑
i=3

(
Er

1,i

)2
+

k2−1∑
i=k1+2

(
Er

k1,i

)2
+

k3−1∑
i=k2+2

(
Er

k2,i

)2
+ · · · +

S∑
i=kμ+2

(
Er

kμ,i

)2

.

Then (tk1
, . . ., tkμ

) are the interior breakpoints in the trend component.

Remark 2: The breakpoints t1, tk1
, . . ., tkμ

, tS are optimal in the sense of the above moving sums of
squared recursive residuals criterion.

Remark 3: If pT > τV , then there are only two breakpoints (t1 and tS) and no interior breakpoints. So
this step is skipped and there is simply one linear fit over the entire domain [t1, tS] (Step 1.3).

Step 1.3: Let k0 = 1, kμ+1 = S, and I0 = [tk0
, tk1

), I1 = [tk1
, tk2

), . . ., Iμ = [tkμ
, tkμ+1

]. For each
interval Ii, determine the linear regression coefficients

γi =
(
Xt

[ki,ki+1]
X[ki,ki+1]

)−1
X[ki,ki+1]u

n
[ki,ki+1]

and construct the (discontinuous) piecewise linear fit Vn(t) =
∑μ

i=0 Γ
i(t), where

Γi(t) =

{
γi
0 + γi

1t, t ∈ Ii,
0, otherwise.

Let Vn(T) = (vn1 , . . ., vnS) be the sequence of values estimated at t1, . . ., tS using this piecewise linear fit.

Step 2.1: Determine the possibility of breakpoints in seasons.

Eliminate the estimated trend component from the observed data ũn = u − Vn(T). The Gram matrix for
the seasonal (harmonic) component is given by

Y =

⎛
⎝

1 sin t1 cos t1 · · · sinKt1 cosKt1
...

...
...

...
...

...
1 sin tS cos tS · · · sinKtS cosKtS

⎞
⎠ ,

Saxena, Watson, Thomas, and Wynne

where K is the degree of the trigonometric polynomial used for regression. The trigonometric regression
coefficients for the seasonal component are computed as β = (Y tY)−1Y tũn. The prediction error for this
fit is defined as Eo = ũn − Y β. The OLS-MOSUM process for these errors is given by

Qo =

⎧⎨
⎩

1

σ
√�Sh�

k∑
i=k−�Sh�+1

Eo
i

⎫⎬
⎭

S

k=�Sh�

,

and the OLS-MOSUM test statistic is ĝo = max
1≤j≤S−�Sh�+1

|Qo
j |. The two-sided boundary-crossing proba-

bility pS = P [go > ĝo] is read from the Brownian Bridge table.

A p-value less than a user defined parameter τW ∈ (0, 1) indicates the presence of seasonal breakpoints.

Step 2.2: Locate seasonal breakpoints.
Suppose pS ≤ τW . Using the same notation as for the trend breakpoints,

Er
ij =

ũn
[j,j] − Y[j,j]β[i,j−1]√

1 + Y[j,j]

(
Y t
[i,j−1]Y[i,j−1]

)−1
Y t
[j,j]

is the recursive residual at time tj , obtained by trigonometric regression in the time window [ti, tj−1].

Given the number ν of desired seasonal interior breakpoints and a minimum number of data points separating
breakpoints (as for the trend), let l1, . . ., lν be integers such that li+1 − li > �Sh�, l1 > �Sh� + 1, and
lν < S − �Sh�. Determine L = (1, l1, . . ., lν , S) to minimize the moving sums of squared recursive
residuals

l1−1∑
i=3

(
Er

1,i

)2
+

l2−1∑
i=l1+2

(
Er

l1,i

)2
+

l3−1∑
i=l2+2

(
Er

l2,i

)2
+ · · ·+

S∑
i=lν+2

(
Er

lν ,i

)2
.

Then (tl1 , . . ., tlν) are the interior breakpoints in the seasonal component.

Remark 4: If pS > τW , then there are only two breakpoints (t1 and tS) and no interior breakpoints. So
this step is skipped and there is simply one trigonometric polynomial fit over the entire domain [t1, tS] (Step
2.3).

Step 2.3: Let l0 = 1, lν+1 = S, and J0 = [tl0 , tl1), J1 = [tl1 , tl2), . . ., Jν = [tlν , tlν+1
]. For each interval

Jj determine the trigonometric polynomial regression coefficients

δj =
(
Y t
[lj,lj+1]

Y[lj,lj+1]

)−1
Y[lj,lj+1]ũ

n
[lj ,lj+1]

and construct the (discontinuous) piecewise trigonometric polynomial Wn(t) =
∑ν

j=0 Δ
j(t), where

Δj(t) =

⎧⎪⎨
⎪⎩

δj1 +
K∑

k=1

δj2k sin kt+ δj2k+1 cos kt, t ∈ Jj ,

0, otherwise.
Let Wn(T) = (wn

1 , . . ., wn
S) be the sequence of values estimated at t1, . . ., tS using this piecewise

trigonometric polynomial approximation.

Step 3: Compare the breakpoints between iterations n− 1 and n.
If the Hamming distance between the two breakpoint vectors (tk1

, . . ., tkμ
, tl1 , . . ., tlν) at iterations n − 1

and n is less than some defined tolerance or the number of iterations has reached N , then exit. Otherwise,
increment the iteration number n and repeat Steps 1.1 to 3.

Saxena, Watson, Thomas, and Wynne

Figure 1. Processed NDVI values from Landsat images for 2009 (left) and 2014 (right). The x- and y-axes
represent relative pixel coordinates of the extracted image.

end

3. RESULTS AND DISCUSSION
The algorithms EWMACD and BFAST were tried on study areas located in Oregon and South Carolina,
with results presented for the latter. Figure 1 shows the satellite images taken from Landsat path 18, row 37,
on dates January 3rd, 2009, and February 16th 2014, corresponding to the beginning and end of the image
stack (henceforth referred to as SC1837) under consideration, which has 198 time points and one band, the
normalized difference vegetation index [10]

NDVI =
NIR− R

NIR + R
,

where NIR is the near infrared (band 4, biomass) and R is the visual red (band 3, vegetation slopes). NDVI
is known to be a good metric for vegetation cover, where negative values of NDVI are deemed irrelevant
as they correspond to water, clouds, or missing observations. For processing, positive values of NDVI are
scaled by 10,000 and negative values are masked out (set to −9, 999). The image stack dimensions are
R = 7411, C = 8801, S = 198, B = 1. Like most time series analysis algorithms, both algorithms rely
on user defined parameters, requiring, in general, a priori knowledge of the scene. The experiments here
adhered to the published values of the parameters for each of these algorithms, which are listed in Table 1.
For EWMACD, all the time points in the years 2009 to 2011 were used as training data, so the length M of
the training period varied from pixel to pixel.

Table 1. Algorithm parameters

EWMACD BFAST
K = 2 K = 1

L = 0.5 μ = ν = 2

λ = 0.3 h = 0.05

� = 7 τV = τS = 1.0

Saxena, Watson, Thomas, and Wynne

TCC(2009)=89.67, TCC(2013)=67.2 TCC(2009)=78.9, TCC(2014)=97.2

Figure 2. BFAST is the piecewise linear/piecewise harmonic model showing the breakpoints. The EWMACD
flag history (divided by 10) signals times of change by runs of increases or decreases in the flags.

Validation is based on tree canopy cover (TCC) data [15]. For a 30m × 30m area (one pixel) the TCC is
defined as the proportion of the area that is covered by tree canopy versus “not tree canopy”. Methods to
measure the TCC for a pixel are known. For the study area SC1837, TCC data exists for 457 pixels. For
each of these pixels, at the NDVI data band, the two algorithms were run on the image stack. Results for two
such pixels are displayed in Figure 2. TCC for the pixel in Figure 2(left) reduced from 89.67% in 2009 to
67.2% by the year 2013, an approximately 22% loss. BFAST captures the loss correctly indicating a decline
in vegetation cover, with a quick, short recovery towards the end of the year 2014 (the available TCC data
does not cover late 2014). EWMACD clearly captures the loss correctly.

The pixel displayed in Figure 2(right), on the other hand, gained approximately 18% in TCC. The NDVI
values also, in general, show an increase in mean. BFAST correctly captures the trend and indicates gradual
recovery throughout, with some disturbance towards the end of 2014. EWMACD, however, indicates a
disturbance just after it’s training period (beginning of 2012) — a sharp loss followed by some recovery and
stability thereafter. This behavior can be attributed to ill-chosen parameter values for this pixel.

The logical mathematical description of an image stack uses the index order (r, c, s, b), but because of Fortran
array element storage order and the hardware effects of cache misses and paging, the image stack is actually
stored and processed in the index order (s, c, r, b). Failure to use this latter index order can result in a cache
miss rate as high as 28%. The outcomes of both the sequential and the parallel (Fortran 2003) codes match
with those of the original codes (written in R) completely for EWMACD and closely for BFAST. The slight
deviation in results for BFAST can be attributed to its recursive use of models, which makes the algorithm
sensitive to round-off error. Figure 3 displays the EWMACD results on a few (4) time points. At any given
time point, a black pixel indicates being flagged by EWMACD as having no disturbance, a green pixel as
in recovery, and a red pixel as in loss. So an area to the northeast of pixel (4500, 4000) was in vegetation
loss in September 2013 while by February 2014, the entire area to the right of (4000, :) had substantially
recovered.

Both algorithms involve a fair number of intermediate array variables, so global arrays were used for all
work arrays, and Fortran vector instructions were utilized wherever possible.

4. PARALLEL IMPLEMENTATION
One image from a given Landsat path/row typically consists of more than 107 pixels. The sequential
implementation of BFAST in Fortran takes over 7 hours to analyze the time series of a 1000 × 1000 = 106

Saxena, Watson, Thomas, and Wynne

September 25th, 2013 November 12th, 2013

December 30th, 2013 February 16th, 2014

Figure 3. EWMACD flags for four late time points of image stack when the data in 2009–2011 was used as
training data.

pixel image. EWMACD is faster but still takes 1 hour and 20 minutes for 106 pixels. Knowing that (i) the
image stack discussed in this paper consists of only 198 time points (2009 to 2014) while there are currently
900 time points (1984 to 2014) actually available, (ii) the run times discussed here are for a single path/row
only while there are 450 path/rows in the US alone, and other similar facts, scaling the codes is imperative
for any meaningful analysis. The sequential codes described in the previous sections were parallelized using
OpenMP. The hardware bottlenecks and computational hot spots are systematically identified and addressed.

The sequential code already harnesses vector instructions wherever possible. The input and output arrays
are the only large arrays; the indexing mentioned in Section 3 ensures good memory locality. The remaining
significant hardware bottleneck is load imbalance. Specifically, since the time series processing for any
given pixel is independent of that for any other pixel, the algorithms are apparently embarrassingly parallel
with respect to pixels. Landsat images, however, suffer from missing observations (due to factors beyond
human control), thereby resulting in ‘invalid’ pixels (a pixel is declared invalid if there are fewer than 2K+1
observations in the entire time span, cf. Section 2.1). These invalid pixels are randomly distributed across
the data. This induces a very high work load imbalance across the pixels. Attempting to weed out invalid
pixels in a preprocessing step and execute the PARALLEL DO loop for only valid pixels leads to CPU
underutilization (from 99.9% to 70–80%), simultaneously increasing the OpenMP time. This presumably is

Saxena, Watson, Thomas, and Wynne

Figure 4. BFAST scaled speedup for a base size B = 50 × 50 (left); speedup in parallel sections of
EWMACD code (right).

due to memory contention: the memory access pattern for the latter approach is such that multiple threads
try to access the same memory bank(s). Furthermore, even amongst the valid pixels, the total number of
observations (S) available for one pixel can be much less than the number of observations available for some
other pixel. So, even with this preprocessing approach the work load balance is not guaranteed.

Finally, allocating/deallocating arrays within each thread is inefficient. Allocatable global arrays in modules
can be used by threads via THREADPRIVATE, but this data copy mechanism does not work with dynamic
loop scheduling [11], which is desirable because of the large variance in pixel analysis times (including
missing data for a pixel). The best alternative is using Fortran automatic arrays with OpenMP PRIVATE.

Next, the computational hot spots are identified. For EWMACD, more than 50% of the time is spent in
least squares fitting (cf. Section 2, Step 1), specifically in DGELS (LAPACK) calls. LAPACK [2] is already
optimized for the hardware. 22% of the total time is in the calculation of residuals (again, cf. Section 2.1,
Step 1). This subroutine has two DO loops with dependencies and cannot be vectorized.

For BFAST, approximately 97% of the OpenMP time is spent in computing the recursive residuals (cf.
Section 2.2, steps 1.2 and 2.2). Essentially, linear and harmonic least squares fits are done in every
permissible interval, and the least squares fitting is already optimized.

In summary, after considering and testing several alternatives, the best approach found was to (1) perform
the raw binary stream input data order (r, c, s, b) conversion to (s, c, r, b) order in parallel; (2) cull invalid
(including missing) pixels inside the subroutines EWMACD and BFAST, which are called from within a
PARALLEL DO (a pixel is declared invalid if there are fewer than 2K + 1 observations in the entire time
span, cf. Section 2.1); (3) convert the nested DO loop DO r=1,R; DO c=1,C into a single PARALLEL DO
loop DO k=1,R*C,A; (4) use OpenMP SCHEDULE(DYNAMIC,1); (5) process a chunk of A pixels indexed by
k on each call to EWMACD and BFAST; (6) use automatic rather than allocatable arrays for all small work
arrays in the subroutines, and allocate/deallocate just one large work array in both EWMACD and BFAST;
(7) perform all I/O outside parallel OpenMP constructs to reduce memory and disk contention. Note that
manually collapsing the nested loops and chunking within the pixel processing subroutine is more efficient
than collapsing and chunking at the OpenMP directive level, since the latter would call the subroutines,
which allocate and deallocate numerous work arrays, for each pixel index. The difficulty of load balancing
“embarrassingly parallel” applications is analyzed theoretically in [1].

Figure 4(left) shows the scaled speedup for BFAST, i.e., increasing both the problem size and the number
of cores. The isoefficiency (constant efficiency as both the problem size and number of cores are scaled up)

Saxena, Watson, Thomas, and Wynne

decreases significantly, indicating some combination of poor load balancing (the pixel chunk size A = 100),
main memory contention, and increasing thread management overhead, as yet unresolved.

Parallel results for the full scene, which consists of 7411× 8801 = 65224211 pixels at one band, processed
only with EWMACD, are shown in Figure 4(right). Using 64 cores, the full scene is processed in 1.86 minutes,
with a speedup of roughly 46. The input binary image is 25GB. For this image, the code needs 74GB of
memory. When a single thread (core) is used, the cache miss rate is 0.566% and 1.03 instructions per cycle
are executed. For 64 cores, the cache miss rate is 0.721% and 0.52 instructions per cycle are executed. On 64
cores, the FLOPS performance of the EWMACD code is 48.54 GFLOPs. The peak theoretical performance
for this machine is 358.4 GFLOPs, yielding performance to peak ratio of 48.54/358.4 = 13.54%.

For the algorithms to be used together in a polyalgorithm, speeding up BFAST for a single pixel needs to be
aggressively explored, lest BFAST be used only on a need basis (> 30 hours for this full image).

For all the Fortran codes, the input (as well as output) image stacks were in binary file format. Fortran I/O
with streaming access was utilized to read and write these files. The results presented in this paper were
obtained on a single machine: 64 core AMD Opteron 6276, 1.4GHz CPU, 2MB cache per core, 265 GB
main memory, CentOS, gfortran compiler version 4.8.

5. CONCLUSIONS AND FUTURE WORK

Given the inconsistent trend predictions between the different algorithms, the sometimes erratic behavior of a
given algorithm on a given image stack, the sensitivity to parameters for some algorithms, and the prohibitive
execution times for serial codes, there is clearly a need for a parallel polyalgorithm (an intelligent, adaptive
union of multiple algorithms). The work begun here, assessing the scalability and memory footprint, the
parameter sensitivity, and the range of applicability of individual algorithms is but the first step toward such
a parallel polyalgorithm for hypertemporal Landsat image stacks.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referees for their useful comments, Jill Derwin for remote
sensing technical assistance and Dr. E. B. Brooks for useful discussions. This work was supported in part
by NSF Grant CNS-1565314 and USDA Grant 422350.

REFERENCES

Ahn, T.-H., A. Sandu, L. T. Watson, C. A. Shaffer, Y. Cao, and W. T. Baumann. 2015. “A framework to analyze
the performance of load balancing schemes for ensembles of stochastic simulations”. International
Journal Parallel Programming vol. 43 (4), pp. 597–630.

Anderson, E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.
McKenney, and D. Sorensen. 1992. LAPACK Users’ Guide. SIAM.

Bergh, F. V. D., K. J. Wessels, S. Miteff, T. L. V. Zyl, A. D. Gazendam, and A. K. Bachoo. 2012. “HiTempo:
a platform for time-series analysis of remote-sensing satellite data in a high-performance computing
environment”. International Journal of Remote Sensing vol. 33 (15), pp. 4720–4740.

Brooks, E. B., V. A. Thomas, and R. H. Wynne. 2012. “Fitting the multitemporal curve: a Fourier series
approach to the missing data problem in remote sensing analysis”. IEEE Transactions on Geosciences
and Remote Sensing vol. 50 (9), 3340–3353.

Brooks, E. B., R. H. Wynne, V. A. Thomas, C. E. Blinn, and J. W. Coulston. 2014. “On-the-fly mas-
sively multitemporal change detection using statistical quality control charts and Landsat data”. IEEE
Transactions on Geoscience and Remote Sensing vol. 52 (6), pp. 3316-3332.

Saxena, Watson, Thomas, and Wynne

Chu, C.-S. J., K. Hornik, and C.-M. Kuan. 1995. “MOSUM tests for parameter constancy”. Biometrika vol.
82 (3), pp. 603–617.

Fall, S., D. Niyogi, A. Gluhovsky, R.A. Pielke, Sr., E. Kalnay, and G. Rochon. 2010. “Impacts of land use
and land cover on temperature trends over the continental United States: assessment using the North
American Regional Reanalysis”. International Journal of Climatology vol. 30 (13), pp. 1980-1993.

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V.
Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R.
G. Townshend. 2013. “High-resolution global maps of 21st-century forest cover change”. Science vol.
342 (6160), pp. 850–853.

Kalluri, S. N. V., J. JáJá, D. A. Bader, Z. Zhang, J. R. G. Townshend, and H. Fallah-Adl. 2000. “High
performance computing algorithms for land cover dynamics using remote sensing data”. International
Journal of Remote Sensing vol. 21 (6 & 7), pp. 1513–1536.

Kriegler, F. J., W. A. Malila, R. F. Nalepka, and W. Richardson. 1969. “Preprocessing transformations and
their effects on multispectral recognition”. In Proceedings of the Sixth International Symposium on
Remote Sensing of Environment. pp. 97–131.

Lee, C. A., S. D. Gasster, A. J. Plaza, C.-T. Chang, and B. Huang. 2011. “Recent developments in high
performance computing for remote sensing: a review”. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing vol. 4 (3), pp. 508–527.

LLNL. . OpenMP. https://computing.llnl.gov/tutorials/openMP/#THREADPRIVATE.
Phillips, R. D., L. T. Watson, and R. H. Wynne. 2007. “Hybrid image classification and parameter selection

using a shared memory parallel algorithm”. Computers & Geosciences vol. 33 (7), pp. 875–897.
Plaza, A. J., and C.-I. Chang. 2007. High Performance Computing in Remote Sensing. CRC Press.
Toney, C., G. Liknes, A. Lister, and D. Meneguzzo. 2012. “Assessing alternative measures of tree canopy

cover: photo-interpreted NAIP and ground-based estimates”. In Proceedings of Monitoring Across
Borders: 2010 Joint Meeting of the Forest Inventory and Analysis (FIA) Symposium and the Southern
Mensurationists. Edited by W. McWilliams and F.A. Roesch. USDA Forest Service, Southern Research
Station, Asheville, North Carolina, e-Gen. Tech. Rep. SRS-157. pp. 209–215.

Verbesselt, J., R. Hyndman, G. Newnham, and D. Culvenor. 2010. “Detecting trend and seasonal changes in
satellite image time series”. Remote Sensing of Environment vol. 114 (1), pp. 106–115.

Woodcock, C. E., R. Allen, M. Anderson, A. Belward, R. Bindschadler, W. Cohen, F. Gao, S. N. Goward, D.
Helder, E. Helmer, R. Nemani, L. Oreopoulos, J. Schott, P. S. Thenkabail, E. F. Vermonte, J. Vogelmann,
M. A. Wulder, and R. H. Wynne. 2008. “Free access to Landsat imagery”. Science vol. 320 (5879), pp.
1011–1011.

AUTHOR BIOGRAPHIES
R. SAXENA (Ph.D., Arizona State, 2008) has interests in image processing, numerical analysis, high
performance computing, and big data analytics.
LAYNE. T. WATSON (Ph.D., Michigan, 1974) has interests in numerical analysis, mathematical pro-
gramming, bioinformatics, and data science. He has been involved with the organization of HPCS since
2000.
VALERIE A. THOMAS (Ph.D., Queen’s, Ontario, 2006) has interest in the use of remote sensing to
examine forest canopy physiology, structure, and function across space and time.
RANDOLPH H. WYNNE (Ph.D., Wisconsin, 1996) has interests in the applications of remote sensing to
forest monitoring, modeling, and management. He has long worked at the interface of computing with basic
and applied remote sensing science.

GLOBAL DETERMINISTIC AND STOCHASTIC OPTIMIZATION

IN A SERVICE ORIENTED ARCHITECTURE

Chaitra Raghunath

Tyler H. Chang

Dept. of Computer Science

Virginia Polytechnic Institute

& State University

Blacksburg, VA 24061

thchang@vt.edu

Layne T. Watson

Dept. of Computer Science

Dept. of Mathematics

Dept. of Aerospace & Ocean Eng.

Virginia Polytechnic Institute

& State University

Mohamed Jrad

Rakesh K. Kapania
Dept. of Aerospace & Ocean Eng.

Virginia Polytechnic Institute

& State University

Raymond M. Kolonay
AFRL/RQVC

2210 8th Street, Bldg. 146

WrightPatterson Air Force Base

Dayton, OH 45433

ABSTRACT

Service ORiented Computing EnviRonment (SORCER) is a Javabased networkcentric computing platform.

SORCER provides a service oriented architecture, which enables the implementation of parallel algorithms

in a dynamic distributed computing environment. SORCER is often used for multidisciplinary aircraft design

analysis and optimization. However, the current approach often assigns intense optimization algorithms to

run entirely on single overloaded nodes, rather than evenly distributing the workload. The goal of this work

is to provide lowerlevel optimization algorithms as integrated SORCER services and study the overhead

of doing so. VTDIRECT95, a Fortran 95 implementation of D. R. Jones’ algorithm DIRECT, is a highly

parallelizable derivativefree deterministic global optimization algorithm. QNSTOP is a parallel quasi

Newton algorithm for stochastic optimization problems. The potential benefit of integrating VTDIRECT95

and QNSTOP into the SORCER framework is to provide dynamic load balancing among computational

resources at the optimization level, resulting in a dynamically scalable process.

Keywords: serviceoriented computing, deterministic global optimization, stochastic optimization, multi

disciplinary design

1 INTRODUCTION

This paper discusses the implementation and overhead of integrating two global optimization algorithms,

VTDIRECT95 and QNSTOP, into a SORCER framework. SORCER is a largescale, distributed computing

environment for high fidelity multidisciplinary design optimization (MDO). The algorithms VTDIRECT95

and QNSTOP were chosen because of their relevance to aerospace engineering and their scalability on

distributed computing applications. The process of integrating VTDIRECT95 and QNSTOP with SORCER

is described in detail. The added overhead of the SORCER service is then assessed for an aircraft design

application implementing VTDIRECT95 and QNSTOP on a SORCER grid.

SpringSim-HPC 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)

Raghunath, Chang, Watson, Jrad, Kapania, and Kolonay

Aerospace systems today exhibit strong interdisciplinary interactions and require a multidisciplinary, collab

orative approach (Raymer 2006). Multidisciplinary design optimization aims to achieve an optimal design

over several disciplines. The first step in the design process, conceptual design, often requires optimization

with a large number of design variables belonging to multiple disciplines. Traditional conceptual design

is carried out over a large set of configurations with low fidelity models, and suffers from poor accuracy.

However, new physics based modeling tools used with high end computing resources can provide accurate

multiphysics analysis and in the early stages of design. The drawback of these high fidelity models is that

they are often prohibitively complex.

High performance computing (HPC) systems are critical for complex large scale design studies (Kodiyalam

et al. 2004). While HPC systems deliver high computational power (capability computing) or high through

put (capacity computing), they are static resources with little scalability or flexibility. Serviceoriented

architecture (SOA) addresses the challenges faced by HPC systems in terms of scalability, availability,

flexibility, and reliability. SOA not only incorporates the features of HPC systems, but also promises a

world of orchestrated services by creating dynamic processes and agile applications that span platforms and

organizations(Georgakopoulous and Papazoglou 2008).

SORCER, a Java based network centric computing framework (maintained by SORCERsoft.com, a sub

sidiary of SMT S. A. group), is a federated servicetoservice (S2S) metacomputing environment that

treats service providers as network peers with welldefined semantics of a federated service objectoriented

architecture (Raghunath 2015). SORCER provides a platform for high fidelity multidisciplinary design op

timization, combining models from various disciplines into one integrated model. SORCER accommodates

dynamic distribution of service providers and ondemand provisioning of resources, resulting in significant

speedups and effective utilization of computational resources.

VTDIRECT95 and QNSTOP were chosen for implementation on a SORCER grid because of their relevance

to aircraft design problems. VTDIRECT95, a massively parallel Fortran 95 implementation of D. R. Jones’

algorithm DIRECT, is widely used in MDO (Gao et al. 2013, Ghommem et al. 2012, Mehmood et al. 2011).

QNSTOP is a class of parallel quasiNewton methods for stochastic optimization and deterministic global

optimization. QNSTOP for stochastic optimization problems synthesizes ideas from numerical optimization

and response surface methodology, and demonstrates potential for stochastic robust design optimization and

stochastic MDO problems.

The paper is organized as follows. Section 2 outlines the SORCER framework and the two optimization

algorithms, VTDIRECT95 and QNSTOP. Section 3 presents details about conversion of VTDIRECT95

and QNSTOP to SORCER services. The study of an aircraft design application using VTDIRECT95 and

QNSTOP as SORCER services is presented in Section 4. Section 5 briefly discusses the results of this work.

2 BACKGROUND

2.1 SORCER Overview

Serviceoriented computing is a computing paradigm that utilizes selfdescribing, platformagnostic ser

vices as the fundamental constructs to support rapid, costeffective composition of distributed applications

(Papazoglou et al. 2007). Services are selfadapting, dynamic processes that effectively communicate with

one another to perform userrequested tasks in a distributed computing environment. The serviceoriented

computing paradigm, derived from the SOA model, allows interoperability, reusability, and loose coupling

of its components in a dynamic environment, where computer resources are assigned to services as and

when necessary. As indicated in Figure 1, the interaction between software agents is facilitated by message

exchanges between service providers and service requestors. The service provider determines a description

for a service and publishes it to a service discovery agency. This, in turn, is made discoverable to a service

Raghunath, Chang, Watson, Jrad, Kapania, and Kolonay

requestor. To invoke a service, the service requestor retrieves the service description from a registry and

binds with the service provider based on the service description. In short, SOA addresses the challenges of

distributed computing by enabling service discovery, integration, and use (Georgakopoulous and Papazoglou

2008).

Service

Registry

Find

Service

Requestor

Publish

Bind

Service

Requestor

Service

Provider
Service

Provider

Service

Requestor
Proxy

Object

Code

Server

Service

Registry
Proxy

Object

Figure 1: Serviceoriented architecture (SOA) (left) vs. service objectoriented architecture (SOOA)(right).

SORCER is based on the concepts of SOA and also incorporates features of the service objectoriented

architecture (SOOA), where service providers are objects accepting remote invocations (Raghunath 2015).

As shown in Figure 1, the service requestor binds to the service provider by creating a proxy for remote

communication. SOOA permits great flexibility in terms of communication between agents. These proxies,

known as smart proxies, grant access to local and remote resources, regardless of who initially created the

proxy. In SORCER, providers broadcast their availability, registries intercept broadcasted announcements

and cache proxy objects to their service providers (Raghunath 2015). The SORCER operating system (SOS)

looks up proxies by sending queries to registries and making selections from the available services. In

short, providers use discovery/join protocols to publish services in the network, and SOS uses discovery/join

protocols to obtain services in the network. From an objectoriented programming point of view, service

providers are represented as independent network objects, locating each other via service registries and

communicating through protocols such as remote method invocation (RMI), simple object access protocol

(SOAP), common object request broker architecture (COBRA), etc.

Further, SORCER introduces three layers of converged programming abstractions: exertionoriented pro

gramming (EOP), varoriented programming (VOP), and varoriented modeling (VOM) (Raghunath 2015).

The EOP abstraction manages objectoriented distributed system complexity introduced by the complex net

work of metacomputers. VOP is a paradigm based on dataflow principles where changing the value of a var

automatically forces recalculation of the interdependent values of vars. VOM, a modeling paradigm using

vars, defines heterogeneous multidisciplinary varoriented models in large scale multidisciplinary models.

Thus, the SORCER framework incorporates the power of objectoriented programming and exertionoriented

programming to create an infrastructure that is modular, extensible, and reusable.

Based on successful implementation of large scale engineering applications with SORCER (Raghunath

2015), several desirable features related to multidisciplinary aircraft analysis and design optimization are as

follows:

• Large scale, distributed, decentralized: SORCER dynamically federates processes and smartly distributes

the load across all machines in the network.

• Leveraging the power of HPC: SORCER provides the features and computing power of HPC and SOA to

form a dynamic distributed engineering collaboration platform.

Raghunath, Chang, Watson, Jrad, Kapania, and Kolonay

• Reusability: The incorporation of objectorient modularity enables a high level of reuse when moving

from one study to the next.

• Cost effective: SORCER accommodates physics based modeling via HPC for faster evaluation of higher

fidelity configurations at the preliminary level of design when compared to traditional practices.

• Better utilization of computational resources: SORCER enables collaborative design studies across or

ganizational boundaries and maximum utilization of all compute resources on the network, ranging from

personal computers to high performance computing machines.

• Distributed resource management: SORCER employs Jini Connection technology (now called Apache

River) with its JavaSpaces service to implement computational resource management across the network.

The JavaSpaces technology facilitates the implementation of a selfload limiting grid computing system

that can dynamically grow and shrink during the course of an optimization study (Freeman, Hupfer, and

Arnold 1999). The loosely coupled spacebased service federation allows asynchronous communication

between computers in the network in a reliable manner (Raghunath 2015).

2.2 VTDIRECT95

VTDIRECT95 is a Fortran 95 software package using massively parallel dynamic data structures to imple

ment the algorithm DIRECT by Jones, Perttunen, and Stuckman (1993). The algorithm DIRECT (DIviding

RECTangles) is a deterministic global optimization algorithm that performs Lipschitzian optimization with

out the Lipschitz constant, and can be classified as a derivative free direct search algorithm.

Let En denote real ndimensional Euclidean space, D =
{
x ∈ En | ℓ ≤ x ≤ u

}
be a box in En, and

f : D → E a Lipschitz continuous function. The problem is to find a global minimum point x̄ of f over D,

f(x̄) = min
x∈D

f(x). The original (serial) algorithm by Jones, Perttunen, and Stuckman (1993)is described in

six steps as below:

Step 1 (initialization): Normalize the feasible set D to be the unit hypercube. Sample the center point ci of

this hypercube and evaluate f(ci). Initialize fmin := f(ci), evaluation counter m := 1, and iteration counter

t := 0.

Step 2 (selection): Identify the set S of “potentially optimal” boxes (subregions) of D. A box is potentially

optimal if, for some Lipschitz constant, the function value within the box is potentially smaller than that in

any other box (a formal definition with parameter ǫ is given by Jones, Perttunen, and Stuckman (1993)).

Step 3 (sampling): For any box j ∈ S, identify the set I of dimensions with the maximum side length. Let

δ equal onethird of this maximum side length. Sample the function at the points c± δei for all i ∈ I , where

c is the center of the box and ei is the ith unit vector.

Step 4 (division): Divide the box j containing c into thirds along the dimensions in I , starting with the

dimension with the lowest value of wi = min{f(c + δei), f(c − δei)}, and continuing to the dimension

with the highest wi. Update fmin and m.

Step 5 (iteration): Set S :=S \ {j}. If S 6= ∅, go to Step 3.

Step 6 (termination): Set t := t+1. If iteration limit or evaluation limit has been reached, stop. Otherwise,

go to Step 2.

VTDIRECT95 has numerous modifications from DIRECT in order to improve performance and load bal

ancing on large scale parallel systems. The massively parallel implementation VTDIRECT95 distributes

data among processors to share the memory burden imposed by storing all current boxes. The parallel

scheme for SELECTION concentrates on distributing data among multiple masters to share the memory

burden. Functional parallelism for SAMPLING is achieved by fully distributed control allocating function

Raghunath, Chang, Watson, Jrad, Kapania, and Kolonay

evaluation tasks to workers. A detailed discussion of the implementation of the serial and parallel subroutines

in VTDIRECT95 is presented in He, Watson, and Sosonkina (2009).

2.3 QNSTOP

QNSTOP is a class of quasiNewton methods for stochastic optimization with variations for deterministic

global optimization (Amos et al. (2014b)). In iteration k, QNSTOP methods compute the gradient vector

ĝk and Hessian matrix Ĥk of a quadratic model

m̂k(X −Xk) = f̂k + ĝTk (X −Xk) +
1

2
(X −Xk)

T Ĥk(X −Xk)

of the objective function f centered at Xk, where f̂k is generally not f(Xk). QNSTOP methods progress by

Xk+1 =
[
Xk − [Ĥk + µkWk]

−1ĝk
]
Θ
,

where µk is the Lagrange multiplier of a trust region subproblem, Wk is a scaling matrix, and [·]Θ denotes

projection on the feasible set Θ. The exact steps taken at each iteration are outlined below:

Step 0 (initialization): Given a function evaluation budget B̃ per start point and operating mode (determin

istic or stochastic), set values for τ0 > 0, µ0 > 0, γ ≥ 1, η ≥ 0, ζ ≥ 0, N , X0, k := 0, W0 := Ĥ0 := Ip. It

is recommended to run QNSTOP multiple times from different starting points.

Step 1 (regression experiment): Compute the ellipsoidal design regions given by

Ek(τk) =
{
X ∈ Ep : (X −Xk)

T Wk (X −Xk) ≤ τ2k
}

where τk is decayed at some rate depending on the mode. Next, uniformly sample {Xk1, . . ., XkN} ⊂
Ek(τk)∩Θ, where Θ denotes the feasible set, and observe the response vector Yk, where yki is modeled by

yki = f̂k +XT
kiĝk + ǫki, with ǫki accounting for the lack of fit. Finally, compute the least squares estimate

for the gradient ĝk using (
DT

k Dk

)
ĝk = DT

k Yk.

where Dk denotes the absolute deviations of Xki.

Step 2 (secant update): If k > 0, compute the model Hessian matrix Ĥk using BFGS (deterministic) or

SR1 variant (stochastic) update.

Step 3 (update iterate): Calculate the next iterate Xk+1. In the deterministic case, Xk+1 is the solution to

the optimization problem

min
X∈Ek(ρk)

ĝTk (X −Xk) +
1

2
(X −Xk)

T Ĥk(X −Xk).

In the stochastic case, Xk+1 is obtained by directly updating the Lagrange multiplier µk as described in

Castle (2012), using the update:

Xk+1 = Xk −
[
Ĥk + µkWk

]−1

ĝk

In both cases the computed point Xk+1 is projected onto the feasible set Θ.

Step 4 (update subsequent design ellipsoid): Compute an updated scaling matrix Wk+1 ∈ Wγ as described

in Castle (2012)and Amos et al. (Amos et al. (2014b)).

Step 5: If (k+2)(N +1)+1 < B̃ then increment k by 1 go to Step 1. Otherwise, the algorithm terminates.

(f is also observed at each ellipsoid center Xk.)

The algorithm QNSTOP has three significant sources of parallelism: the individual function evaluations, the

loop over the samples in an experimental design, and the loop over the start points. A masterslave paradigm

is a reasonable approach if the individual function evaluations are large scale parallel simulations. On large

Raghunath, Chang, Watson, Jrad, Kapania, and Kolonay

shared memory systems, ample parallelism is exhibited at the two outer nested loops — the loop over the

start points and the loop over the samples. A detailed discussion of the serial and parallel implementations

of QNSTOP can be found in Amos et al. (2014b). An analysis of a serial Fortran 95 implementation of

QNSTOP is presented in Amos et al. (2014a).

2.4 Discussion

In the context of ever increasing parallelism, higher dimensions, and multidisciplinary design optimiza

tion, algorithms like VTDIRECT95 (for deterministic global optimization) and QNSTOP (for stochastic

optimization) are excellent candidates for SORCER services. Objective function cost is one of the key

parameters that affects the parallel performance under different parallel schemes. High parallel efficiency

involves balancing communication overhead with the distribution of evaluation tasks for good load balancing

(He et al. 2009a, He et al. 2009b). While SORCER has no control of the definition and granularity of the

tasks, it can provide robust distributed parallelization and load balancing across computational resources,

thus significantly speeding up the evaluation of objective functions in a dynamically scalable metacomputing

environment.

3 IMPLEMENTATION AS SORCER SERVICES

3.1 JNI Wrappers

SORCER leverages the power of distributed computing through the use of Java interoperability, Jini, and

web services (Raghunath 2015). The adoption of Java as a language for numerical computing presents

difficulties. Some obstacles include: overrestrictive floating point semantics, inefficient support for complex

numbers and alternative arithmetic systems, and lack of direct support for true multidimensional arrays

(Boisvert et al. 2001). Moreover, the task of manually converting existing code in Fortran to Javabased

services is both daunting and expensive (Liang 1999).

The Fortran 95 implementations of optimization algorithms considered in this paper, VTDIRECT95 and

QNSTOP, incorporate advanced Fortran features that flexibly organize the data on a single machine, effec

tively reduce the local data storage, and efficiently share the data across multiple processors (He, Watson,

and Sosonkina 2009). While Fortran is effective for numerical computing, Java provides flexibility and

scalability for dynamic gridbased network architectures. In order to cope with the heterogeneity imposed

by various programming languages, Java wrappers for the existing legacy code have been implemented using

the JNI (Java Native Interface) libraries.

In developing the wrappers for the existing Fortran 95 implementations of VTDIRECT95 and QNSTOP,

a feature of the JNI called the invocation interface was used. The invocation interface allows a regular

nonJava program running on the native operating system to invoke a JVM to gain access to Java classes

and features (Liang 1999). The invocation interface allows developers to embed a JVM implementation into

native applications. Native applications can link with a native library that implements the JVM, and then use

the invocation interface to execute components written in the Java programming language (Lindsey, Tolliver,

and Lindblad 2010). Further, a C or C++ layer (often referred to as “glue code”) is required to gain access

to codes written in Fortran.

3.2 Design Analysis with SORCER services

The concept of a service provider, or simply ‘provider’, is the crux of an engineering analysis or design

study using SORCER. A provider is Java code that makes a number of Java methods (services) available to

users over a network. Each provider is implemented in accordance with the principles of exertionoriented

programming (EOP), where an exertion is an object that represents a process by specifying the relationship

between services and the information passed between them.

Raghunath, Chang, Watson, Jrad, Kapania, and Kolonay

A provider is published on the network using SORCER. The provider’s service may then be accessed via a

small Java code called a service requestor. An individual request running on a single provider is called a

Task. The input/output data associated with a task exectution is called a Context.

Providers are of two kinds — analysis providers and model providers. Providers that leverage existing

domainspecific codes are referred to as analysis providers (Burton, Alyanak, and Kolonay 2012). An

‘analysis provider’ is an entity that neatly wraps the underlying domainspecific code with Java code so the

domainspecific code can be accessed as a service by a remote user. The domainspecific code is generally

platform independent and performs the bulk of the engineeringspecific computations for a given service.

Model providers are explained in the context of optimization problems over the remainder of this section.

In SORCER terminology, a model is a collection of serviceoriented variables called vars. A var is defined

by a triplet 〈value, evaluator, filter 〉, where

• a value is an expression yielding a valid quantity;

• an evaluator defines the process of how data is produced via remote services, or produced locally;

• a filter reduces the data generated by the evaluator to the value of the var.

In this way, SORCER leverages the power of varoriented programming (VOP) to handle large sets of

interconnected variables and does so in accordance with the varbased modeling paradigm varoriented

modelling (VOM).

In the context of optimization, these vars are the design variables and the implementation of the objective

and constraint functions. Var instances are used to model both independent and dependent variables in

SORCER. While independent vars are used as a container to store a value and perform no calculations,

dependent vars implement mathematical functions. When published on the network, these dependent and

independent vars that define a specific optimization problem are referred to as a model provider. The model

provider is characterized by a single state and behaves like shared memory to users over the network.

For each objective function evaluation, a query object containing the name of the model provider, the design

variable var names and values, and the var names of the objective function that the user wishes to calculate is

constructed. The corresponding published model provider receives the query object and invokes the setValue

method on its design variables and subsequently the getValue method on the userspecified objective function.

The query object is then returned to the user with the updated values. To obtain the most recently updated

value of the dependent var (the userspecified objective function), the model invokes the evaluator function.

The evaluator checks the values of its arguments every time it is called, and will only recalculate its dependent

vars if it detects a change.

3.3 Subroutines as a SORCER service

3.3.1 Serial Subroutines

For the serial subroutines VTdirect and QNSTOPS, platform independent executables are implemented using

JNI (as described in Section 3.1) and tightly coupled with the provider’s service.

3.3.2 pVTdirect

Unfortunately, results for pVTdirect (the massively parallel implementation of DIRECT in the package

VTDIRECT95) under SORCER are not presented here because pVTdirect is fundamentally incompatible

with efficient usage of the SORCER/JavaSpace/table model query paradigm (described in Sections 3.3.3

and 4.1). This paradigm assumes a masterslave parallel computing paradigm, and is not valid for a fully

distributed algorithm such as pVTdirect.

Raghunath, Chang, Watson, Jrad, Kapania, and Kolonay

3.3.3 QNSTOPP

The parallel (OpenMP) implementation (subroutine QNSTOPP) of QNSTOP incorporates three sources of

parallelism: (1) the loop over the start points, (2) the loop over the experimental design samples, or (3) both.

For compatibility with SORCER, QNSTOPP is modified at the level of the loop over the experimental design

samples such that the function evaluations are chunked in function evaluation calls to SORCER. In this case,

QNSTOPP interacts with the published model provider via a table model query. Rather than passing a single

design point to the model provider, the JNI wrapper constructs a table containing the name of the design

vars and their values for a set of sample points. As with the case of a single model query, a query object

containing the name of the model provider, the design variable var names and values, and the var names of

the objective function is constructed. The model provider, on receiving the query object, creates new child

instances for each row in the table for parallel execution of the table row evaluations. The model provider

creates a thread for each child instance and begins to setValue and getValue on the vars. On completion, the

var values for each run are returned to the JNI wrapper in a table object and the child models are discarded.

4 EXPERIMENTS AND RESULTS

The framework EBF3PanelOpt facilitates the structural optimization of curvilinearly stiffened panels by

considering a number of constraints that have to be satisfied (buckling, von Mises stress, and crippling

constraints). The framework, written in Python, interacts with the commercial software MSC Patran (for

geometry and mesh creation) and MSC Nastran (for finite element analysis). Given the input parameters

and design variables, the script then creates the appropriate session file and submits it to MSC Patran to

create the geometry and mesh of the stiffened panel, with which MSC Nastran then carries out a finite

element analysis producing the inputs to an optimizer. More details about the framework EBF3PanelOpt

can be found in Mulani, Slemp, and Kapania (2013). By decomposing an aircraft wing into multiple local

panels bordered with curvilinear spars and ribs, aircraft designers can utilize EFB3PanelOpt to minimize the

structural weight of these panels and subsequently the overall wing weight.

This section presents the implementation and results for optimization of curvilinear bladestiffened panels

using VTDIRECT95 and QNSTOP. The section is further divided into two subsections — the Implementation

of EBF3PanelOpt as a SORCER service, and the performance results for the optimization of a stiffened

panel.

All experiments presented here are conducted on Intel (i73770) machines running at 3.4 GHz, each with

16GB of memory and a single quadcore processor, in which each core supports hyperthreading. The

experiments are conducted using GNU Fortran 4.9.1, GNU C 4.9.1, Python 2.6.6, Open MPI 1.8.1, and Java

1.8.0 25 on x86 64 running CentOS 6.6. The framework EBF3PanelOpt is configured to use Nastran 2014

and Patran 2014. For all QNSTOPP runs with SORCER presented in this paper, two identical machines are

used. The program carrying out optimization as a service and the model provider are started on one machine,

and the EBF3PanelOpt provider on the other.

4.1 EBF3PanelOpt as a Service

In order to achieve truly distributed objective function evaluations, the optimization framework EBF3Panel

Opt is implemented as an analysis provider. Analysis providers can be dynamically distributed over a variety

of computational resources with the help of SORCER’s JavaSpaces technology. The JavaSpaces technology

provides a type of shared memory where exertion evaluators can drop tasks to be processed by service

providers, which use Jini discovery mechanisms to find them on the network. JavaSpaces not only enables

computers on the network to communicate reliably, but also provides load balancing capability to cope with

dynamic resources. Hence, computing resources can be added during the course of an optimization study,

thereby enhancing productivity.

Raghunath, Chang, Watson, Jrad, Kapania, and Kolonay

For the parallel implementation of QNSTOP that constructs a table of runs (a modification of the OpenMP

parallel code QNSTOPP), the EBF3PanelOpt provider is configured to have a fixed number of worker

threads. The number of worker threads determines the number of tasks a provider can process in parallel.

The providers are started on multiple machines to distribute the work. During optimization, the model

provider first creates child instances for every row in the table and drops these tasks into the space. Then,

based on the number of worker threads, each EBF3PanelOpt provider picks up unprocessed tasks from the

space and executes them in parallel.

An undocumented alternative to JavaSpaces is Catalog, referred to here as SORCER/Catalog, that has

advantages in certain contexts, such as multicore or single large parallel distributed memory machines.

Here, service providers publish proxies to the catalog. The requestor passes a service request to the catalog,

which “matches” the service request with one of the proxies, which is then passed to the requestor, who uses

the proxy to make the remote call directly to the provider (as in Figure 1).

A detailed description of the implementation is presented in Raghunath (2015)with an experiment that

recreates the designs reported in Mulani, Slemp, and Kapania (2013).

4.2 Experiment

In this section, a simply supported flat rectangular panel is optimized for minimum mass using VTDIRECT95

and QNSTOP. The performance results for the optimization of curvilinear bladestiffened panels containing

two stiffeners (Case 1) and four stiffeners (Case 2), using the subroutines VTdirect, pVTdirect, QNSTOPS,

and QNSTOPP with and without SORCER are presented below. The design variables for both problems and

the exact settings used with the subroutines VTdirect, pVTdirect, QNSTOPS, and QNSTOPP are presented

in Raghunath (2015).

For optimization with (the serial subroutine) VTdirect and (the parallel subroutine) pVTdirect, the stopping

condition is a limit of 1000 on the number of objective function evaluations. For pVTdirect, the number

of processes is set to 4. Since pVTdirect is incompatible with SORCER/JavaSpace/table model query (as

described in Section 3.3.2), results for these cases are omitted.

For optimization with (the serial subroutine) QNSTOPS, deterministic mode is used with 5 start points and

a budget of of 200 evaluations each (1000 total). Additionally, for JNI runs without SORCER, (the parallel

subroutine) QNSTOPP is parallelized over just the sampling point objective function evaluations with 4

OpenMP threads. Recall from section 3.3.2, QNSTOPP for SORCER does not use OpenMP to achieve

parallelism, but instead interacts with the model provider via a table model query. For all QNSTOPP runs,

the table is configured with four rows, resulting in 4 concurrent objective function evaluations.

To calculate the parallel efficiency of QNSTOPP with and without SORCER, the parallel efficiency measure

Ep was used. Note that the modified QNSTOPP described in Section 3.3.3 is used for runs with SORCER:

Ep =

(
(QNSTOPS time)/(QNSTOPP time)

)

(total number of threads)

In Tables 1, 2, and 3 “script robustness” refers to a Java utility GenericUtil separate from SORCER,

recommended for use of scripts in production distributed computing, that increases the robustness of scripts

and communication links across different operating systems.

4.2.1 Performance Results

The execution times for pVTdirect, VTdirect, QNSTOPS, and QNSTOPP, with and without SORCER, are

listed in Tables 1 (Case 1) and 2 (Case 2). The last column in the table represents the parallel efficiency with

QNSTOPP.

Raghunath, Chang, Watson, Jrad, Kapania, and Kolonay

Table 1. Execution time in seconds for pylon wing panel optimization with 2 stiffeners.
VTdir pVTdir QNSTOPS QNSTOPP Ep

SORCER and script robustness 13,009 N/A 11,388 3,545 0.80

SORCER w/o script robustness 8,957 N/A 7,994 2,542 0.79

SORCER/Catalog w/o script robust. 8,487 N/A 7,597 2,458 0.77

W/o SORCER, w/o script robust. 8,460 2,924 7,560 2,309 0.82

Table 2. Execution time in seconds for pylon wing panel optimization with 4 stiffeners.

VTdir pVTdir QNSTOPS QNSTOPP Ep

SORCER w/ script robustness 14,450 N/A 10,370 3,676 0.71

SORCER w/o script robustness 10,384 N/A 7,451 2,697 0.69

SORCER/Catalog w/o script robust. 9,815 N/A 7,088 2,615 0.68

W/o SORCER, w/o script robust. 9,786 3,789 7,052 2,408 0.73

In Case 2, note that the numbers of function evaluations for VTdirect and QNSTOP* (1165 and 825

respectively) are different than those for Case 1 (1131 and 950 respectively). Even though the problem size

doubled (from 13 to 25), the parallel efficiencies decreased because the number of function evaluations by

QNSTOPP was less for Case 2 than for Case 1.

For 100 runs of VTdirect, the average computational expense of each objective function evaluation is listed

in Table 3, where n is the problem dimension. The SORCER with script robustness overhead per function

evaluation (≈ 4 s) is about the same for both problem sizes, and without script robustness the SORCER

overhead is negligible. Robustness and portability do not come cheap.

Table 3. Objective function evaluation times in seconds for pylon wing panel (2 & 4 stiffeners).
n = 13 n = 25

With SORCER and script robustness 11.13 12.90

With SORCER, without script robustness 7.36 9.14

Without SORCER and script robustness 7.32 9.10

5 DISCUSSION

VTDIRECT95 and QNSTOP were implemented as services on a SORCER grid, facilitating the optimization

of curvilinearly stiffened panels in a truly distributed manner. Source code for the service wrappers is

in Raghunath (2015). From Table 3, the SORCER with script robustness overhead is about four seconds

(essentially all due to script robustness). Tables 1 and 2 show that the other SORCER overhead is not signif

icant for expensive function evaluations. The conclusion is that the right SORCER paradigms (JavaSpaces,

though the most general approach, is but one of several) must be used in the right contexts, and no single

SORCER paradigm is a general purpose solution to parallel and distributed computing for MDO. On the

continuum of distributed computing technology (MPI, Globus, Legion, Condor, SORCER), SORCER is at

the heavyweight end.

The use of JNI to wrap the corresponding native code provided a clean and elegant interface between the

optimization algorithm and the Java block that evaluates the objective for a design point. However, the JNI

development overhead is relatively high. It should also be mentioned that the installation of SORCER is far

from routine—SORCER is currently a research code with limited documentation and requires considerable

knowledge of network computing to install and utilize.

Raghunath, Chang, Watson, Jrad, Kapania, and Kolonay

ACKNOWLEDGEMENTS

This material is based on research sponsored by Air Force Research Laboratory under agreement number

FA86500923938. The U.S. Government is authorized to reproduce and distribute reprints for Govern

mental purposes not withstanding any copyright notation thereon. The views and conclusions contained

herein are those of the authors and should not be interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of Air Force Research Laboratory or the U.S. Government.

The EBF3PanelOpt code was developed under a research contract from NASA Fundamental Aeronautics

Program to Virginia Polytechnic Institute and State University with Karen M. B. Taminger as the Program

Manager.

REFERENCES

Amos, B. D., D. R. Easterling, L. T. Watson, B.S. Castle, M. W. Trosset, and W. I. Thacker. 2014a. “Fortran

95 Implementation of QNSTOP for Global and Stochastic Optimization”. In 22nd High Performance

Computing Symposium (HPC 2014). Tampa, Florida, Society for Computer Simulation International.

Amos, B. D., D. R. Easterling, L. T. Watson, W. I. Thacker, B. S. Castle, and M. W. Trosset. 2014b.

“Algorithm XXX: QNSTOP: QuasiNewton Algorithm for Stochastic Optimization”. Technical Report

201407, Virginia Polytechnic Institute and State University, Blacksburg, VA.

Boisvert, R. F., J. Moreira, M. Philippsen, and R. Pozo. 2001. “Java and Numerical Computing”, IEEE

Computing in Science and Engineering vol 3(2), pp. 18–24.

Burton, S. A., E. J. Alyanak, and R. M. Kolonay. 2012. “Efficient Supersonic Air Vehicle Analysis and

Optimization Implementation using SORCER”. In AIAA 2012 5520, 12th AIAA Aviation Technology,

Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and

Optimization Conference. Indianapolis, Indiana, American Institute of Aeronautics and Astronautics

and International Society for Structural and Multidisciplinary Optimization.

Castle, B. S.. 2012. QuasiNewton Methods for Stochastic Optimization and Proximitybased Methods for

Disparate Information Fusion. Ph.D. thesis, Indiana University, Bloomington, IN.

Freeman, E., S. Hupfer, and K. Arnold. 1999. JavaSpaces Principles, Patterns, and Practice. Boston, MA,

Addison Wesley Longman, Inc.

Gao, D. Y., L. T. Watson, D. R. Easterling, W. I. Thacker, and S. C. Billups. 2013. “Solving the Canonical

Dual of Box and Integerconstrained Nonconvex Quadratic Programs via a Deterministic Direct Search

Algorithm”, Optimization Methods and Software vol. 28(2), pp. 313–326.

Georgakopoulous, D. and M. P. Papazoglou. 2008. ServiceOriented Computing. Cambridge, The MIT

Press.

Ghommem, M., M. R. Hajj, B. K. Stanford, L. T. Watson, and P. S. Beran. 2012. “Global and Local

Optimization of Flapping Kinematics”. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural

Dynamics, and Materials Conference. Honolulu, Hawaii, American Institute of Aeronautics and

Astronautics.

He, J., A. Verstak, M. Sosonkina, and L. T. Watson. 2009a. “Performance Modeling and Analysis

of a Massively Parallel DIRECT: Part 2”, International Journal of High Performance Computing

Applications vol. 23(1), pp. 29–41.

He, J., A. Verstak, L. T. Watson, and M. Sosonkina. 2009b. “Performance Modeling and Analysis

of a Massively Parallel DIRECT: Part 1”, International Journal of High Performance Computing

Applications vol. 23(1), pp. 14–28.

Raghunath, Chang, Watson, Jrad, Kapania, and Kolonay

He, J., L. T. Watson, and M. Sosonkina. 2009. “Algorithm 897: VTDIRECT95: Serial and Parallel Codes for

the Global Optimization Algorithm DIRECT”, ACM Transactions on Mathematical Software (TOMS)

vol. 36(3), Article No. 17.

Jones, D. R., C. D. Perttunen, and B. E. Stuckman. 1993. “Lipschitzian Optimization without the Lipschitz

Constant”, Journal of Optimization Theory and Application vol. 79(1), pp. 157–181.

Kodiyalam, S., R. J. Yang, L. Gu, and C. H.. 2004. “Multidisciplinary Design Optimization of a Vehicle

System in a Scalable, High Performance Computing Environment”, Structural and Multidisciplinary

Optimization vol. 26(3/4), pp. 256–263.

Liang, S.. 1999. The Java Native Interface: Programmer’s Guide and Specification. MA, Addison Wesley

Longman Inc.

Lindsey, C. S., J. S. Tolliver, and T. Lindblad. 2010. JavaTech, an Introduction to Scientific and Technical

Computing with Java. Cambridge, Cambridge University Press.

Mehmood, A., I. Akhtar, M. Ghommem, M. R. Hajj, and L. T. Watson. 2011. “Optimization of Drag

Reduction on a Cylinder Undergoing Rotary Oscillations”. In 52nd AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics, and Materials Conference. Denver, Colorado, American Institute of

Aeronautics and Astronautics.

Mulani, S. B., W. C. H. Slemp, and R. K. Kapania. 2013. “EBF3PanelOpt: an Optimization Framework for

Curvilinear Bladestiffened Panels”, Thin Walled Structures vol. 63, pp. 13–26.

Papazoglou, M. P., P. Traverso, S. Dustdar, and F. Leymann. 2007. “ServiceOriented Computing: State of

the Art and Research Challenges”, Computer vol. 40(11), pp. 38–45.

Raghunath, C.. 2015. Service Oriented Computing Environment (SORCER) for Deterministic Global and

Stochastic Optimization. M.S. thesis, Department of Computer Science, Virginia Polytechnic Institute

& State University, Blacksburg, VA.

Raymer, D. P.. 2006. Aircraft Design: A Conceptual Approach. New York, American Institute of

Aeronautics and Astronautics Education Series.

AUTHOR BIOGRAPHIES

CHAITRA RAGHUNATH (M.S., Virginia Tech) is a Network Engineer at Hughes Network Systems.

Her interests include distributed and high performance computing.

TYLER H. CHANG is a firstyear Ph.D. student advised by Dr. Layne T. Watson. He is a Cunningham

and Davenport Fellow with interest in numerical analysis and parallel algorithms.

LAYNE T. WATSON (Ph.D., Michigan, 1974) has interests in numerical analysis, mathematical pro

gramming, bioinformatics, and data science. He has been involved with the organization of HPCS since

2000.

MOHAMED JRAD (Ph.D., Virginia Tech) is currently a postdoctoral fellow in the department of

Aerospace and Ocean Engineering at Virginia Tech. His interests include computational structural me

chanics, aeroelasticity, and multidisciplinary design optimization.

RAKESH K. KAPANIA (Ph.D., School of Aeronautics and Astronautics, Purdue University, 1985) is

the Mitchell Professor of Aerospace & Ocean Engineering at Virginia Tech. His research interests are:

computational structural mechanics, aeroelasticity and aeroservoelasticity, artificial neural networks, and

multidisciplinary design optimization. He is the winner of the 2016 AIAA/ISSMO Multidisciplinary Design

Optimization Award.

RAYMOND M. KOLONAY (Ph.D.) is the Director of Multidisciplinary Science & Technology Center

within AFRL’s Aerospace Systems Directorate. Dr. Kolonay is an AFRL Fellow, ASME Fellow, Fellow of

the RAeS, and an Associate Fellow of the AIAA.

IMPLICANT BASED SOLVER FOR XOR BOOLEAN LINEAR SYSTEMS

Jayashree Katti
Department of Information Technology

Pimpri Chinchwad College of Engineering
Pune,India

jayashree.katti@gmail.com

Virendra Sule
Department of Electrical Engineering

Indian Institute of Technology
Bombay, India

vrs@ee.iitb.ac.in

B.K.Lande
Vasantdada Patil College of Engineering

Bombay,India
bklande@gmail.com

ABSTRACT

An approach is presented for solving linear systems of equations over the Boolean algebra B0 = {0,1}
based on implicants of Boolean functions. The approach solves for all implicant terms which represent all
solutions of the system. Traditional approach to solving such linear systems is to consider them over the field
GF(2) and solve either by Gaussian elimination or Lanczos methods. One of the unfinished problems in
Computer Science is that of developing scalable parallel solvers for such systems. The proposed approach
based on implicants has inherent parallel structure for computation in terms of independent threads. We
show that for sparse systems with a fixed bound on number of variables in any equation and using sufficient
parallel resource, this approach requires O(n) time where n is the number of variables. Hence this approach
is expected to provide a scalable solution to the problem of solving large Boolean linear systems over large
number of processors.

Keywords: XORSAT, Implicants.

1 INTRODUCTION AND MOTIVATION

Boolean Satisfiability problems arise in many applications such as cryptology, hardware and software veri-
fication, reliability, artificial intelligence, decision under logic constraints, computational studies of Biolog-
ical networks (Crama and Hammer 2011), (Bolouri 2008) ,(Alan Veliz-Cuba and Laubenbacher 2014). In
Computer Science, the problem of deciding satisfiability of Boolean formulas in Conjunctive Normal Form
(CNF) known as CNF-SAT has been of central importance (Schoning and Toran 2013). These problems
(known broadly as Boolean SAT problems) are concerned with deciding consistency (or existence of solu-
tions) of Boolean equations in several variables. XOR-SAT is one special case of Boolean SAT where each
equation is an exclusive OR (XOR) combination of variables.

Such linear XOR systems naturally appear in problems such as quadratic sieve method for prime factor-
ization of numbers (Das 2016). Also in decoding of linear error correction coding, linear XOR systems

SpringSim-HPC 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)

Katti, Sule and Lande

need to be solved while optimizing the weight of solutions. Problems of finding all solution assignments
with minimum Hamming weight, with maximum weight and of fixed weight are of different nature than
the traditional problems of deciding satisfiability. All of these problems are addressed if the approach is
aimed at finding all satisfying solutions. While solving general non linear polynomial equation systems,
the XOR linear systems in terms of monomials can be solved as an intermediate problem (this is known as
the XL approach to solving multivariate systems (Bard 2009)). Solving XOR Boolean systems stands out
as a problem on its own and performances of algorithms aimed at solving such problems are relevant for
understanding performances of solvers for general problems (Sule 2014). Although the XOR linear system
problem is known to be of class P (as compared 3-CNF SAT of class NP complete), search for algorithms
which scale to solving XOR problem of large sizes is as much important as scalability and performance of
solvers for NP complete problems arising in practice by parallel algorithms.

The aim of this paper is to develop an approach for solving XOR linear systems over the Boolean algebra
B0 with a view to address following two objectives. This approach is based on implicant computation of
Boolean formulas recently announced in (Sule 2016). In this paper we present the application of the ideas
for the XOR linear case.

1. Finding all solutions of the system. This is not addressed by the known SAT approaches which are
concerned with deciding satisfiability (or the existence of a solution). This problem of representing
all solutions is of higher complexity than the satisfiability problem (Crama and Hammer 2011),(De-
sai and Sule 2014) in case of 2-CNF SAT problems. Moreover in applications such as Cryptography
or Biological networks, satisfiability (or consistency) of the system is already known and it is re-
quired to find all solutions of the system. We shall follow the approach to represent all solutions in
terms of implicants of equations as proposed in (Sule 2016).

2. Developing an approach which has inherent parallelism and can scaleup for solving large size prob-
lems over large number of processors. An important unresolved issue with solving Boolean equa-
tions is developing a solver which can scaleup with good efficiency for solving large systems arising
in applications by parallel computation. Scalability of parallel solvers also depends on the algorithm
and is affected by the number of processors. Our approach gives a method of computation in mul-
tiple parallel threads and is expected to have good scalability even over large number of processors.
In fact its parallel performance improves with increased parallel resource.

Most systems arising from real life applications are sparse, i.e. each clause has only a small fraction of the
complete set (large number) of variables. Such equations may have randomly distributed variables in each
equation or in certain situation such as factorization of numbers dominant variables for small prime factors.
While only local variables may be present in an equation when the variables have space dependent features.
Gaussian elimination based algorithms cause loss of sparsity as computation progresses. On the other hand
the implicant based approch increases sparsity due to substitutions.

Performances of other algorithms such as Grobner basis algorithm concerning scalability leave much de-
sired as pointed out in (Bard 2009, Sule 2013). A general survey of parallel SAT solvers (Hammadi and
Wintersteiger 2012) discusses many issues of scalability which are yet to be resolved. A limitation of SAT
solvers is also that these are mainly designed for deciding satisfiability of CNF formulas and unless general
systems are transformed to this form these methods are not applicable. The problem of solving Boolean
equations is of considerable interest to Biological regulatory networks and is being studied from both the-
oretical and applied angle (Alan Veliz-Cuba and Laubenbacher 2014, Zou 2014). These references show
that this problem is of current interest and hence it is important to continue search of new methods for solv-
ing Boolean equations which can scale up over large sizes of systems as well as large number of parallel
processing elements. In short it is desirable to develop solvers for Boolean systems which provide inherent

Katti, Sule and Lande

parallelism in computation. In this paper we propose such a method for solving such problems associated
with XOR systems.

1.1 Notations and background

The Boolean algebra referred in this paper is the two element algebra B0 = {0,1,+, .,′ } with binary opera-
tions +, . denoting the well known OR (disjunction) and AND (conjunction) while ′ denotes the complement
operation. The Boolean ring {0,1,⊕, .} with ⊕ denoting the well known XOR shall also be denoted by B0.
The Boolean ring under ⊕ is equivalent to the binary field GF(2). Two element Boolean algebra or ring are
very well known and apart from the change of notation for operations we shall refer (Brown 2003) for their
theory. Boolean functions f : Bn

0→ B0 of n variables (denoted X) are equivalence classes of formal conjunc-
tions and disjunctions of n-variables xi, i = 1, . . .n and their complements x′i. Such formal expressions when
evaluated by assigning values of arguments from B0 define Boolean functions. Boolean functions them-
selves form a Boolean algebra denoted B0(n). For a Boolean function f the set of all satisfying assignments
is the set of points a in Bn

0 such that f (a) = 1. This set is denoted by S(f). A term in X is a function

t(X) = ∏
1≤i≤n

xαi
i αi ∈ {0,1}

where for a variable x, xα = x when α = 1 and xα = x′ when α = 0. The set of indices i in a term t shall be
called its support and denoted sup(t). Clearly

S(t) = {xi = αi∀i ∈ sup(t),xi = D∀i ∋ sup(t)}

where D denotes an arbitrary assignment. Hence we represent the set S(t) by the compact notation (t) which
denotes the partial assignments for xi, i ∈ sup(t) in S(t).

1.2 Implicants and representation of set of all satisfying assignments

An implicant of a Boolean function f (X) is a term t(X) such that t ≤ f in the Boolean algebra of functions
B0(n). The substitution of partial assignments (t) in f is denoted as f/t and is known as the ratio or cofactor
of f by t. We observe the obvious result,

Proposition 1. If f (X) is a Boolean function and t a term in X then following statements follow the impli-
cation 1)⇒ 2)⇒ 3)⇒ 1).

1. t is an implicant of f .
2. f/t = 1.
3. (t)⊂ S(f).

A set of implicants I(f) of f is said to be complete if f (a) = 1 for some a then there exists a t in I(f)
such that t(a) = 1. Hence when I(f) is complete for f we have the equivalent expressions as given in the
following,

Proposition 2. Following statements are equivalent

1. I(f) is a complete set of implicants.
2. S(f) =

⋃
t∈I(f)(t)

3. f = ∑t∈I(f) t

Katti, Sule and Lande

where the sum in the third expression is an OR sum of implicants t in I.

Proof. 1)⇔ 2). The inclusion
⋃

t∈I(f)(t)⊂ S(f) follows from the definition of implicant. Conversely, let
a ∈ S(f), then since I(f) is complete there exists a t ∈ I(f) such that t(a) = 1. Hence

S(f)⊂
⋃
t∈I

(t)

1)⇔ 3). By definition
∑

t∈I(f)
t ≤ f

But since I(f) is complete, if f (a) = 1 there is an implicant t such that t(a) = 1. Hence

∑
t∈I(f)

t(a) = f (a)

from which the equivalence follows.

Above proposition is a basis of our algorithm for computing all solutions of XOR systems.

1.3 XOR-SAT and associated problems

The linear XOR-SAT problem without constraints on solutions, in n variables over B0 is defined by a system
of m equations of the form

n⊕
j=1

ai jx j = bi, i = 1, . . . ,m (1)

where ai j, bi are elements of B0. The problem is to find all n-tuples a = (a1, . . . ,an) in Bn
0 such that each a

gives a solution assignment xi = ai. The basic XOR-SAT problem we consider is 1) to find all assignments
for X = {x1, . . . ,xn} in Bn

0 which satisfy equations (1). Such assignments when they exist (i.e. when the
system is satisfiable) are finite in number. There are important associated problems. If w : Bn

0 →W is a
non-negative integer valued function (representing weight of an assignment) then we have the associated
problems 2) to find all solutions a of the system such that w(a) < q where q is a specified non-negative
number and 3) to find all solutions a of the system such that w(a) is minimum. Clearly if we solve the
problem 1) then the associated problems are solvable by search over the solution set. Our approach to
represent the solutions in terms of implicants makes such a search feasible.

One of the central issues with these problems is that although the number of solutions are always finite, the
number grows exponentially in the number of free assignments of variables in each solution. Hence solu-
tions of the above problems need to be compactly represented rather than just enumerated. In fact simply
enumerating the finite set of assignments is not practically feasible in large sized problems. Clearly the best
way to represent such solution sets are by collecting the terms corresponding to variables which have fixed
assignments since variables with free assignments need not be explicitly shown in a solution. This way the
exponential number of solutions can be represented compactly by fixed variable assignments. The repre-
sentation of S(f) as in Proposition 2 provides such a compact representation for satisfying assignments of a
Boolean function f . We extend this representation for the solution set of the systems of XOR linear equa-
tions. Next, the problem of scalability can also be addressed by this compact way to represent assignments.
For instance the implicants representing any solution of the system must necessarily also be implicants for
solving a single equation. Hence an algorithm which at each step restricts search of assignments over small

Katti, Sule and Lande

number of variables involved in a single equation and carries out independent search along parallel threads
can provide scalability of computation. Our approach to solving the XOR linear problem is based on these
ideas.

2 IMPLICANT BASED APPROACH FOR SOLUTION OF BOOLEAN SYSTEMS

Our approach to the problem of representing all solutions of the system (1) depends on constructing a
complete set I(E) of all implicants corresponding to an equation E of the system. Let E denote an equation
in the linear system of the form

a j1x j1 +a j2x j2 + . . .+a jkx jk = b j

where 1≤ j1≤ j2≤ . . .≤ jk≤ n. Consider a Boolean function f (x ji) in variables x ji whose set of satisfying
assignments is

S(f) = {x ji ∈ B0|E is satisfied }

Then it follows that a complete set of implicants I(f) characterizes the set of all satisfying assignments for
the equation E. We shall thus denote this set of implicants as I(E) and call it a complete set of implicants of
equation E and call this function as the true value function of equation E. Thus the set I(E) represents all
solutions of the equation E denoted as S(E). Then for each t in I(E), (t) denotes a set of partial assignments
satisfying E, hence

S(E) = {
⋃

t∈I(E)

(t)}

this is then a compact way to represent all solutions (or the satisfying assignments) of an equation E.

2.1 Satisfying assignments of simultaneous equations

Now consider the problem of representing satisfying assignments of two simultaneous equations in variables
X . So let E1 and E2 be these two equations. If we compute a complete set of implicants I(E1) then the two
simultaneous equations are consistent iff for all t in I(E1) the substitution E2/t equivalently f2/t does not
result into a contradiction f2/t = 0 (or E2 not satisfied). We can formally write the following.

Proposition 3. Two simultaneous equations E1 and E2 are consistent iff f2/t ̸= 0 (i.e. E2 is satisfied) for
some t in a complete set of implicants I(E1). A complete set of implicants I(E1,E2) of the simultaneous
system of equations is given by either of the sets

I(E1,E2) =
⋃

t∈I(E1),s∈I(E2/t){ts}
=

⋃
s∈I(E2),t∈I(E1/s){ts}

Proof. Let I(E1) be a complete set of implicants of equation E1. Then each t in I(E1) represents partial
assignment (t) in the set of all solutions of E1. Hence the simultaneous equations have a solution iff there
is a partial assignment (t) whose satisfying set S(t) intersects the solution set of E2. This is true iff when
(t) is substituted in E2 does not lead to contradiction. This is the condition f2/t ̸= 0. When there is no
contradiction the resulting equation is E2/t. If this equation has a satisfying partial assignment s in the
remaining variables then ts is a simultaneous implicant of both equations representing a partial assignment
(t)(s). Taking union over all implicants t in I(E1) for which E/t is not a contradiction thus gives the formula
I(E1,E2). Since the order of equations leaves the solutions invariant the formula is symmetric.

This proposition is the basis of our algorithm to compactly represent all satisfying assignments of simulta-
neous equations. We first consider few examples.

Katti, Sule and Lande

2.2 Examples of representing solutions by implicants

Example 1. Consider the two equation system

w⊕ x⊕ y = 1
x⊕ y⊕ z = 0

For first equation E1 we have
I(E1) = {wx′y′,w′xy′,w′x′y,wxy}

This gives
E2/wx′y′ ⇔ {z = 0}
E2/w′xy′ ⇔ {z = 1}
E2/w′x′y ⇔ {z = 1}
E2/wxy ⇔ {z = 0}

Since no contradiction took place the system is consistent and every implicant of E1 leads to a solution.
Hence we have

I(E1,E2) = {wx′y′z′,w′xy′z,
w′x′yz,wxyz′}

which gives the set of all solution assignments satisfying the simultaneous equations.

Consider another example of a consistent system.

Example 2.
w⊕ x⊕ y = 1

w⊕ y = 1

The first equations is same as above hence has same I(E1). We compute the substitutions in the second
equation

E2/wx′y′ ⇔ {1 = 1}
E2/w′xy′ ⇔ {0 = 1}
E2/w′x′y ⇔ {1 = 1}
E2/wxy ⇔ {0 = 1}

Two of these are contradictions. For the other two E2/t = 1 hence t is an implicant of E2 also. Hence we
have

I(E1,E2) = {wx′y′,w′x′y}

2.3 Notation for larger examples

We shall now introduce a notation to represent larger systems and implicants. Consider the system of linear
equations.

x3⊕ x5⊕ x7 = 1
x1⊕ x4⊕ x5 = 0
x2⊕ x5⊕ x6 = 1

x3⊕ x7 = 0
x5⊕ x7 = 0

We represent the above system denoted S as the set

{[3,5,7,0,1], [1,4,5,0,0], [2,5,6,0,1], [3,7,0,0], [5,7,0,0]}

Katti, Sule and Lande

(This notation is inspired by notation for CNF clauses well known in DIMACS notation but is not the same).
We also denote an implicant term of the type t = x′3x5x′6x7 as well the partial assignment (t) by the notation
(−3,5,−6,7). Also the partial assignment of a product of two implicants ts is denoted as (t)(s). In the
above system S, consider first an equation with minimum number of variables

[3,7,0,0]

A complete implicant set for this equation is

{(−3,−7),(3,7)}

Let S/t denote the system obtained by substitution of assignment t = 1 in all equations of S. Then (equations
which are trivially satisfied and result in tautologies 0 = 0 or 1 = 1 are dropped from the new system)

S/(−3,−7) =
{[5,0,1], [1,4,5,0,1], [2,5,6,0,1], [5,0,0]}
S/(3,7) =
{[5,0,1], [1,4,5,0,1], [2,5,6,0,1], [5,0,1]}

In both the resulting reduced systems we have implicant of first equation as {(5)}. Substitution of this
implicant gives rise to two new reduced systems

{[1,4,0,0], [2,6,0,0], [1,0,0]}
{[1,4,0,0], [2,6,0,0], [1,0,1]}

The first system has an inconsistent equation 1 = 0 while the second system has no contradiction. Hence
the complete set of satisfying assignments are represented by the implicant set by taking the product of the
previous implicant with that of the second system

{(3,7)(5)(1,4),(3,7)(5)(−1,−4),
(3,7)(5)(2,6),(3,7)(5)(−2,−6)}

3 PROPOSED ALGORITHM TO FIND ALL SOLUTIONS

We now propose the algorithm for representing all solutions of a system of equations S in terms of an
implicant set or return an empty set if the system is inconsistent. The algorithm starts with selecting an
equation E called a pivot equation. (A suitable choice of a pivot is an equation with minimum number
variables). A complete set of implicants denoted I(E) is then computed. All satisfying assignments of E are
represented by all partial assignments satisfying these implicants. The system of equations is then reduced
to S/t for a selected implicant t. The processes is repeated until a contradiction is reached when an equation
in the reduced system is contradicted when evaluated at an implicant or else an augmented implicant set
is returned. The final sets of implicants returned in each thread determine the partial assignments of all
satisfying assignments of the system. This is described in the following pseudocode of the algorithm 1.

4 TIME COMPLEXITY AND RESULTS ON RANDOM CASES

Performance of the above XOR system solver has been evaluated on systems Ax = b where matrices A are
over the Boolean ring B0 and nonsingular of size n. The vector x is an n tuple of variables to be solved
and b is a known n tuple. The operation Ax uses the Boolean ring operations of product and XOR sum.
Systems of different sizes varying from n = 40 to n = 500 are selelcted in two different sets in which A is
chosen non-singular. Such random non-singular matrices are chosen by randomly transforming a matrix in
Hessenberg form as described below while b is a random vector. All these systems have a unique solution
since A is non singular by design.

Katti, Sule and Lande

Algorithm 1: All Solutions: (Reduction of a system by Implicants)
Input : The linear system of equations S : fk(X) = bk (k-th equation denoted as Ek), k = 1,2, . . .n, in

variables X = {x1, . . . ,xn}.
Output: set of all solution assignments.

1 Choose an equation E in S with least number of variables;
2 Compute a complete set of implicants I(E) of E and order it as {t1, . . . , tNk};
3 Select lowest order implicant t in I(E);
4 Start thread:
5 Reduce the system: pick equations from S of indices j and compute f j/t.
6 if f j/t = 0 for some j then
7 End thread;
8 Discard the implicant;
9 Select next implicant in the order in 3 and restart thread;

10 else
11 Compute the reduced equations f j/t for all j;
12 Denote the reduced system as S/t;
13 Delete the equations for j such that f j/t = 1;
14 end
15 if all f j/t = 1 then
16 Return (I)(t);
17 else
18 set S← S/t I← (I)(t).
19 end
20 Repeat 6 with this I untill S = /0;

/* The set I is the set of implicants denoting partial assignment of
solutions of S in the current thread started by the implicant. */

21 Collect union of partial assignments given by I in all threads;
22 This gives the set of all solution assignments;

Katti, Sule and Lande

4.1 Procedure for generating matrix A

Matrix A is generated by making random elementary transformations on a non singular Boolean matrix in
Hessenberg form. For instance a 5×5 non-singular matrix in Hessenberg form is

H =

∗ 1 0 0 0
∗ ∗ 1 0 0
∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ 1
1 ∗ ∗ ∗ ∗

where ∗ denotes an arbitrary 0 or 1 entry. Similar construction is considered to generate a general non-
singular matrix in Hessenberg form. Then the A matrix is obtained by random elementary row operations
on H. This procedure is carried out in following steps.

1. set counter cnt = 0.
2. Randomly generate i from the range 1 to n.
3. Randomly generate j from the range 1 to n.
4. If i ̸= j then

(a) add elements of row i to row j i.e.
Row(j) = Row(j)+Row(i). Elementary addition are over binary field F2.

(b) make cnt = cnt +1
5. If i = j then Go To step 2.
6. steps 2 to 5 were followed until cnt ≥ (n∗10/100)

4.1.1 Analysis of complexity of solving the system and experimental test cases

Algorithm 1 essentially involves two computational steps at every stage when a pivot equation is chosen.
These are as follows.

1. Generation of a complete set of implicants I(E) for the pivot equation.
2. Substitution of the partial assignment (t) of an implicant t ∈ I(E) in the rest of the equations to get

reduced system S/t.

These two steps define a thread segment. The starting point of this thread is an implicant t which is to be used
for reduction of the system. At the end of the thread implicant t is either discarded due to a contradiction
or is qualified as an implicant of the system or leaves a reduced system. All these thread segments are
independent computations. Hence the reduction of the original system progresses along parallel threads. If
we assume that there is sufficient parallel resource available then at each stage of start of a thread segment
the computations can be carried out on independent processors. Hence the time required for solving the
XOR system with sufficient parallel resource is equal to the time required for the thread requiring longest
time consisting of a sequence of thread segments. We assume that the time for implicant computation in
each thread segment is constant (this is justified for sparse systems in which number of nonzero entries
in any equation is small and bounded from above). Similarly the time taken for substitution of a partial
assignment in equations is also considered constant (upper bound). In each thread segment at least one
variable assignment is discovered. Hence a longest thread has atmost n steps. Hence the time taken for
longest thread is of order O(n) asssuming all thread segments are exeuted independenly (or in parallel).

Katti, Sule and Lande

4.2 Experimental test case results

Experimental cases of computation with this algorithm are documented in the following table.In these ran-
dom samples of systems, for each n, 10 binary random matrices A of size n×n and 10 n-tuple vectors b of
were selected. The systems Ax = b were solved sequentially by the above algorithm and time taken for each
thread segment were measured. From these records of thread segment time, the time required for solving the
system when all threads could be executed in parallel was calculated. This is the time taken for the sequence
of thread segments which takes the longest time, while the time required to solve each system sequentially
is the sum of times taken for all thread segments. From these measurements the averages of time taken for
the longest threads and total were calculated for the random samples. These are plotted in the following
table shown. The graph shows approximately linear O(n) trend as expected. The slight trend visible of
the type O(n1+α) in the average time for longest threads is due to the fact that the experimental test cases
had nonzero terms in any equation equal to half of n. Hence the time taken for computing implicant sets
in the thread segments was not constant as assumed but was actually weakly O(nα) for α < 1 with a small
constant. Hence the longest thread time appears to tend towards O(n1+α).

As described above our computations are completely sequential. However due to the independence of
thread segments through which the algorithm works it is theoretically possible to make estimates of parallel
efficiency. If it is assumed that an infinite parallel resource is available for implementing the parallel threads,
then the maximum speedup possible is the ratio

speedup = Time Taken for Sequential Solution
Time Taken for longest Thread

= Sum of Time taken for all threads
Time taken for the longest thread

The table also document this maximum speedup in terms of average time taken for longest thread and the
sequential solution. The table also show that speedup is higher if number of threads are larger. Although
this means larger requirement of memory and parallel processors, this also gives a positive indication that
this algorithm is expected to be scalable for large data and large number of processors.

Figure 1: Longest Thread time Vs No of Variables.

Katti, Sule and Lande

Table 1: Experimental Results for all solutions

Number of
Variables

Average Number
of Threads

Average Time
Taken for longest

Thread

Average Time
Taken for
Sequential
Solution

Maximum
speedup predicted

by parallel
computation

40 5 1.18E-03 5.64E-03 8
50 9 2.22E-03 1.64E-02 8
60 9 3.35E-03 2.41E-02 11
70 13 5.85E-03 5.83E-02 11
80 15 5.55E-03 9.16E-02 17
90 30 6.14E-03 1.85E-01 35
100 19 1.09E-02 1.74E-01 22
110 51 1.41E-02 3.76E-01 53
120 41 7.64E-03 3.86E-01 76
130 122 2.26E-02 1.57E+00 150
140 233 2.43E-02 2.96E+00 137
150 153 2.66E-02 2.82E+00 130
160 176 3.51E-02 3.72E+00 139
170 203 4.94E-02 7.89E+00 152
180 190 4.19E-02 6.02E+00 160
190 393 5.13E-02 1.18E+01 230
200 274 5.36E-02 1.87E+01 350

5 CONCLUSION

A parallel solver for special Boolean systems called XOR linear systems is presented in this paper which
represents all solutions of the system. Such systems are traditionally solved by Gaussian elimination over
the binary fields or Lanczos methods. The proposed solver treats these as Boolean systems and all oper-
ations performed are Boolean. The algorithm splits the computation in terms of independent threads and
hence when sufficient parallel resource is available, the algorithm gives an idea of the maximum speedup
achievable by parallel computation. Parallel performance speed ups are tabulated for random systems and
show promising speed ups. Although systems required to be solved in applications are non linear, the linear
system speed up performance is relevant since the basic of operation of substitution of assignments does not
get affected by linear nature of functions. Hence the results of this paper are of interest even for general non
linear problems for solving Boolean systems.

REFERENCES

Alan Veliz-Cuba, Boris Aguilar, F. H., and R. Laubenbacher. 2014. Steady state analysis of Boolean molec-
ular network models via model reduction and computational algebra. 221 ed. BMC Bioinformatics.

Bard, G. 2009. Algebric Cryptanalysis. Springer.

Bolouri, H. 2008. Computational modeling of gene regulatory networks. Imperial College Press.

Brown, F. M. 2003. Boolean analysis: The logic of Boolean equations. Dover.

Crama, Y., and P. Hammer. 2011. Boolean functions. Theory, algorithms and applications Encyclopedia of
Mathematics and its applications, Volume 142. Cambridge.

Das, A. 2016. Computational number theory. CRC Press.Prentice-Hall, Inc.

Katti, Sule and Lande

Desai, M. P., and V. Sule. 2014. “Generalized cofactors and decomposition of Boolean satisfiability prob-
lems”. arXiv.org/cs.DS/1412.2341v1.

Hammadi, Y., and C. M. Wintersteiger. 2012. “Seven Challenges in Parallel SAT Solving”. Challenge paper
AAAI 2012 Sub-Area spotlights track. Association of Advancement of Artificial Intelligence..

Schoning, U., and J. Toran. 2013. The satisfiability problem, algorithms and analyses. Lehmanns media.

Sule, V. 2013. “Generalization of Boole-Shannon expansion, consistency of Boolean equations and elimi-
nation by orthonormal expansion”. arXiv.org/cs.CC/1306.2484v3.

Sule, V. 2014. “An algorithm for Boolean satisfiability based on generalized orthonormal expansion”.
arXiv.org/cs.DS/1406.4712v3.

Sule, V. 2016. “Implicant based parallel all solution solver for Boolean satisfiability”.
arxiv.org/cs.Ds/1611.09590v3.

Zou, Y. M. 2014. “An algorithm for detecting fixed points of Boolean networks”. arXiv.org:1404.5515v1[q-
bio.QM].

AUTHOR BIOGRAPHIES

JAYASHREE V. KATTI is an Associate Professor at Pimpri Chinchwad College of Engineering, Savitribai
Phule Pune University. She is currently pursuing PhD in Computer Science and Engineering. Her research
interests are Cryptography, Algebraic Cryptanalysis, Visual Cryptography, High performance computing.
Her email address is jayashree.katti@gmail.com.

VIRENDRA SULE has been teaching at Indian Institutes of Technology for over 25 years and has published
research in Control and Systems theory. Since recent times he has been working in Cryptography and
computational algorithms for Boolean systems. For a brief period he worked with the TATA startup venture
Computational Research Laboratories on parallel computing. His email address is viren.sule@gmail.com.

B.K.LANDE currently working as Professor in Narsee Monjee Institute of Management Studies, Mum-
bai. His research interests are Controls and Communication Engineering. His email address is
bklande@gmail.com.

mailto://jayashree.katti@gmail.com
mailto://viren.sule@gmail.com
mailto://bklande@gmail.com

DESIGNING LARGE HYBRID CACHE FOR FUTURE HPC SYSTEMS

Jiacong He

Department of Electrical Engineering

The University of Texas at Dallas

800 W Campbell Rd, Richardson, TX, USA

Email: jiacong.he@utdallas.edu

Joseph Callenes-Sloan

Department of Electrical Engineering

The University of Texas at Dallas

800 W Campbell Rd, Richardson, TX, USA

Email: jcallenes.sloan@utdallas.edu

ABSTRACT

DRAM cache is a large cache stacked on the processors die using 3D-stacking technology, which may be
used in the future High-Performance Computing (HPC) systems to reduce latency and increase bandwidth.
However, the energy becomes an inevitable challenge with the increasing cache capacity. In this paper, we
first propose a large hybrid cache for future HPC systems, which can effectively reduce the static energy
compared with the DRAM cache. Further, we apply volatile STT-RAM as part of the hybrid cache to reduce
both the static and dynamic energy of the DRAM cache. Finally, we propose to maintain the cache tag array
in the region of the hybrid cache with less read latency to improve performance. Experimental results show
our hybrid cache reduces energy by 31.6% and improves performance by 18.8% on average.

Keywords: DRAM cache, STT-RAM, performance, energy, HPC.

1 INTRODUCTION

Future high-performance computing demands large cache capacity and high memory bandwidth. However,
the existing SRAM cache with low density hinders the increment of cache capacity, and the limited pin
count leads to the memory bandwidth wall. Recently, the 2.5D/3D die-stacking technologies are widely
used in the major processor vendors (e.g., Intel Xeon Phi Processor includes up to 16GB 2.5D-stacking
DRAM memory). Also, DRAM has already been used as a large cache in commercial supercomputer (e.g.,
IBM POWER8 uses up to 128MB eDRAM as L4 cache per socket). Thus, many researchers (Loh and Hill
2011, Huang and Nagarajan 2014, Zhao et al. 2007) proposed to use 3D die-stacking DRAM as a last-
level cache to increase the cache capacity and off-chip memory bandwidth. The DRAM cache consists of
multiple layers of DRAM stacked on the processor die using Through-Silicon via (TSV). It is potential to
meet the workloads demand of future HPC systems by increasing the on-chip cache capacity up to gigabytes
of storage and providing orders of magnitude higher bandwidth.

However, die-stacking DRAM cache with large capacity suffers from high leakage power and becomes
increasingly susceptible to error due to the process scaling. Also, the 3D design has more challenge in
power and thermal management because multiple stacking layers result in higher power densities. Recently,
Spin-Transfer Torque RAM (STT-RAM), as an emerging non-volatile memory technology, is potential to be
used as a large cache due to its near-zero leakage and high density. However, STT-RAM has the disadvantage
of high write energy and high write latency, so it can not directly substitute for DRAM cache without any
optimizations. Thus, STT-RAM is commonly used in a hybrid cache to utilize the advantage of different
memory technologies. For example, recent works (Li et al. 2011, Wu et al. 2009) leveraged non-volatile

He and Callenes-Sloan

STT-RAM to build a hybrid cache with SRAM. However, there are fabrication challenges of the hybrid
cache in the conventional 2D design. We observe the emerging 3D stacking technology provides an excellent
opportunity to build a large hybrid cache by integrating different wafers with different memory techniques.

While today’s servers need tens to hundreds of gigabytes of DRAM each, the corresponding demand for
die-stacked cache capacity varies between hundreds of megabytes to several gigabytes (Jevdjic et al. 2013).
Thus, our proposed large hybrid cache also requires large tag storage (64MB tag array for 1GB cache)
considering to use conventional 64B cache block. Ideally, the tag array should be stored in the SRAM cache
to make the tag access latency as small as possible, while it is impractical due to the precious SRAM cache
capacity. Some researchers proposed to store the tag array within the large on-die cache, which needs to
optimize the latency of tag access by adding extra design complexity. We notice that the tag management
policy in the large hybrid cache is also important, but previous works (Cong et al. 2011, Li et al. 2011, Wu
et al. 2009) rarely considered this issue.

In this paper, we propose a large last-level hybrid cache for HPC systems, which consists of DRAM and
STT-RAM regions. Each region can be composed of several layers stacked upon each other. The DRAM
layers are used as the main component of the hybrid cache due to their high endurance. The STT-RAM
layers with small leakage are used to reduce the static energy consumption of the hybrid cache. Also, we
notice the STT-RAM can be relaxed (Smullen et al. 2011) to reduce its high write energy and latency by
sacrificing its non-volatility. Thus, the non-volatile STT-RAM in the hybrid cache is replaced by volatile
STT-RAM to further reduce both static and dynamic energy of the hybrid cache. Finally, we observe that
there are two different tag array in the DRAM region and STT-RAM region of the hybrid cache respectively.
And the read latency in these two regions is unbalanced due to the disparate memory technologies, thus we
propose to move all tag array to the cache region (DRAM or STT-RAM) with lower read latency to improve
the performance.

Overall, our contributions are as follows.

• We propose a large hybrid cache for future HPC systems to reduce static energy.
• We use volatile STT-RAM as part of the hybrid cache to reduce both static and dynamic energy.
• We optimize the tag management of the proposed hybrid caches to improve performance.

2 MOTIVATION

With the increasing frequency of CPU, more and more programs will be limited in the performance by the
systems’ memory bandwidth, rather than by the computational performance of the CPU. Also, the high-
end computer spends over 90% of their time idle waiting for cache misses and fetching data from off-chip
memory. Thus, the conventional DRAM memory with low bandwidth and high latency leads to the memory
wall problem in the current shared-memory HPC systems. To handle the memory wall problem in HPC
systems, die-stacking technologies have recently drawn much attention from the research community as a
viable solution. Through die-stacking technology, DRAM can be stacked on top of the processor die (3D)
or on a separate die connected through-silicon interposer (2.5D), providing an additional cache capacity to
the traditional SRAM cache, much higher bandwidth and lower interconnect latency compared to off-chip
DRAM memory.

Further, a typical supercomputer consumes prohibitively large amounts of electrical power for computing,
while the demand for computing is increasing exponentially as a consequence of data explosion in the
scientific computing. It is observed that Last Level Cache (LLC) has become a significant source of both
static and dynamic energy consumption in modern processors, consuming up to 17% of total core energy.
Thus, although DRAM cache as LLC can be used to alleviate bandwidth and latency pressure in the HPC
systems, the large on-die cache exacerbates the energy challenge. To handle the power wall challenge in the

He and Callenes-Sloan

Figure 1: The structure of STT-RAM cell with 1MTJ 1T.

conventional cache, emerging non-volatile STT-RAM is being explored as potential alternatives of SRAM
and eDRAM cache. A typical cell size of STT-RAM is 40F2 compared with 146F2 SRAM cell size, so
STT-RAM is attractive to be used as a large LLC cache for area savings. Also, The read latency and energy
of STT-RAM are comparable to SRAM and DRAM, and STT-RAM has near-zero leakage power and zero
refresh energy. However, it is also noticed the STT-RAM is 2x worse in write latency and 10x worse in write
energy compared with DRAM. Thus, STT-RAM can not be directly used to replace DRAM as a large cache
based on the write-intensive nature of many scientific workloads.

To fully utilize the benefit of different memory techniques, we observe the large hybrid cache consisting of
STT-RAM and DRAM can effectively reduce overall energy while maintaining performance at an efficient
level. However, one key challenge in designing a large on-die cache is the cache tag management. We
observe that the read latency is unbalanced in the hybrid cache, and the tag array access is actually a read
operation, which can be utilized to optimize the hybrid cache performance by moving tag array to the cache
region (DRAM or STT-RAM) with lower read latency.

3 BACKGROUND

STT-RAM. As shown in the Figure 1, the STT-RAM cell has an access transistor that connects the storage
device and the bitline. It also has a Magnetic Tunnel Junction (MTJ) to store binary data, and the MTJ
consists of two ferromagnetic layers and one tunnel barrier layer. The resistance of the MTJ is used to
represent the binary data stored in the cell, which is determined by the relative magnetization direction of
these two layers (Kultursay et al. 2013). And the low and high resistance are used to represent logical 0 and
1 respectively. Further, the data retention time of STT-RAM could be relaxed to reduce its high write energy
by shrinking the planar area of the MTJ or decreasing the thickness of the free layer.

DRAM Cache. Previous researchers divide the DRAM cache into two categories. One is the block-based
DRAM cache, which is architected as a large, software-transparent last-level cache (Loh and Hill 2011). It
uses the 64B block size of conventional SRAM cache to optimize temporal locality. Thus, it requires a large
amount of space for tag storage (16MB tag storage for 256MB DRAM cache). Another is the page-based
DRAM cache design using a much larger cache block size of 2KB to 4KB (Jevdjic et al. 2014, Jevdjic et al.
2013). The tag overhead in block-based design is reduced to a few megabytes. However, a large cache line
may fetch many unused data on a DRAM cache miss from the low-bandwidth off-chip memory.

Hybrid Cache. Different memory technologies have different characteristics of power, performance, and
density. Hybrid cache integrates different memory technologies and achieves the overall optimal design.
There are two types of hybrid cache architectures (Wu et al. 2009), one is the inter-cache design (every cache
level of the cache hierarchy has disparate memory technologies) and the other is intra-cache design (single

He and Callenes-Sloan

Figure 2: Proposed 3D-stacking hybrid cache architecture overview, with DRAM and STT-RAM cell array.

cache level consists of different memory technologies, and this is what our paper focuses on). Previously,
many researchers proposed hybrid SRAM/STT-RAM cache and hybrid SRAM/DRAM cache (Wang et al.
2014, Cong et al. 2011), but little work discussed hybrid DRAM/STT-RAM cache. Different from prior
work (He and Callenes-Sloan 2016), we focus on the evaluation of hybrid cache for the scientific and large-
scale applications, especially based on the HPC systems.

4 HYBRID CACHE FOR FUTURE HPC SYSTEMS

4.1 Architectural Design Overview

We propose a large die-stacking hybrid cache consisting of DRAM region and STT-RAM region. The total
hybrid cache capacity is 1GB, where DRAM region capacity is 768MB and STT-RAM region capacity
is 256MB. The DRAM region is divided into 6 layers with 128MB per layer, and the STT-RAM region
is divided into 2 layers with 128MB per layer. Every layer is stacked upon each other as illustrated in
the Figure 2. The lowest die is the processors die containing 32 cores, each core has private L1 cache (64KB
per core), L2 cache (4MB per core) cache and shared L3 cache (8MB). The DRAM region with 6 layers is
stacked on the processors die, providing cache access performance due to shorter vertical wire connection.
The STT-RAM region with 2 layers is stacked on the DRAM region providing static energy reduction. Once
there is a data request from the CPU, the request is transmitted from the processors’ layer to the last layer of
the hybrid cache using low-latency TSV inter-die connection. The DRAM region is first accessed to buffer
a large amount write request due to its large capacity, which can help to alleviate the high write energy
pressure in the STT-RAM region.

He and Callenes-Sloan

Figure 3: Three different working regions of MTJ.

Table 1: Relation between retention time and thermal factor at 278K.

Retention time 10 years 1 year 1 month 1 week 1 day 1 hour 1 min 1 s 10 ms

Δ 40.12 37.56 35.34 33.96 32.02 38.65 24.47 20.32 15.78

4.2 STT-RAM Optimization

Although emerging STT-RAM can efficiently reduce the static energy compared with conventional DRAM,
its high write energy and latency still pose a large challenge in using STT-RAM in the large cache. In this
paper, we propose to use disparate memory technologies (DRAM and STT-RAM) to build a large hybrid
cache based on the 3D-stacking technique, which can effectively reduce both the static and dynamic energy
in the large cache, and keep the original performance benefit. However, the HPC workloads and scientific
applications usually are write-intensive with large datasets, so the STT-RAM used in the hybrid cache still
need to be optimized to accommodate data-intensive workloads. It is noticed that the non-volatility of STT-
RAM can be sacrificed to reduce its high write energy and latency. Thus, we optimize our hybrid cache
by replacing non-volatile STT-RAM with volatile STT-RAM to achieve better energy and performance
efficiency. In the following parts, we first analyze the non-volatility characteristics of STT-RAM, and then
we show how to optimize hybrid cache using volatile STT-RAM in terms of energy and performance.

4.2.1 STT-RAM Non-volatility

Figure 1 depicts the structure of the STT-RAM cell array, where the STT-RAM cell is connected to word line
(WL), bit line (BL) and source line (SL). The WL is used to select the specific row, and the voltage difference
between SL and BL is used to complete write and read operation. When executing a read operation, a
negative voltage is applied between SL and BL, and the current flowing through the free layer of the MTJ is
sensed by the sense amplifier. To write data to an MTJ, a large current must be pushed through the MTJ to
change the magnetic orientation of the free layer. Depending on the direction of the current, the free layer
becomes parallel or anti-parallel to the fixed layer. The amount of current required for writing into an MTJ
should be larger than a critical current.

MTJ has three regions, including the thermal activation region, dynamic reverse region and processional
switching region (Diao et al. 2007). Their distribution is shown in the Figure 3, and the required switching
current in each working region can be calculated by:

JT HM
C (Tsw) = JC0(1− 1

Δ
ln(

Tsw

τ0
)) (Tsw > 10ns) (1)

He and Callenes-Sloan

Figure 4: 3D Hybrid cache including 1 volatile STT-RAM die, 1 DRAM die and 1 processors die. There are

32 processing cores, 32 cache banks per cache layer. Cache banks are connected through NoC routers.

JDY N
C (Tsw) =

JT HM
C (Tsw)+ JPREC

C (Tsw)e−A(Tw−TPIV)

1+ e−A(Tw−TPIV)
(10ns ≥ Tsw > 3ns) (2)

JPREC
C (Tsw) = JC0 +

ln(π
2θ)

Tsw
(Tsw ≤ 3ns) (3)

where JC(Tw) is the required switching current density, JCO is the threshold of the switching current density,
Tsw is the switching pulse width, τ0 is the relaxation time, Δ is the thermal stability of MTJ. The thermal
stability of MTJ determines the retention time Tret of STT-RAM (Diao et al. 2007), which can be modeled
as: Tret =

1
f0

eΔ. Based on the analysis above we estimate the average time for MTJ bits flip. In the Table 1,

we show the retention time changing with thermal factors at temperature 278K. Reducing the size of MTJ
leads to shorter retention time, which provides larger storage density and less write energy of STT-RAM.

4.2.2 Hybrid Cache with Volatile STT-RAM

To design a hybrid cache with volatile STT-RAM, we need to first determine a suitable data retention time
for the STT-RAM. As shown in Table 1, the retention time varies from year to millisecond, and lower
retention time needs extra refresh operation like DRAM to keep data valid. On the one hand, if the retention
time is selected too long, the high write energy and latency of STT-RAM can not be effectively reduced. On
the other hand, if the retention time is selected too short, the refresh operation of volatile STT-RAM will
lead to high refresh energy consumption. In order to choose an appropriate retention time that can balance
the high write energy and extra refresh energy of the STT-RAM, we observe that the data refresh period of
on-die DRAM can be used as a good reference for determining the retention time of STT-RAM.

It is known the refresh period of commodity DRAM is 64ms, which means the DRAM restores the degraded
voltage stored in the DRAM cell capacitors for every 64ms due to DRAM volatile nature. For a detailed
description of DRAM refresh, we refer the reader to (Liu et al. 2012). However, the refresh period of on-die
DRAM cache is smaller than 64ms due to the usage of fast logic transistors, which have higher leakage
than the DRAM memory. To reduce the design complexity of refresh circuit, the retention time of volatile
STT-RAM should be close to the refresh rate of DRAM cache. Therefore, we conduct an application-driven
study to analyze the refresh times of the DRAM cache blocks to determine a suitable data retention time. An
extensive analysis of emerging workloads indicates that the average retention times for the DRAM cache

He and Callenes-Sloan

Figure 5: Access latency of different types of hybrid cache architecture.

blocks is close to 100μs. Although this aggressive refresh rate used in the STT-RAM will lead to over
95% write energy reduction, while the refresh energy is increased over 10x compared with 64ms retention
time. To balance the write energy reduction and the overhead of refresh energy increment, we advocate the
retention time of STT-RAM to be 0.5ms, which has about 90% write energy reduction and 5x refresh energy
increment.

As shown in the Figure 4, our hybrid cache uses TSV as the vertical interconnection between hybrid cache
and processor cores. In each core, there is a hybrid cache controller connected to the hybrid cache, from
which data and request are moved through layers between processing cores and caches. Each core within
the 2D processor layer is communicated through Network-on-Chip (NoC) routers. Also, the latency for
traversing each layer is negligible compared to that between two NoC routers. Each layer of the hybrid
cache is divided into 32 banks, and several cache banks in each layer which are connected with NoC routers.

4.3 Tag Management for the Large Hybrid Cache

Base on the hybrid cache architecture, we observe that the conventional tag array of the large hybrid cache
actually consists of two parts, one is the tag array in the DRAM region and the other is the tag array in the
STT-RAM region. Due to the unbalanced read latency of the disparate memory technologies, the latency
to access tag array is also unbalanced. Different from conventional design based on NUCA (Das et al.
2015) and NUMA (Li et al. 2013), we consider the unbalanced read latency of the two proposed hybrid
cache architectures, which are the hybrid cache with non-volatile STT-RAM and with volatile STT-RAM
respectively.

He and Callenes-Sloan

Table 2:

CPU core 32-core OoO, 3.2GHz, 16-core/socket

SRAM Cache

L1: 64KB, 8-way, 4-cycle load-to-use, 64B linesize

L2: 4MB, 16-way, 15-cycle hit latency, sequential tag/data access

L3: 8MB, 32-way, 64B linesize, LRU, write-back, write-allocate policy

Hybrid

LLC

(H1) STT-RAM: 256MB, 29-way, 1.13/21.35 pJ/bit for R/W energy

(H2) Volatile STT-RAM: 256MB, 29-way, 1.06/1.18 pJ/bit for R/W energy

DRAM: 768MB, 29-way, 1.25/1.31 pJ/bit for R/W energy

Off-Chip DRAM 2 channels, 2 ranks per channel, 8 banks per rank, DDR3-1600 (12.8GB/s)

Network Parameter 9 layers, 32 TSVs, 2-cycle router latency

For the hybrid cache with non-volatile STT-RAM, it is noticed the read latency of STT-RAM is 2x higher
than the DRAM. Thus, we propose to move the tag array of STT-RAM region to the DRAM region (Tags-
in-DRAM). Similarly, for the hybrid cache with volatile STT-RAM, the volatile STT-RAM is optimized to
have lower read latency than the DRAM (over 20%) by shrinking the thickness of MTJ. Thus, we propose
to move the tag array of DRAM region to the STT-RAM region (Tags-in-STT-RAM). The reason behind
these designs is that the tag access actually is a read operation (to determine cache hit or miss), and we
always move the tag array to the region of the hybrid cache with lower read latency to improve overall
performance. In the conventional tag management shown in the Figure 5, high latency is wasted in the tag
access in the separate hybrid cache regions. Compared to the conventional scheme, Tags-in-DRAM and
Tags-in-STT-RAM design can reduce the tag access latency by obviating the need to access the high-latency
tag array.

5 EXPERIMENTAL METHODOLOGY

We extend gem5 simulator (Binkert et al. 2011) to simulate a 32-core system with 3-level SRAM cache
and a last-level hybrid cache. The STT-RAM region and DRAM region are modeled similar to (Kultursay
et al. 2013) and (Loh and Hill 2011) respectively. The major system parameters are listed in the Table 2.
All the experimental parameters of 3D volatile/non-volatile STT-RAM and DRAM cache are obtained from
the modified version of DESTINY (Poremba et al. 2015). McPAT (Li et al. 2009) is used to get the power
values of the hybrid cache. The state-of-the-art DRAM cache (Loh and Hill 2011) is used as our baseline.
The 3D TSV model parameter is based on (Sun et al. 2009). The simulations were done for 2 configurations:
(H1) The hybrid cache with non-volatile STT-RAM; (H2) The hybrid cache with volatile STT-RAM.

We analyze a set of large-scale HPC applications from the PARSEC (Bienia et al. 2008) and scientific
applications from the SPEC CPU2006 (Henning 2006) to evaluate the energy and performance of the hybrid
cache. For each of the workloads, we warmed up the simulation for one billion cycles and collected results
for one billion cycles. For the evaluation metrics, we use energy savings and IPC speedups to show how
much energy and performance efficiency can be achieved.

PARSEC benchmark focuses on emerging workloads and was designed to be representative of next-
generation shared-memory programs for chip-multiprocessors. It consists of computationally intensive and
parallel programs that are very common in the domain of HPC.

SPEC CPU2006 benchmark is comprised of various scientific and real-life applications, which are used to
measure the computer performance stressing on the system’s processor and memory subsystem. It evaluates
performance by measuring how fast the computer completes a single task.

System Configurations.

He and Callenes-Sloan

Figure 6: Energy reduction of hybrid cache with non-volatile STT-RAM (H1).

Figure 7: Energy reduction of hybrid cache with volatile STT-RAM (H2).

6 RESULTS AND ANALYSIS

6.1 Energy Analysis

Static Energy: As shown in the Figure 6, the static energy savings of our proposed H1 architecture is about
35.4% on average compared with the baseline DRAM cache. The reason behind the savings is that STT-
RAM with small leakage can effectively reduce the static energy. Similarly, the proposed H2 architecture
results in 16.4% static energy reduction shown in the Figure 7. This is because STT-RAM is relaxed to
reduce write energy by incurring some leakage power increment, but it is still smaller than the leakage
power of DRAM.

Dynamic Energy: As presented in the Figure 6, We also observe there is average 17.6% dynamic energy re-
duction in H1 architecture compared with the baseline. Even for the write-intensive benchmark (e.g. hmmer
and perlbench), there is average 6.5% dynamic energy saving. Because the DRAM region of our hybrid
cache is configured large enough to buffer write-intensive request without accessing STT-RAM region, and
the STT-RAM eliminates significant refresh energy compared with DRAM. However, there are negative
energy savings for the benchmark with large datasets (e.g. mc f and gcc), where the input data can be the
0.5x∼1x size of DRAM cache, hence STT-RAM region needs to be frequently accessed incurring high write
energy. Considering the result of H2 architecture in the Figure 7, the dynamic energy saving is more bal-
anced in the different benchmarks with 35.5% on average. Because STT-RAM is optimized to have small
write energy, and also we select an optimal retention time to balance the refresh energy and write energy.

Total Energy: The total cache energy is reduced by 21.2% and 31.6% in H1 and H2 respectively, compared
to the DRAM cache baseline. This energy saving can be attributed to the following reasons: 1) the static

He and Callenes-Sloan

Figure 8: Performance speedup compared with baseline.

Figure 9: Sensitivity analysis of different hybrid cache size.

energy occupies up to 40% of the total cache energy; 2) the volatile STT-RAM with an optimal retention
time reduces both the static energy and dynamic energy.

6.2 Performance Analysis

Figure 8 shows the IPC speedups of the proposed hybrid caches compared with the baseline. For H1 ar-
chitecture, the performance is improved by 4.4% on average. The performance speedup comes from the
proposed tag management policy that avoids the STT-RAM tag long-latency access. However, there is some
negative improvement for the benchmarks with large input, which results from 1) frequently writing into
conventional STT-RAM with long latency; 2) DRAM cache miss when the input datasets are larger than the
DRAM cache capacity; 3) 64B random data access in the 4KB memory page caused by the DRAM cache
miss.

For H2 architecture, there are 18.8% performance speedups, and we notice the results are more balanced
than the H1. This is because STT-RAM is optimized to have comparable latency to the DRAM. Further, the
proposed Tags-in-STT-RAM policy replaces DRAM tag access with the low-latency STT-RAM tag. Also,
it is noticed that PARSEC benchmarks have more performance improvement than SPEC benchmarks. This
is because the parallel characteristics of PARSEC benchmarks can meet more processing demand of CMP
systems.

He and Callenes-Sloan

6.3 Sensitivity Analysis

To better understand the effect of hybrid cache capacity on the energy and performance for the HPC systems,
we change the capacity to 256MB, 512MB, 1GB, 2GB and 4GB respectively. As Figure 9(a) shows, we
observe the total cache energy saving increases with the larger cache capacity. This is because: (1) larger
caches have more static energy consumption, which can be effectively removed by the non-volatile STT-
RAM; (2) hybrid cache with larger capacity can buffer more data written in the DRAM region, which
can reduce write operation in the STT-RAM compared with small cache capacity; (3) dynamic energy is
proportional to the size of the cache, and the larger volatile STT-RAM has smaller dynamic energy due to
the optimal retention time in our design.

As shown in the Figure 9(b), the performance also increases with larger cache capacity. It can be attributed
to the following reasons: 1) the DRAM cache with larger capacity has higher hit rate, which can reduce
off-chip memory access; 2) larger capacity increases hit rate in the low-latency region of hybrid cache, e.g.
the DRAM region in the H1 architecture and STT-RAM region in the H2 architecture. However, it is noticed
that the average tag access time depends on the cache storage size, and larger tag array requires more time
for tag access and comparison, which may also impact the performance.

7 CONCLUSIONS

In this paper, we identify that DRAM cache can be used in the future HPC systems to improve performance,
but it has the disadvantage of high power consumption. Thus, we present hybrid cache design for the future
HPC systems to improve both energy and performance efficiency. First, we observe the DRAM cache
with a large capacity has high leakage power, and the large hybrid cache using non-volatile STT-RAM is
proposed to reduce static energy. Second, we propose to use volatile STT-RAM as a part of hybrid cache
to reduce both dynamic and static energy of the DRAM cache. Finally, we propose tag management policy
based on our hybrid cache to improve performance. The results show that energy is reduced by 31.6% and
performance is improved by 18.8% on average.

REFERENCES

Bienia, C., S. Kumar, J. P. Singh, and K. Li. 2008. “The PARSEC benchmark suite: characterization and
architectural implications”. In Proceedings of PACT.

Binkert, N., B. Beckmann, G. Black, S. K. Reinhardt, J. Saidi, D. R. Hower, T. Krishna, S. Sardashti et al.
2011. “The gem5 simulator”. ACM SIGARCH Computer Architecture News.

Cong, J., G. Gururaj, and Y. Zou. 2011. “An energy-efficient adaptive hybrid cache”. In Proceedings of
ISLPED.

Das, S., T. M. Aamodt, and W. J. Dally. 2015. “SLIP: reducing wire energy in the memory hierarchy”. In
Proceedings of ISCA.

Diao, Z., Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L.-C. Wang, and Y. Huai. 2007. “Spin-transfer
torque switching in magnetic tunnel junctions and spin-transfer torque random access memory”. Journal
of Physics: Condensed Matter.

He, J., and J. Callenes-Sloan. 2016. “Reducing the energy of a large hybrid cache”. In Proceedings of ICECS.

Henning, J. L. 2006. “SPEC CPU2006 benchmark descriptions”. ACM SIGARCH Computer Architecture
News.

Huang, C.-C., and V. Nagarajan. 2014. “ATCache: reducing DRAM cache latency via a small SRAM tag
cache”. In Proceedings of PACT.

He and Callenes-Sloan

Jevdjic, D., G. H. Loh, C. Kaynak, and B. Falsafi. 2014. “Unison cache: A scalable and effective die-stacked
DRAM cache”. In Proceedings of MICRO.

Jevdjic, D., S. Volos, and B. Falsafi. 2013. “Die-stacked DRAM caches for servers: hit ratio, latency, or
bandwidth? have it all with footprint cache”. Proceedings of ISCA.

Kultursay, E., M. Kandemir, A. Sivasubramaniam, and O. Mutlu. 2013. “Evaluating STT-RAM as an energy-
efficient main memory alternative”. In Proceedings of ISPASS.

Li, J., C. J. Xue, and Y. Xu. 2011. “STT-RAM based energy-efficiency hybrid cache for CMPs”. In Pro-
ceedings of VLSI-SoC.

Li, S., J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. 2009. “McPAT: an
integrated power, area, and timing modeling framework for multicore and manycore architectures”. In
Proceedings of MICRO.

Li, T., Y. Ren, D. Yu, S. Jin, and T. Robertazzi. 2013. “Characterization of input/output bandwidth perfor-
mance models in NUMA architecture for data intensive applications”. In Proceedings of ICPP.

Liu, J., B. Jaiyen, R. Veras, and O. Mutlu. 2012. “RAIDR: Retention-aware intelligent DRAM refresh”. In
Proceedings of ISCA.

Loh, G. H., and M. D. Hill. 2011. “Efficiently enabling conventional block sizes for very large die-stacked
DRAM caches”. In Proceedings of MICRO.

Poremba, M., S. Mittal, D. Li, J. S. Vetter, and Y. Xie. 2015. “DESTINY: A Tool for Modeling Emerging
3D NVM and eDRAM caches”. In Proceedings of DATE.

Smullen, C. W., V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan. 2011. “Relaxing non-volatility for
fast and energy-efficient STT-RAM caches”. In Proceedings of HPCA, pp. 50–61.

Sun, G., X. Dong, Y. Xie, J. Li, and Y. Chen. 2009. “A novel architecture of the 3D stacked MRAM L2
cache for CMPs”. In Proceedings of HPCA.

Wang, Z., D. A. Jiménez, C. Xu, G. Sun, and Y. Xie. 2014. “Adaptive placement and migration policy for
an STT-RAM-based hybrid cache”. In Proceedings of HPCA.

Wu, X., J. Li, L. Zhang, R. Speight, and Y. Xie. 2009. “Hybrid cache architecture with disparate memory
technologies”. In Proceedings of ISCA.

Zhao, L., R. Iyer, R. Illikkal, and D. Newell. 2007. “Exploring DRAM cache architectures for CMP server
platforms”. In Proceedings of ICCD.

AUTHOR BIOGRAPHIES

JIACONG HE received M.S. degree in Computer Engineering from the Illinois Institute of Technology. He
currently is a Ph.D. student in the Electrical Engineering Department at the University of Texas at Dallas.
His research interests include memory systems, high performance computing and dependable systems. His
email address is jiacong.he@utdallas.edu.

JOSEPH CALLENES-SLOAN is an Assistant Professor in the Erik Jonsson School of Engineering &
Computer Science at the University of Texas at Dallas. He holds a Ph.D. in Electrical and Computer Engi-
neering at the University of Illinois in Urbana-Champaign. His research interests include computer architec-
ture, scientific and high performance computing, low power design and fault tolerance. His email address is
jcallenes.sloan@utdallas.edu.

SpringSim-HPC 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)

ADAPTIVE PARTICLE ROUTING IN PARALLEL/DISTRIBUTED PARTICLE
FILTERS

Xudong Zhang Lixin Huang

Department of Computer Science
Graduate Center of The City University of New

York

Department of Electrical Engineering and
Computer Science

Syracuse University
365 5th Avenue

New York, NY 10016
4-206 Center for Science and Technology

Syracuse, NY 13244
xzhang5@gradcenter.cuny.edu lhuang24@syr.edu

Evan Ferguson-Hull Feng Gu
Department of Mathematics

Bates College
Department of Computer Science

 College of Staten Island
2 Andrews Road

Lewiston, ME 04240
2800 Victory Boulevard
Staten Island, NY 10314

eferguso@bates.edu Feng.Gu@csi.cuny.edu

ABSTRACT

Particle filters estimate the state of dynamic systems through Bayesian interference and stochastic
sampling techniques. Parallel/distributed particle filters aim to improve the performance by deploying all
particles on different processing units. However, the communication cost of transferring particles is high
due to the centralized processing in resampling step. To reduce the communication cost without loss of
accuracy, the hybrid particle routing policy is designed for the resampling step, which mainly executes
particles resampling and exchanges locally and routes them globally every specific number of calculation
steps. However, the global particle routing is more necessary when the convergence of particles is low. In
this paper, we propose the adaptive particle routing algorithm, in which the local resampling and particle
exchange are used, and the planned global particle routing is adopted only when the measured
convergence is below the set threshold. The experimental results show the improved performance.

Keywords: particle filters, parallel/distributed computing, adaptive particle routing.

1 INTRODUCTION

Particle filters, also called sequential Monte Carlo (SMC) methods, provide a numerical approximation to
the nonlinear filtering problem. Particle filters use Bayesian inference and stochastic sampling techniques
to recursively estimate the states of dynamic systems from some given observations (Smith, Schmidt, and
McGee 1962; Kailath, Sayed, and Hassibi 2000; Gu 2010; Gustafsson 2010; Helmke and Moore 2012)
with little or without assumptions of the system model's properties. Therefore, particle filters have been
used in many non-linear and/or non-Gaussian applications, such as positioning, navigation, visual
tracking, and wildfire spread systems (Freeman 1987; Ikeda and Matsumoto 1987; Kocarev and Parlitz
1995; Gustafsson et al. 2002; van Leeuwen 2003). In the applications of particle filters, sequential

Zhang, Huang, Ferguson-Hull, and Gu

importance sampling and resampling (SISR) is one of the widely used particle filtering algorithms. The
SISR algorithm has two main stages, sampling and resampling. In the sampling stage, a set of particles
representing the belief of the system is used to generate a new set of particles to represent the system
model. These new particles represent the posterior belief according to the prior distribution. An
observation measures the particles by calculating and normalizing the weights of all the particles. In the
resampling stage, offspring particles are obtained according to the normalized weights. At each time step,
sampling and resampling are executed and the resampled particles will be the input of the sampling of
next time step. This procedure continues until the observation is unavailable.

One of the challenges to apply particle filters is the performance due to the used large number of particles,
especially for large-scale dynamic systems. To improve the performance, parallel/distributed particle
filters are introduced (Bolic, Djuric, and Hong 2005; Sheng et al. 2005; Bai et al. 2016). There are no
communications between processing units in the sampling stage. Therefore, the main difference for these
algorithms lies in how to route the resampled particles to other processing units in the resampling stage
due to its centralized processing. Different particle routing policies define how the processing units with
extra particles send particles to those with shortage of particles to achieve the load balance. Although
efficient particle routing policies can achieve speedups to some extent, they still suffer from high
communication costs. To further enhance the performance, decentralized resampling algorithms are
designed (Bolic, Djuric, and Hong 2005), in which the global resampling is removed and only a small
percentage of particles are exchanged between processing units after the local resampling on each
processing unit. However, it may decrease the accuracy of state estimation due to lack of the global
resampling.

To improve the performance without loss of accuracy, a hybrid particle routing policy is adopted (Bai et
al. 2016). The hybrid routing policy is mainly based on the decentralized resampling and invokes the
centralized resampling every a certain number of calculation steps. Therefore, it combines both the
decentralized resampling and the centralized resampling to achieve better speedups and accuracy of the
estimated states. However, in many scenarios, the particles are well converged, therefore, the centralized
resampling (scheduled at every k time steps) may not be needed. To further improve the performance, we
propose the adaptive particle routing policy, in which the decentralized resampling is adopted and the
centralized resampling every a certain number of steps is invoked only when the convergence of particles
is low. We measure the convergence of particles to decide if the centralized resampling is needed at those
scheduled centralized resampling steps. It avoids unnecessary centralized particle routing steps and
reduces their incurred extra communication costs.

The rest of the paper is organized as follows. Section 2 introduces the related work in particle filters and
parallel/distributed particle filters. Section 3 presents the hybrid particle routing policy in
parallel/distributed particle filters. Section 4 describes the proposed adaptive particle routing policy and
its algorithm in parallel/distributed particle filters. Section 5 provides the experiments and achieved
results. Section 6 concludes the paper and points out the future work.

2 RELATED WORK

The applications of particle filters can be found in a variety of domains, including epidemic predictions,
geophysical systems, geosciences and remote sensing, transportation systems, and wildfire spread
simulations. Dawson, Gailis, and Meehan (2015) consistently analyzed the probability that a disease
happened in a population based on the medical records of the individual of the target popular using
particle filters. The results showed the improvement of detection times for outbreaks in populations with
electronic medical records available. Mattern, Dowd, and Fennel (2013) assimilated satellite observations
of surface chlorophyll into a 3-D biological ocean model to improve its state estimation using particle
filters. They tested the feasibility of biological state estimation with particle filters for realistic models.
Yan, DeChant, and Moradkhani (2015) estimated soil moisture and soil hydraulic parameters using
particle filters. The proposed approach corrected the soil moisture state and estimated the soil hydraulic

Zhang, Huang, Ferguson-Hull, and Gu

parameters. Yan, Gu, and Hu (2013) applied particle filters to reconstruct the event like a traffic jam by
the collected information of deployed cameras. They detected the slow moving vehicle in the road
network to cause the traffic jam. Xue, Gu, and Hu (2012) assimilated temperature data from deployed fire
sensors into a wildfire spread simulation model to estimate the fire fronts and the related experimental
results verified the improved state estimation.

In many other applications, the parallel/distributed particle filters are adopted to address the performance
issue. Ing and Coates (2005) implemented a distributed particle filters algorithm for object tracking in
wireless sensor networks. The designed scheme significantly reduced the energy cost of communication.
Hong et al. (2006) designed and implemented a flexible resampling mechanism for parallel particle filters
in a CMOS process, and then analyzed its complexity and performance. Sutharsan et al. (2012) presented
an optimization-based scheduling algorithm for parallel implementation of particle filters and evaluated
the effectiveness of the proposed algorithm by the application of multi-target tracking. Hegyi et al. (2007)
described two different parallel particle filter algorithms for the state estimation of freeway traffic
network. Their accuracy, performance, and communication costs are analyzed and compared.
Rosencrantz et al. (2002) developed a decentralized parallel particle filters algorithm to exchange
information between nearby platforms in robotic systems. They illustrated the scaling capability to a large
team of vehicles. Liu et al. (2009) used parallel particle filters algorithm in face tracking and it worked
robustly for cluttered backgrounds and different illuminations. The multi-core parallel computing
achieved a good linear speedup compared to its sequential implementation.

From the above applications, there are two main categories of resampling algorithms in
parallel/distributed particle filters algorithms, including the centralized resampling algorithm and the
decentralized resampling algorithm. Teuilere and Brun (2003) used a centralized approach to parallelize
the resampling step and applied it to Doppler-hearing tracking of maneuvering sources, in which a central
unit collected the weights from each processing unit, did the resampling, and returned replication factors
to each processing unit. Bolic et al. (2005) proposed the decentralized resampling strategies and
implemented four versions of parallel/distributed particle filters algorithms. They removed the centralized
resampling and utilized the local weight information to decide the exchange of particles between
processing units. The centralized resampling and the distributed resampling have their own disadvantages,
either achieving low speedups or losing accuracy. Bai et al. (2016) systemically analyzed various
centralized resampling and decentralized resampling routing policies and proposed a novel approach to
combine both to achieve better speedups without loss of accuracy. This proposed hybrid particle routing
policy was based on the decentralized resampling schema and invoked the centralized resampling every k
time steps. It was examined by an application of large-scale spatial temporal system, wildfire spread
simulation, and exhibited its effectiveness. However, in some cases, the particles distribution is "good"
and the scheduled centralized resampling is not needed. Therefore, it should be called as needed for those
time steps to reduce the communication cost. Based on this idea, we develop the adaptive particle routing
policy and provide details in the following sections.

3 ADAPTIVE PARTICLE ROUTING ALGORITHM

3.1 Parallel/Distributed Particle Filters

There are three main steps in the general particle filters algorithm (SISR algorithm), including sampling,
weight computation, and resampling step. Since resampling needs the global information of all particles,
it is the main obstacle to parallelize particle filters algorithms. In general, two primary categories of
resampling in parallel/distributed particle filters are developed, including centralized resampling and
decentralized resampling. In the centralized resampling, there are two types of nodes, the central unit and
the processing unit. Sampling and weight computation are independently executed on each processing
unit due to no data dependency, and resampling is conducted on the central unit because of the demand of
global information. The central unit collects the weights of all particles from all the processing units,
performs particle resampling, and transfers the particles between the central unit and the processing units

Zhang, Huang, Ferguson-Hull, and Gu

according to different particle routing policies. Figure 1 shows the procedure of the centralized
resampling. In the figure, fours processing units (PU1, PU2, PU3, and PU4) send their weights to the
central unit (CU), and CU serves as the hub for four processing units to exchange particles after
resampling. Different centralized resampling routing policies and their corresponding analysis could be
found in (Bai et al. 2016). Decentralized resampling removes the central unit to reduce the
communication cost. Sampling, weight computation, and resampling are executed on each processing unit
separately. To make "good" particles propagate to other processing units, a specific percentage of
particles on each processing unit are sent to its neighboring processing unit at each time step. Figure 2
displays the decentralized resampling schema. In the figure, four processing units (PU1, PU2, PU3, and
PU4) perform independent particle filters steps and forward some number of particles to their neighboring
processing units in the clockwise order. More decentralized particle routing policies were discussed in
(Bolic et al. 2005).

 Figure 1: Centralized resampling. Figure 2: Decentralized resampling.

The centralized resampling schema precisely implements the particle filters algorithm, but suffers from
the scalability due to the central unit. The distributed resampling schema improves the scalability, but
may need a large number of iterations for fully resampling because of its local nature and limited particle
exchanges between processing units. A hybrid routing policy (Bai et al. 2016) was proposed, in which the
decentralized resampling was mainly adopted to achieve a large degree parallelism. Processing units
performed local resampling and exchanged particles between neighboring processing units. To overcome
the limitation of local particle exchanges in the decentralized resampling, the centralized resampling was
occasionally invoked to utilize the full knowledge of weights of all particles. It helped quickly and
efficiently route "good" particles to all the processing units. This hybrid particle routing policy has been
applied in large-scale spatial temporal systems, such as wildfire spread simulation. Through the
simulation results, the hybrid particle routing policy greatly improved the performance of the data
assimilation of wildfire spread simulation without loss of the state estimation accuracy. More details can
be referred to the work in (Bai et al. 2016).

3.2 Adaptive Particle Routing Algorithm

In the adaptive particle routing, both of the decentralized resampling and the centralized resampling are
used to achieve both of performance and accuracy of particle filters algorithms. The centralized
resampling is invoked every a certain number of steps in the hybrid particle routing policy. However, in
many those steps, the particles have good convergence. Therefore, the centralized resampling is not
necessary. To more efficiently utilize the centralized resampling, we need to evaluate the convergence of
particles to decide its necessity. Towards this objective, we propose the adaptive particle routing
algorithm to adaptively invoke the scheduled centralized resampling every k steps when needed. To
measure the convergence, we adopt the effective sample size , as defined in Equation (1).

PU1 PU2

PU3 PU4

CU
Resampling

and
Routing

Weights Weights

Weights Weights

Particle
transfer

Particle
transfer

Particle
transfer

Particle
transfer

PU1 PU2

PU3 PU4

Particle transfer

Particle transfer

Particle
transfer

Particle
transfer

Zhang, Huang, Ferguson-Hull, and Gu

 , (1)

where is the normalized weight of particle i at time step t, and N is the number of particles. A
threshold is used and the centralized resampling scheduled at every specific number of times steps is
invoked if the effective sample size of particles is smaller than the predefined threshold. Table 1 lists the
adaptive particle routing algorithm.

Table 1: Adaptive Particle Routing Algorithm.

Processing unit side:
 for all the parallel processing units at time step t
 1. Run the sampling step.
 2. Calculate the importance weight of each particle.
 3. Send all weights to the central unit.
 4. Receive information from the central unit. If the centralized resampling needs to be performed,
 go to step 5, otherwise go to step 9.
 5. Receive routing information from the central unit.
 6. If having surplus of particles, send the selected particles (based on the received routing
 information from the central unit) to the central unit.
 7. If having shortage of particles, receive particles from the central unit.
 8. End.
 9. Normalize, perform resampling locally, and send partial particles to the neighboring processing
 units in the clockwise order .
 10. End.
Central unit side:
 At every k time step
 1. Predefine the threshold TD.
 2. Receive the weight of each particle from all processing units.
 3. Calculate the normalized importance weights of all particles and the effective particle size

 4. If < TD, go to step 5 (activate the centralized resampling), otherwise skip the following and
 inform all the processing units whether global resampling is needed.
 5. Exert the centralized resampling and compute routing information.
 6. Send the routing information to processing units.
 7. Receive particles from processing units that have surplus of particles.
 8. Send particles according to the routing information to the processing units that have shortage of
 particles.
 9. End.

4 EXPERIMENTS AND RESULTS

In order to evaluate the performance of the adaptive particle routing algorithm, we implemented the
sequential particle filters algorithm, the parallel particle filters algorithm with the hybrid particle routing
policy and the parallel particle filters algorithm with the adaptive particle routing policy. The SISR
algorithm was applied to the following system with the system equation in Equation (2) and the
measurement equation in Equation (3). In the equations, and are the system state at time step t+1
and time step t respectively; is the measurement variable at time step t; and are the system noise
and measurement noise at time step t. In the above system, the associated configurations are: ,

, and . This system has been analyzed in many particle filters publications
(Gordon et al. 1993; Kitagawa 1996; Doucet 1998; Arulampalam et al. 2002). We will also use this

Zhang, Huang, Ferguson-Hull, and Gu

system to evaluate our proposed adaptive particle routing policy in parallel particle filters algorithms. We
compare the accuracy among the sequential implementation, the parallel implementation with the hybrid
particle routing policy, and the parallel implementation with the adaptive particle routing policy, and also
compare the performance of these two parallel implementations. We run the all the experiments with
15,000 time steps using 10,000 particles. We present the results below.

 (2)

 (3)

Figure 3, Figure 4, and Figure 5 show the plots for the sequential particle filters implementation, the
parallel particle filters implementation with the hybrid particle routing policy, and the parallel particle
filters implementation with the adaptive particle routing policy respectively. In the figures, the horizontal
axis and the vertical axis refer to the time step and the state respectively, and the blue line and the red line
represent the true states and the estimated states respectively. From the figures we know that the
estimated states are close to the true states by applying the observations into the system model for all the
three implementations. To compare the accuracy, we calculate the time-averaged root mean square error
(RMSE) as defined in Equation (4) for the three cases, where R is the calculated time-averaged RMSE,

is the estimated state at time step t, is the true state at time step t, and T is the total number of time
steps. The calculated time averaged RMSEs for the sequential particle filters implementation, the parallel
particle filters implementation with the hybrid particle routing policy, and the parallel particle filters
implementation with the adaptive particle routing policy are 0.103,00, 0.091,98, and 0.092,00
respectively. They are small and very close, which further indicates all of the three implementations are
able to estimate the system states with high accuracy and their estimated accuracies are similar.

 (4)

-20

-15

-10

-5

0

5

10

15

20

25

0 1.500 3.000 4.500 6.000 7.500 9.000 10.500 12.000 13.500 15.000

St
at

e

Time step
Figure 3: Sequential particle filters.

True states
Estimated states

Zhang, Huang, Ferguson-Hull, and Gu

Figure 4: Parallel/distributed particle filters using hybrid particle routing policy.

Figure 5: Parallel/distributed particle filters using adaptive particle routing policy.

-20

-15

-10

-5

0

5

10

15

20

25

30

0 1.500 3.000 4.500 6.000 7.500 9.000 10.500 12.000 13.500 15.000

St
at

e

Time step

True states
Estimated states

-20

-15

-10

-5

0

5

10

15

20

25

0 1.500 3.000 4.500 6.000 7.500 9.000 10.500 12.000 13.500 15.000

St
at

e

Time step

True states

Estimated states

Zhang, Huang, Ferguson-Hull, and Gu

We also compare the performance of the two parallel particle filters implementations using the hybrid
particle routing policy and the adaptive particle routing policy. Firstly, we calculate the number of
transferred particles for both of the algorithms during the execution. Figure 6 display the numbers of
transferred particles for the parallel particle filters implementations with both of the particle routing
policies. In Figure 6, the horizontal axis and the vertical axis represent the time step and the number of
transferred particles (in thousand) respectively, and the green line and blue lines represent the numbers of
transferred particles for the parallel implementations with the hybrid particle routing policy and the
adaptive particle routing policy respectively. It indicates that the number of transferred particles for the
parallel particle filters with the adaptive particle routing policy is smaller than that for the parallel particle
filters with the hybrid particle routing policy, because the former policy avoids the unnecessary global
resampling. Therefore, the communication cost of the former is less than that of the latter. The time
consumptions for the parallel particle filters with the adaptive particle routing policy and the parallel
particle filters with the hybrid particle routing policy are 56.9 seconds and 68.1 seconds respectively,
which is consistent with the results of the number of transferred particles in Figure 6.

Figure 6: Number of transferred particles for parallel particle filters with the hybrid particle routing policy
and the adaptive particle routing policy.

5 CONCLUSIONS AND FUTURE WORK

Parallel/distributed particle filters are able to improve the performance by deploying the particles on
multiple processing units. However, the high communication costs among multiple processing units for
particles transfer in the resampling step decrease the entire performance. Although the decentralized
particle routing policy can address this issue, the accuracy may be affected due to the local resampling on
processing units and limited particle exchanges between processing units. The hybrid particle routing
policy is based on the decentralized resampling schema and occasionally invokes the centralized
resampling to achieve the speedups with the similar accuracy. The adaptive particle routing policy is able
to avoid the unnecessary centralized resampling steps by measuring the convergence of particles in order
to further improve the performance. The designed experiments show the parallel particle filters with the
adaptive particle routing policy achieves better speedups without loss of accuracy. This will have an
important impact on performance improvement for parallel particle filters applications, especially those
large-scale dynamic systems due to their high dimensions and large system states. Our future work will

0

200

400

600

800

1.000

1.200

1.400

1.600

1.800

2.000

0 1.500 3.000 4.500 6.000 7.500 9.000 10.500 12.000 13.500 15.000

N
um

be
r o

f t
ra

ns
fe

rr
ed

 p
ar

tic
le

s (
th

ou
sa

nd
)

Time step

Hybrid Algorithm

Adaptive Algorithm

Zhang, Huang, Ferguson-Hull, and Gu

focus on the following directions. Firstly, we will systematically analyze the theoretical communication
and computation cost for different particle routing policies and measure their performances using the
defined metrics. Secondly, we will apply the proposed adaptive particle routing algorithm in the large-
scale spatial temporal systems to achieve better performance.

ACKNOWLEDGMENTS

This work was supported by the U.S. National Science Foundation under Grant 1356977 and 1359266.

REFERENCES

Arulampalam, M. S., S. Maskell, N. Gordon and T. Clapp. 2002. “A Tutorial on Particle Filters for
Online Nonlinear/non-Gaussian Bayesian Tracking”. IEEE Transactions on Signal Processing vol.
50, pp. 174-188.

Bai, F., F. Gu, X. Hu, and S. Guo. 2016. “Particle Routing in Distributed Particle Filters for Large-Scale
Spatial Temporal Systems”. IEEE Transactions on Parallel and Distributed Systems vol. 27, pp. 481-
493.

Bolic, M., P. M. Djuric, and S. Hong. 2005. “Resampling Algorithms and Architectures for Distributed
Particle Filters”. IEEE Transactions on Signal Processing vol. 53, pp. 2442-2450.

Dawson, P., R. Gailis, and A. Meehan. 2015. “Detecting Disease Outbreaks Using a Combined Bayesian
Network and Particle Filter Approach”. Journal of Theoretical Biology vol. 370, pp. 171-183.

Doucet, A. 1998. “On Sequential Simulation-based Methods for Bayesian Filtering”. Technical Report
CUED/F-INFENG/TR.310, Signal Processing Group, Department of Engineering, University of
Cambridge, UK

Freeman, W. J. 1987. “Simulation of Chaotic EEG Patterns with a Dynamic Model of the Olfactory
System”. Biological Cybernetics vol. 56, pp. 139-150.

Gordon, N. J., D. J. Salmond, and A. F. Smith. 1993. “Novel Approach to Nonlinear/Non-Gaussian
Bayesian State Estimation”. In IEE Proceedings F-Radar and Signal Processing vol. 140, pp. 107-
113.

Gu, F. 2010. Dynamic Data Driven Application System for Wildfire Spread Simulation. Ph.D. thesis,
Department of Computer Science, Georgia State University, Atlanta, Georgia. Available via
http://scholarworks.gsu.edu/cs_diss/57. Accessed Dec. 14, 2010.

Gustafsson, F. 2010. “Particle Filter Theory and Practice with Positioning Applications”. IEEE Aerospace
and Electronic Systems Magazine vol. 25, pp. 53-82.

Gustafsson, F., F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, and P. J. Nordlund,
2002. “Particle Filters for Positioning, Navigation, and Tracking”. IEEE Transactions on Signal
Processing vol. 50, pp. 425-437.

Hegyi, A., L. Mihaylova, R. Boel, and Z. Lendek. 2007. “Parallelized Particle Filtering for Freeway
Traffic State Tracking”. In Control Conference (ECC), 2007 European pp. 2442-2449.

Helmke, U., and J. B. Moore. 2012. Optimization and Dynamical Systems. Springer Science & Business
Media.

Hong, S., S. S. Chin, P. M. Djurić, and M. Bolić. 2006. “Design and Implementation of Flexible
Resampling Mechanism for High-speed Parallel Particle Filters”. Journal of VLSI Signal Processing
Systems for Signal, Image and Video Technology vol. 44, pp. 47-62.

Ikeda, K., and K. Matsumoto. 1987. “High-dimensional Chaotic Behavior in Systems with Time-delayed
Feedback”. Physica D: Nonlinear Phenomena vol. 29, pp. 223-235.

Ing, G., and M. J. Coates. 2005. “Parallel Particle Filters for Tracking in Wireless Sensor Networks”.
In IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, pp. 935-939.

Kailath, T., A. H. Sayed, and B. Hassibi. 2000. Linear Estimation. Upper Saddle River, New Jersey,
Prentice Hall, Inc.

Kitagawa, G. 1996. “Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space
Models”. Journal of Computational and Graphical Statistics vol. 5, pp. 1-25.

Zhang, Huang, Ferguson-Hull, and Gu

Kocarev, L., and U. Parlitz. 1995. “General Approach for Chaotic Synchronization with Applications to
Communication”. Physical Review Letters vol. 74, p. 5028-5031.

Liu, K. Y., S. Q. Li, L. Tang, L. Wang, and W. Liu. 2009. “Fast Face Tracking Using Parallel Particle
Filter Algorithm”. In 2009 IEEE International Conference on Multimedia and Expo, pp. 1302-1305.

Mattern, J. P., M. Dowd, and K. Fennel. 2013. “Particle Filter Based Data Assimilation for a Three
Dimensional Biological Ocean Model and Satellite Observations”. Journal of Geophysical Research:
Oceans vol. 118, pp. 2746-2760.

Rosencrantz, M., G. Gordon, and S. Thrun. 2002. August. “Decentralized Sensor Fusion with Distributed
Particle Filters”. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence, pp. 493-500. Morgan Kaufmann Publishers Inc..

Sheng, X., Y. H. Hu, and P. Ramanathan. 2005. “Distributed Particle Filter with GMM Approximation
for Multiple Targets Localization and Tracking in Wireless Sensor Network”. In Proceedings of the
4th International Symposium on Information Processing in Sensor Networks. IEEE Press.

Smith, G. L., S. F. Schmidt, and L. A. McGee. 1962. Application of Statistical Filter Theory to the
Optimal Estimation of Position and Velocity on Board a Circumlunar Vehicle. National Aeronautics
and Space Administration.

Sutharsan, S., T. Kirubarajan, T. Lang, and M. McDonald. 2012. “An Optimization-based Parallel
Particle Filter for Multitarget Tracking”. IEEE Transactions on Aerospace and Electronic
Systems vol. 48, pp. 1601-1618.

Teulière, V., and O. Brun. 2003. “Parallelisation of the Particle Filtering Technique and Application to
Doppler-bearing Tracking of Maneuvering Sources”. Parallel Computing vol. 29, pp. 1069-1090.

van Leeuwen, P. J. 2003. “A Variance-minimizing Filter for Large-scale Applications”. Monthly Weather
Review vol. 131, pp. 2071-2084.

Xue, H., F. Gu, and X. Hu. 2012. “Data Assimilation Using Sequential Monte Carlo Methods in Wildfire
Spread Simulation”. ACM Transactions on Modeling and Computer Simulation (TOMACS) vol. 22,
p.23-26.

Yan, H., C. M. DeChant, and H. Moradkhani. 2015. “Improving Soil Moisture Profile Prediction with the
Particle Filter-Markov Chain Monte Carlo Method”. IEEE Transactions on Geoscience and Remote
Sensing vol. 53, pp. 6134-6147.

Yan, X., F. Gu, X. Hu, and C. Engstrom. 2013. “Dynamic Data Driven Event Reconstruction for Traffic
Simulation Using Sequential Monte Carlo Methods”. In Proceedings of the 2013 Winter Simulation
Conference: Simulation: Making Decisions in a Complex World, pp. 2042-2053. IEEE Press.

AUTHOR BIOGRAPHIES

XUDONG ZHANG is a PhD student in the Department of Computer Science at the Graduate Center of
The City University of New York. His research interests include modeling and simulation, and high
performance computing. His email address is xzhang5@gradcenter.cuny.edu.

LIXIN HUANG is an undergraduate student majoring in computer engineering at Syracuse University.
Her research interests include high performance computing, social computing and digital humanities. Her
email address is lhuang24@syr.edu.

EVAN FERGUSON-HULL is an undergraduate student majoring in mathematics at Bates College. His
email is eferguso@bates.edu.

FENG GU is an Assistant Professor in the Department of Computer Science at College of Staten Island,
The City University of New York. He holds a Ph.D. in Computer Science from Georgia State University.
His research interests include modeling and simulation, high performance computing, and bioinformatics.
His email address is Feng.Gu@csi.cuny.edu.

Görür, İmre, Oğuztüzün and Yilmaz

Görür, İmre, Oğuztüzün and Yilmaz

CSR CCF CRE

CAM

Görür, İmre, Oğuztüzün and Yilmaz

CSS CSD

Görür, İmre, Oğuztüzün and Yilmaz

CSS CSD

CRE CAM CSS CSD CSR

Görür, İmre, Oğuztüzün and Yilmaz

CSMI

CSMI

CSR + CCF + CRE + CAM - CSMI

Görür, İmre, Oğuztüzün and Yilmaz

Görür, İmre, Oğuztüzün and Yilmaz

N × N A b

A

A
× (6 × 4 + 4 × 8) = 56 × A

4 × b × (N-b) A × (4 × b × (N-b) / N2)
A × (4 × b × (N-b) / N2) × (6 × 4 + 4 × 8) = 224 × A × b × (N-b) / N2

A × (4 × b × (N-b) / N2) × (1 × 4 + 2 × 8) = 80 × A × b × (N-b) / N2.

×

80 × CheckpointInterval

Görür, İmre, Oğuztüzün and Yilmaz

Görür, İmre, Oğuztüzün and Yilmaz

Görür, İmre, Oğuztüzün and Yilmaz

IEEE Transactions on Computers

Proceedings of the April 18-20, 1967, Spring Joint Computer Conference

Proceedings of the 1st ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation

Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on Principles of
Advanced and Distributed Simulation,

Simulation: Transactions of the Society for Modeling and Simulation International

Proceedings of the National Academy of Sciences of the United States of America (PNAS)

International Journal of Parallel Programming

Environmental Modelling & Software

ACM SIGSIM Simulation Digest
Parallel and Distributed Simulation Systems

IEEE
Transactions on Parallel and Distributed Systems

Proceedings of the 24th High Performance Computing Symposium (HPC’ 16),
.

Proceedings of the 2010 Summer Computer Simulation Conference (SCSC
’10)

ACM Transactions on Programming Languages and Systems

Distributed Algorithms: 7th International Workshop, WDAG'93 Lausanne,
Switzerland, September 27--29, 1993 Proceedings

SIGSIM Simulation Digest

SIGSIM Simulation Digest

Görür, İmre, Oğuztüzün and Yilmaz

Proceedings of the 4th International Conference on Computing Frontiers

Proceedings of the 22nd Conference on Winter Simulation (WSC’ 90)
ACM SIGSIM Simulation

Digest

Proceedings 13th International Parallel Processing Symposium and 10th Symposium on
Parallel and Distributed Processing. IPPS/SPDP 1999

IEEE Transactions on Parallel and Distributed Systems

OPTIMIZING ENERGY CONSUMPTION IN GPUS THROUGH FEEDBACK-DRIVEN
CTA SCHEDULING

Amin Jadidi
Mohammad Arjomand

Mahmut Taylan Kandemir
Chita R. Das

Department of Electrical Engineering and Computer Science
The Pennsylvania State University

342 Information Sciences and Technology Building
University Park, PA, USA

{axj945,mxa51,kandemir,das}@cse.psu.edu

SpringSim-HPC 2017, April 23-26, Virginia Beach, VA, USA
c⃝2017 Society for Modeling & Simulation International (SCS)

ABSTRACT

Emerging GPU architectures offer a cost-effective computing platform by providing thousands of energy-
efficient compute cores and high bandwidth memory that facilitate the execution of highly parallel applica-
tions. In this paper, we show that different applications, and in fact different kernels from the same applica-
tion might exhibit significantly varying utilizations of compute and memory resources. In order to improve
the energy efficiency of the GPU system, we propose a run-time characterization strategy that classifies
kernels as compute- or memory-intensive based on their resource utilizations. Using this knowledge, our
proposed mechanism employs core shut-down technique for memory-intensive kernels in order to manage
energy in a more efficient way. This strategy uses performance and memory bandwidth utilization informa-
tion to determine the ideal hardware configuration at run-time. The proposed technique saves on average
21% of total chip energy for memory-intensive applications, which is within 8% of the optimal saving that
can be obtained from an oracle scheme.

1 INTRODUCTION

GPUs are being increasingly employed to accelerate different types of computing platforms ranging from
embedded devices to supercomputers. As a result, today’s GPUs are not running only graphics applications,
but also, applications from database domain and high-performance computing domain, among others. This
makes GPU a general-purpose computing platform or shortly GPGPU. To cope with contrasting demands
of these different types of applications, GPU architects keep increasing on-chip resources such as cores,
caches, software-managed memories and memory controllers (MCs); and projections include even more
powerful resource-rich GPU systems in future. An important issue at this juncture is whether current ap-
plications effectively utilize available on-chip resources in GPUs and, if not, what are the reasons behind
it? and more importantly, which classes of design optimizations can be done in GPGPUs to improve their
performance/energy per cost? Recent studies (Hong and Kim 2010, Lee et al. 2011, Leng et al. 2013,
Rogers et al. 2012) have focused on this resource utilization problem and proposed techniques that han-
dle underutilized hardware components in GPUs. Here, we look at resource utilization and the promising
energy optimization based on run-time characteristics of the kernels.

Jadidi, Arjomand, Kandemir, and Das

Our experimental study shows that both compute cores and memory bandwidth are underutilized in many
GPU applications. In highly memory-intensive applications, cores get stalled frequently because all the
threads are waiting for the memory requests. On the other hand, in compute-intensive applications, memory
experiences long idle periods. Moreover, as different kernels execute different parts of the same applica-
tion, they may exhibit significant variations regarding utilizations of compute cores and memory bandwidth,
making a universal solution that works across different applications highly unlikely. Motivated by this ob-
servation, this paper proposes an energy-saving strategy that exploits resource underutilization in GPUs.
More precisely, in this work we focus on core underutilization in GPUs. With the knowledge that in-
creasing the degree of parallelism does not necessarily improve the performance (due to congestion in the
interconnection network, contention in the last level cache, and memory bandwidth saturation (Hong and
Kim 2010, Guz et al. 2009)), we propose a strategy to regulate the number of active cores when they are
over provisioned for a particular memory-intensive kernel. Our proposed mechanism manages the degree
of parallelism through a feedback-driven CTA scheduling and adopts a core shut-down strategy to manage
energy consumption. Although a warp-throttling technique (Rogers et al. 2012) could be employed to re-
solve the existing problem on memory side by reducing the number of concurrently running threads, our
feedback-driven CTA scheduler is compatible with core shut-down techniques. Note that, a core shut down
mechanism also reduces the static leakage power which contributes to a considerable portion of the total
chip power consumption (Leng et al. 2013). We also demonstrate that our mechanism outperforms a typical
core-side DVFS technique.

The rest of the paper is organized as follows. Section 2 provides background on our target GPU architecture.
In Section 3, we describe the resource underutilization problem in GPUs. In Section 4, we present our run-
time technique for regulating number of active cores through feedback-driven CTA scheduling. Section 5
presents an experimental evaluation of the proposed strategy. Section 6 reviews related works and Section 7
concludes the paper.

2 BACKGROUND

In this section, we provide a brief background on the GPU architecture targeted by our work.

GPU Architecture: Our target GPU consists of multiple streaming multiprocessors (SMs) (Terms “core”
and “SM” are used interchangeably in this paper.), each containing 32 CUDA cores (Fermi 2009). Each
CUDA core can execute a thread, in a “Single-Instruction, Multiple-Threads” fashion. This architecture is
supported by a large register file that hides the latency of memory accesses. The memory requests generated
by multiple concurrently executing threads in an SM are coalesced into fewer cache lines and sent to L1
data cache, shared by all CUDA cores in the SM. Memory requests are injected into the network, which
connects the SMs to 6 memory partitions through a crossbar. Each memory partition includes a slice of
shared L2 cache, and a memory controller. Figure 1 shows this baseline architecture. We further assume
that the system supports per-SM power-gating (Hong and Kim 2010).

GPGPU Applications: A typical GPGPU application consists of one or multiple kernels each of which is
launched once or multiple times during the entire execution of the application. These kernels implement
specific modules of an application. Each kernel consists of a set of parallel threads. As shown in Figure 1,
these threads are divided into groups of threads, called Cooperative Thread Arrays (CTAs). The underly-
ing architecture further divides each CTA into groups of threads, called warps, that is transparent to the
programmer. The execution on GPU starts with performing memory allocation in GPU memory. Then,
CPU copies the required data into the allocated memory, and a kernel is launched on GPU. After a kernel is
launched, the CTA scheduler schedules available CTAs associated with the kernel on all the available cores.
The maximum number of CTAs per core is limited by core resources (i.e., number of threads, size of shared
memory, register file size, and etc). In a finer granularity, the CTA assignment policy is followed by per-core

Jadidi, Arjomand, Kandemir, and Das

warp scheduling. Warps associated with CTAs are scheduled on the assigned cores and get equal priority.
Once a core finishes executing of a CTA, the CTA scheduler assigns another CTA to that core to execute. In
such scheduling mechanism, there is no priority among CTAs and the process continues until all the CTAs
are executed. When all the threads finish their computation, the results are copied to the CPU memory and
the GPU memory is freed. At this point the CPU can launch the next kernel on the GPU. In Section 4, we
explain how our sampling and reconfiguration mechanism cooperates with the CTA scheduler at run-time.

DRAM Channel #1
L2 $

Interconnection Network (Crossbar)

Streaming
Multiprocessor #1

...

...

DRAM Channel #6

CP
U

Running Application

Launching Kernels

L2 $

Streaming
Multiprocessor #32

G
PU

 P
la

tf
or

m

Kernel-1

Kernel-2

Kernel-3

...

Application

CTA-1

CTA-2

CTA-3
...

Kernel-1

Warp-1

Warp-2

Warp-3
...

CTA-1

...

...

Figure 1: Target GPGPU architecture and the details of the computation hierarchy in GPGPU applications.

3 MOTIVATION

3.1 Investigating Resource Underutilization

The main philosophy of GPGPU architectures is to provide a large number of computing cores supported
by a high bandwidth memory, in order to have a high throughput system. Such a resource-rich design will
be cost-effective only if the main resources such as computing cores and memory are effectively utilized
by hosted application. Thus, it is vital to understand the impact of different applications on the utilization
of GPU resources. Typically, memory-intensive applications utilize the memory bandwidth properly, but
might not need all the cores to achieve the optimal performance. In this section, we discuss different type of
applications/kernels in terms of core utilization and its relationship to the available memory bandwidth.

• Core Utilization at the Application Level: To illustrate the effect of the number of cores on the system
performance, let us examine Figure 2 (our experimental setup will be given in Section 5.1). This figure shows
the application performance, as we vary the number of available cores. Among these applications, PATH
is the only compute-intensive application, and its performance increases linearly as we increase the number
of cores. The other two applications are memory-intensive, and we observe that their performance does not
improve beyond a certain point. In fact, we even observe some performance loss in BFS as we allocate it
more than about 20 cores. Since each thread has a certain memory bandwidth demand, as we increase the
number of cores we also increase the number of memory transactions from cores to memory per unit of time.
Beyond a certain number of cores, this increase in memory requests could cause the memory bandwidth to
saturate. Therefore, beyond this point, using additional cores will not improve performance; instead, it could
lead to longer memory accesses latencies. Furthermore, it could also cause too many contentions in the last
level cache (as it is the case for BFS application) which consequently degrades the performance.

• Core Utilization at the Kernel Level: In order to have a more detailed analysis on the impact of number
of active cores on the system performance, we investigate our applications at a finer granularity, i.e., at
the kernel level. Each GPGPU application consists of one/multiple kernel(s), each of which is launched
once/multiple-times during the execution of that application. Based on our observations, not only different
applications but also different kernels that belong to the same application might exhibit a large variance in
their resource demands, leading to diverse resource utilizations across different phases of the application.

Jadidi, Arjomand, Kandemir, and Das

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

N
o

rm
a
li

z
e
d

 I
P

C

Number of Cores

MUM PATH BFS

 0 5 10 15 20 25 30

Number of Cores

Figure 2: Effect of increasing the number of cores on
the performance of different applications. The results
are normalized to the highest IPC observed in each
application over 32 different core allocations. (Each
application consists of one main kernel that is called
multiple times during the course of execution.)

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30

IP
C

Number of Cores

Kernel-1

Kernel-2

Kernel-3

Kernel-4

 0 5 10 15 20 25 30

Number of Cores

Figure 3: Effect of increasing the number of cores on
the performance of four different kernels from MST
application. Kernel-4 exhibits compute-intensive be-
havior while other kernels have memory-intensive
characteristics each of which with different satura-
tion point.

Figure 3 shows the effect of the number of cores on the performance of four different kernels from MST
application. Each of these kernels is executed many times during the course of execution of this application.
Considering the performance scalability of a kernel as the number of cores is varied, each of these kernels
has a different saturation point where the performance does not increase with more compute resources.
In this case, Kernel-4 can be classified as compute-intensive while the other three kernels are relatively
memory-intensive. As can be seen, Kernel-1 performance saturates by 3 cores while Kernel-2 and Kernel-3
can effectively utilize by up to 13 and 20 cores, respectively. Thus, in order to accurately regulate number
of active cores, each individual kernel of an application should be analyzed separately.

4 GPU RESOURCE MANAGEMENT

In this section, we describe our strategy to find the ideal SM count for each individual kernel. First, we
discuss our dynamic CTA-based kernel characterization mechanism. Then, we explain how our proposed
scheme uses the collected statistics to converge to the optimal number of SMs through feedback-driven CTA
scheduling.

4.1 Run-Time Characterization

In order to investigate the effect of available compute and memory resources on the overall system perfor-
mance, we monitor the memory bandwidth utilization (MBU) as well as instruction per cycle (IPC) metrics.
Once a kernel is launched by the CPU, we allocate all the available SMs to that kernel. The next step is to
perform sampling to study the characteristics of the running kernel. In our experimental study, we observed
that assuming a fixed window size for sampling phase (in terms of number of cycles) is not accurate because
the execution time of different kernels are widely variable for a fixed window size. Therefore, our goal is to
have a dynamic window size for the sampling phase to accurately capture the behavior of each individual
kernel at run-time. To this end, we analyze kernel-based and CTA-based sampling techniques.

• Kernel-Based Sampling: Within a majority of GPGPU applications, two basic properties exist. First,
most of the kernels of an application are launched multiple times during the execution of the application.
Second, different invocations of the same kernel exhibit very similar behavior. These two common proper-
ties motivate us to exploit the first execution of a kernel as the sampling phase. Note that, such kernel-based
approach is not applicable for two different situations: First, if the kernel is launched only once during the ex-
ecution of the program. Second, if the kernel does not exhibit consistent behavior over different invocations.

Jadidi, Arjomand, Kandemir, and Das

Figure 4: Normalized IPC of different kernels during
the execution of the application. Kmean, PVC1, and
PVR1 do not exhibit consistent behavior over differ-
ent invocations. LIB and MUM consist of one main
kernel that are executed only once.

Figure 5: Transitioning between the compute-
intensive (CI) and memory-intensive (MI) states in
PVC. Kernel-1 exhibits memory-intensive behavior.
Kernel-2 however, experiences transitions between
compute-intensive and memory-intensive phases.

Figure 4 shows the normalized IPC of different kernels over different invocations. As can be seen, most
of the kernels exhibit consistent behavior over different invocations. However, LIB and MUM consist of
only one kernel which are executed only once. Kmean, PVC1, and PVR1 on other hand, although executed
multiple times, exhibit inconsistent behavior over different executions. Figure 5 demonstrates this issue
for PVC more clearly. Kernel-1 represents a memory-intensive kernel with consistent behavior. Kernel-2
however, transits between compute and memory-intensive phases. Therefore, we cannot use one execution
to optimize future invocations of that kernel. Besides these two drawbacks, a kernel-based approach does
not capture the behavioral transitions during each kernel execution.

• CTA-Based Sampling: As described in Section 2 (see Figure 2), each kernel is split into smaller blocks
called CTAs that execute similar portions of the code. SMs start executing a kernel with the maximum
possible number of CTAs, and whenever a CTA finishes, the CTA scheduler launches another CTA (if any)
to the available SM. This procedure continues until all the CTAs are finished. Because these CTAs run
similar code, each of them can represent the behavior of the kernel. This property motivates us to employ
a CTA as a fine yet accurate granularity in our sampling process. Based on our experimental observations,
in order to have an accurate sampling, we consider the first group of scheduled CTAs (i.e., #SMs*#CTAs-
Per-SM) as the sampling window. However, the monitoring hardware continuously analyzes the behavior of
running kernel, and if it recognizes noticeable changes in the behavior of running kernel, it will accordingly
update the collected statistics. Unlike kernel-based approach, a CTA-based scheme can be exploited for
(i) kernels that are launched only once, (ii) kernels with inconsistent behavior over different invocations,
and (iii) also recognizes the behavioral changes within each kernel execution. In this work, we adopt such
CTA-based sampling for our characterization purposes.

4.2 Memory-Intensive Kernels

Theoretically, as long as the available memory bandwidth is not saturated (i.e., MBU < 100%), we expect
to see performance improvement as we increase the number of SMs. However, in our experimental studies
we observed that the performance of memory-intensive kernels get saturated when MBU is much less than
100%. For instance, in SP, using all 32 SMs causes severe contention in last level cache while MBU is only
about 60%. If we keep reducing the number of active SMs down to 11, we still observe the same IPC for SP.
In other words, in memory-intensive kernels, memory bandwidth is not the only bottleneck and the running
kernel might instead suffer from contention in the last level cache and/or congestion in the interconnection
network while memory bandwidth is not saturated.

Jadidi, Arjomand, Kandemir, and Das

 0

 8

 16

 24

 32

 0 1 2 3 4 5

N
u

m
b

er
 o

f
A

ct
iv

e
S

M
s

Sampling/Reconfiguration Phases

PVC1 PVC2

 0 1 2 3 4 5

Sampling/Reconfiguration Phases

Figure 6: Converging to the optimal
number of SMs for two kernels from
PVC. Binary search process takes 5
(log(#SMs)) sampling/reconfiguration it-
erations to converge to the optimal point.

 0

 8

 16

 24

 32

 0 50 100 150 200 250

N
u
m

b
e
r

o
f

A
c
ti

v
e
 S

M
s

Successive Kernel Launches

PVC1 PVC2

 0 50 100 150 200 250

Successive Kernel Launches

Figure 7: Different invocations of the same kernel might ex-
hibit different behaviors: Our scheme assigns different number
of SMs to PVC1 as it exhibits widely different characteristics
over different invocations. In contrast, PVC2 behavior is very
consistent over the course of execution. (see Figures 4 and 5)

Based on our experimental evaluations, we consider 50% memory bandwidth utilization as the primary
threshold to classify a kernel as memory-intensive. In other words, kernels with MBU above that threshold
could be potentially using too many SMs. Once a kernels is recognized as memory-intensive, our feedback-
driven CTA scheduler gradually reduces the number of running CTAs to find the ideal number of CTAs/SMs
for that kernel. Note that, the existence of such threshold is not essential. Meaning that, we can perform our
optimization scheme on all kernels. However, this approach causes useless executions of our optimization
scheme which could hurt the performance of compute-intensive kernels during the search process. There-
fore, this threshold only eliminates wasteful optimization processes for non-memory-intensive kernels.

4.3 Regulating Number of Active Cores

The idea behind our proposed technique is to monitor IPC and MBU statistics to determine the ideal number
of active SMs accordingly. The goal is to assign minimum possible number of SMs to the running kernel
without losing performance. To determine the ideal number of active SMs, we employ a feedback driven
CTA scheduling approach which changes the number of running CTAs over multiple samplings. To do so,
we first run the kernel when it has been allocated all the SMs. If that kernel is recognized as memory-
intensive, our scheme allocates that kernel fewer number of SMs, and recollects the statistics to evaluate
the impact of reconfiguration on IPC and MBU. In order to converge to the ideal point faster, in this work
we used a binary search for regulating number of active SMs. The binary search takes log(Number-of-SMs)
steps to find the ideal answer. Our base architecture has 32 SMs; consequently, our scheme converges
to the ideal number of SMs after 5 steps. In the proposed procedure, we compare the IPC of the new
configuration with the IPC of the very first sampling phase that had all the SMs activated. When we compare
two IPCs from two different configurations, we consider a small margin for IPC variations, meaning that
as long as|IPCi − IPC1| ≤ α , we technically have the same performance. When we cross the saturation
point (discussed in Figures 2 and 3) and step in the linear part of the performance curve, the new observed
IPC will be considerably less than IPC1 and our scheme accurately detects the saturation point. Figures 6
represents an optimization process for two kernels from PVC. As can be seen, search process stabilizes
after 5 (log(#SMs)) sampling/reconfiguration phases. In this example, PVC1 and PVC2 are assigned 13
and 24 SMs, respectively. Figure 7 on the other hand, shows the number of assigned SMs to each kernel
over different invocations. In Figures 4 and 5 we observed that PVC2 exhibits similar characteristics over
different executions. Consequently, our scheme assigns almost the same number of SMs to PVC2 over
different executions. PVC1 however, as discussed in Figures 4 and 5 , experiences widely different compute-
and memory-intensive phases over time; therefore, the number of dedicated SMs to that changes from 13 to
28 SMs over different invocations.

Jadidi, Arjomand, Kandemir, and Das

Note that, off-line characterization and optimization techniques cannot recognize such variations over dif-
ferent executions. Therefore, techniques like (Hong and Kim 2010) fail in determining the optimal number
of SMs especially for cases like PVC1 with unpredictable run-time behaviour.

Pausing Technique. CTAs, once assigned to a core, cannot be preempted, or assigned to another
core (NVIDIA Corporation 2010). Therefore, during successive sampling and reconfiguration periods, we
pause the SMs instead of shutting them down. Such pausing approach during the sampling phase will not
cause any migration/context-switch overhead among SMs. All this process is managed by our feedback
driven CTA scheduler. After determining the ideal number of active SMs (after 5 sampling and reconfigura-
tion steps), we use a SM power-gating mechanism to turn the rest of the SMs off once they finish executing
previously assigned CTAs.

Predict When to Reactivate the SMs. Once a kernel execution is finished, the CPU launches a new kernel
on the GPU. At this point, the hardware needs to allocate all the available SMs to the new kernel. However,
some of the SMs might be shut down for the previous kernel and the delay of powering them on could
negatively affect performance of the newly launched kernel. To avoid this, we predict the time when a
kernel will be finished. This can be implemented by hardware since it can measure the average execution
time of a CTA at run-time (i.e., in terms of number of cycles). Therefore, based the number of left CTAs to
schedule, and the average execution length of a CTA, we can determine when to reactivate the power-gated
SMs in order to overlap the SM reactivation delay with the remaining execution time of the running kernel.

Hardware Overhead. Our proposed scheme monitors IPC and MBU to regulate number of active SMs in
a feedback-driven fashion. To collect this information at run time, we assume that each SM has 2 coun-
ters (overall, 32*2*4 Bytes) to track the number of executed instructions as well as the number of cycles.
Besides, each memory channel needs 2 counters (overall, 6*2*4 Bytes) to track the number of memory trans-
actions and number of memory cycles. Considering all the performance counters, the proposed mechanism
has an overall capacity overhead of 304 bytes.

5 EXPERIMENTAL RESULTS

5.1 Methodology

Platform: In order to evaluate our proposal, we used GPGPU-Sim v3.2.2 (Bakhoda et al. 2009), a publicly-
available cycle-accurate GPGPU simulator. The details of the simulated configuration are listed in Table 1a.
This configuration is similar to GTX480 configuration. In our experiments, we changed the number of active
SMs between 1 and 32, and used 32 in our baseline. Each SM is supported by a separate 16KB L1D and
L1I caches. SMs are connected to 6 memory channels. Each memory channel is coupled with a portion of
L2 cache with a size of 256KB. Misses in L2 cache are sent to the memory (Rixner et al. 2000).

Benchmarks: Table 1b lists the applications we used in our evaluations. We consider a wide range of
memory-intensive applications from various benchmark suites: CUDA SDK (NVIDIA 2011), Parboil (Strat-
ton et al. 2012), Mars (He et al. 2008), Shoc (Danalis et al. 2010), and LonestarGPU (Burtscher et al. 2012).
We classify the kernels as compute-intensive (COMP), and memory-intensive (MEM) in Table 1b. As can
be seen, each of the studied applications consists of at least one memory-intensive kernel.

Performance Metrics: In this work, we focus on energy efficiency, thus we report three metrics. First,
we report application performance in terms of normalized IPC with respect to the baseline configuration
described in Table 1a. Second, we report the power consumption of the system using GPUWattch (Leng
et al. 2013). In particular, we focus on dynamic power, leakage power, and DRAM power. Third, based on
performance and power results, we calculate the energy consumption of the system. The results presented
below includes all the runtime overheads brought by our approach.

Jadidi, Arjomand, Kandemir, and Das

(a) Baseline configuration.

SM Config. 32 Shader Cores, 1400MHz, SIMT Width=32
Resources / Core 1536 Threads (48 warps, 32 threads/warp),

48KB Shared Memory, 32684 Registers
Caches / Core 16KB 4-way L1D, 12KB 24-way Texture,

8KB 2-way Constant Cache, 2KB 4-way L1I
L2 Cache 256 KB/Memory Partition, 128B Line Size,

8-way, 700MHz
Warp Scheduler Greedy-then-oldest (Rogers et al. 2012)
Features Memory Coalescing, Inter-warp Merging,

Immediate Post Dominator (Fung et al. 2007)
Interconnect Crossbar, 1400MHz, 32B Channel Width
Memory Model 6 GDDR5 MCs, 2GHZ, 1 V

FR-FCFS, 8 DRAM-banks/MC
GDDR5 Timing tCL = 12, tRP = 12, tRC = 40, tRAS = 28,

tCCD = 2, tRCD = 12, tRRD = 6,
tCDLR = 5, tWR = 12

(b) List of GPU benchmarks: In the last column, MEM
and COMP refers to memory- and compute-intensive
behavior of the kernels.

Suite Application Abbr. Kernel Type
Lonestar Single-Source Shortest Paths SSSP MEM
Lonestar Breadth-First Search BFS MEM
Lonestar Survey Propagation SP MEM
Lonestar Minimum Spanning Tree MST MEM-COMP
Parboil Saturating Histogram HIST MEM-COMP
Shoc 2D Stencil Computation stencil MEM
SDK MUMerGPU MUM MEM
SDK LIBOR Monte Carlo LIB MEM
Mars Kmeans Clustering Kmean MEM-COMP
Mars Page View Count PVC MEM-COMP
Mars Page View Rank PVR MEM-COMP

Table 1: Experimental setup in our evaluations.

5.2 Evaluation

In this section we analyze the impact of our proposed mechanism on the chip energy consumption, and
overall system performance.

Static and Dynamic Power Consumption: Figure 8 reports the breakdown of total energy consumption in
terms of static and dynamic power ratios. For each application, we have reported the energy saving gained
by our proposed technique as well as the energy saving of the optimal configuration (optimal configuration
is the configuration with lowest energy consumption while performance loss is kept less than 2% compared
to the baseline. In order to find the optimal point, we ran the system under all 32 possible SM assignments.).
As can be seen, for most of the applications the static power contribution in overall improvement is dominant
which is achieved by power-gating some of the SMs. In this category of application, regulating the number
of SMs does not affect the system performance. However, since we use less number of active SMs, the
power-gating can effectively reduce leakage power consumption. The energy saving gained by lowering the
static power consumption is linearly dependent on the number of power gated SMs.

For some of the kernels/applications (i.e., BFS, MUM, SP, and SSSP), we also observe improvements in the
dynamic power consumption. As we keep decreasing the number of active SMs, for kernels running in the
saturated region, we could potentially decrease the dynamic power consumption by shortening the execution
time. For instance, reducing the number of active SMs from 32 to 20 in BFS, reduces the contentions in last
level cache such that the miss-rate reduces from 77% to 45% which consequently improves IPC by 25%.
We observed similar impacts in MUM, SP, and SSSP. Overall, our proposed mechanism achieves up to 35%
and on average about 21% energy saving, which is within 8% of the optimal saving.

Performance: Figure 9 reports the average number of SMs that our proposed scheme stabilizes at for each
application. Our proposed scheme reduces the number of active SMs to as low as 10 SMs and with an aver-
age of 28 SMs. Figure 10 demonstrates the impact of our proposed technique on system performance. As
can be observed, four of those applications (i.e., BFS, MUM, SP, and SSP) experience severe performance
loss in baseline configuration because of the contention in last level cache and/or congestion in the inter-
connection network. For instance, by allocating the ideal number of SMs to SSP, and BFS, their last level
cache hit-rate improves by 45%, and 30%, respectively. Our technique improves the performance of those
four applications by up to 25%, with an average of 12%. Our proposed mechanism reduces he performance
of the remaining applications 2% on average.

Jadidi, Arjomand, Kandemir, and Das

Figure 8: Energy saving gained by using optimal number of SMs. BL, FD, and OP represent BaseLine, our
proposed Feedback-Driven, and OPtimal system configurations, receptively.

 0

 8

 16

 24

 32

BFS
HIST

Kmean

LIB
M

ST
M

UM
PVC

PVR
SP SSSP

Stencil

Average

N
u
m

b
er

 o
f

A
ct

iv
e

S
M

s

FD: Feedback-Driven Tunning
OP: Optimal Configuration

BFS
HIST

Kmean

LIB
M

ST
M

UM
PVC

PVR
SP SSSP

Stencil

Average

Figure 9: Average number of active SMs.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

BFS
HIST

Kmean

LIB
M

ST
M

UM
PVC

PVR
SP SSSP

Stencil

Average

N
o
rm

al
iz

ed
 I

P
C

FD: Feedback-Driven Tunning

-2 0 2 4 6 8 10 12

Figure 10: Normalized IPC values for different appli-
cations with respect to the baseline configuration.

Application of DVFS Techniques on Memory-Intensive Kernels: Figure 12 compares the impact of our
proposed mechanism with a common DVFS scheme. We assumed that the GPGPU has 7 power-states as
reported in Figure 11. A wide range of DVFS techniques are available to regulate the voltage/frequency of
different resources in a computing platform. In our feedback-driven CTA scheduling approach, we adopt
a SM power-gating mechanism to shut down some of the SMs. However, one can adopt of a DVFS tech-
nique to regulate voltage/frequency of the SMs in order to resolve the memory saturation problem (Leng
et al. 2013). Here we discuss two major differences between power-gating and DVFS techniques: First,
power-gating is more effective in reducing the leakage power compared to DVFS techniques, as reported in
Figure 12. Second, although reducing the frequency of the SMs could mitigate the memory bandwidth satu-
ration problem, it does not resolve the cache contention problem because cache contention is not a function
of time but a function of the sequence of cache accesses. In other words, cache access pattern is a function
of number of running threads which is modulated by our feedback-driven CTA scheduler but it is not af-
fected by a core-side DVFS scheme. As can be seen in Figure 12, for BFS, MUM, SP, and SSSP that suffer
from cache contention problem, our proposed technique considerably outperforms DVFS. Overall, our pro-
posed technique reduces the energy consumption 21% on average while DVFS improvement is about 9%
on average.

Jadidi, Arjomand, Kandemir, and Das

Voltage Frequency
1.000 V 2.00 GHz
0.925 V 1.75 GHz
0.850 V 1.50 GHz
0.775 V 1.25 GHz
0.700 V 1.00 GHz
0.625 V 0.75 GHz
0.550 V 0.50 GHz

Figure 11: List of adopted
V/F states to dynami-
cally manage SM power
consumption during the
memory-intensive phases.

Figure 12: Energy saving gained by different techniques. BL, and FD repre-
sent BaseLine, our proposed Feedback-Driven configurations, receptively.

6 RELATED WORK

Theoretically speaking, assigning more SMs to a highly multi-threaded application improves its performance
as long as the memory bandwidth does not saturate. Huang et al. (2009) evaluated the effect of number
of active SMs on energy consumption and discussed that having all the SMs activated is the most energy
efficient configuration. The lack of that study is that they did not consider any memory-intensive application.
In order to have a more accurate analysis, we need to consider the possible congestion in the interconnection
network and the contention in last level cache caused by enormous number of memory requests (issued by
huge number of concurrently running threads). In this line, Guz et al. (2009) showed that increasing the
parallelism improves the performance as long as the memory access latency is not affected considerably.
An orthogonal category of works (Jadidi et al. 2011, Arjomand et al. 2011, Arjomand et al. 2016) exploit
large last level caches and/or accelerate the memory accesses to reduce average data access latency. Li
and Martínez (2005) analytically estimated the optimal number of processors to achieve the best EDP in
CMPs. In GPU domain, Hong and Kim (2010) proposed an analytical model which predicts the optimal
number of SMs based on offline characterizations. Our proposed mechanism however, exploits run-time
characteristics for regulating number of active cores. As shown in Section 3, many kernels go into saturation
state while MBU is much less than 100%. Therefore, although Hong and Kim (2010) statically provide us
estimations for the number of active cores, it does not consider potential contention in the last level cache
and/or congestion in the interconnection network. On the other hand, DVFS techniques (Leng et al. 2013)
can be exploited to regulate the voltage/frequency of the SMs during memory-intensive phases. Although a
core-side DVFS technique can improve the energy consumption of memory-intensive kernels, as discussed
in Section 5, our proposed mechanism outperforms DVFS techniques in terms of reducing static leakage
power as well as resolving the last level cache contention issue.

7 CONCLUSIONS

In this paper, we proposed a feedback-driven mechanism that dynamically adjusts the number of active SMs
based on the kernel demand. The proposed mechanism uses a CTA-based sampling and reconfiguration
scheme to dynamically analyse the kernel and determine the ideal number of active SMs. This technique
reduces the chip energy consumption up to 35% and about 21% on average over the studied memory-
intensive applications, which is within 8% of the optimal saving that can be obtained from an oracle scheme.

ACKNOWLEDGMENTS

This work is supported in part by NSF grants 1302557, 1213052, 1439021, 1302225, 1629129, 1526750,
and 1629915 and a grant from Intel.

Jadidi, Arjomand, Kandemir, and Das

REFERENCES

Arjomand, M., A. Jadidi, M. T. Kandemir, A. Sivasubramaniam, and C. Das. 2016, April. “MLC PCM main
memory with accelerated read”. In 2016 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp. 143–144.

Arjomand, M., A. Jadidi, A. Shafiee, and H. Sarbazi-Azad. 2011, Oct. “A morphable phase change memory
architecture considering frequent zero values”. In 2011 IEEE 29th International Conference on Com-
puter Design (ICCD), pp. 373–380.

Bakhoda, A., G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. 2009, April. “Analyzing CUDA
workloads using a detailed GPU simulator”. In 2009 IEEE International Symposium on Performance
Analysis of Systems and Software, pp. 163–174.

Burtscher, M., R. Nasre, and K. Pingali. 2012. “A quantitative study of irregular programs on GPUs”. In
IISWC.

Danalis, A., G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tipparaju, and J. S. Vetter.
2010. “The Scalable Heterogeneous Computing (SHOC) benchmark suite”. In GPGPU.

Fermi, N. 2009. “Nvidia’s next generation cuda compute architecture”.

Fung, W. W. L., I. Sham, G. Yuan, and T. M. Aamodt. 2007. “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow”. In Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 40, pp. 407–420. Washington, DC, USA, IEEE Computer Society.

Guz, Z., E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C. Weiser. 2009, January. “Many-Core vs.
Many-Thread Machines: Stay Away From the Valley”. IEEE Comput. Archit. Lett. vol. 8 (1), pp. 25–28.

He, B., W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. 2008. “Mars: A MapReduce Framework on
Graphics Processors”. In PACT.

Hong, S., and H. Kim. 2010, June. “An Integrated GPU Power and Performance Model”. SIGARCH Comput.
Archit. News vol. 38 (3), pp. 280–289.

Huang, S., S. Xiao, and W. Feng. 2009, May. “On the energy efficiency of graphics processing units for
scientific computing”. In 2009 IEEE International Symposium on Parallel Distributed Processing, pp.
1–8.

Jadidi, A., M. Arjomand, and H. Sarbazi-Azad. 2011. “High-endurance and Performance-efficient De-
sign of Hybrid Cache Architectures Through Adaptive Line Replacement”. In Proceedings of the 17th
IEEE/ACM International Symposium on Low-power Electronics and Design, ISLPED ’11, pp. 79–84.
Piscataway, NJ, USA, IEEE Press.

Lee, J., V. Sathisha, M. Schulte, K. Compton, and N. S. Kim. 2011. “Improving Throughput of Power-
Constrained GPUs Using Dynamic Voltage/Frequency and Core Scaling”. In Proceedings of the 2011
International Conference on Parallel Architectures and Compilation Techniques, PACT ’11, pp. 111–
120. Washington, DC, USA, IEEE Computer Society.

Leng, J., T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and V. J. Reddi. 2013, June.
“GPUWattch: Enabling Energy Optimizations in GPGPUs”. SIGARCH Comput. Archit. News vol. 41
(3), pp. 487–498.

Li, J., and J. F. Martínez. 2005, December. “Power-performance Considerations of Parallel Computing on
Chip Multiprocessors”. ACM Trans. Archit. Code Optim. vol. 2 (4), pp. 397–422.

NVIDIA 2011. “CUDA C/C++ SDK Code Samples”.

NVIDIA Corporation 2010. “NVIDIA CUDA C Programming Guide”. Version 3.2.

Jadidi, Arjomand, Kandemir, and Das

Rixner, S., W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. 2000, May. “Memory Access Scheduling”.
Volume 28, pp. 128–138. New York, NY, USA, ACM.

Rogers, T. G., M. O’Connor, and T. M. Aamodt. 2012. “Cache-Conscious Wavefront Scheduling”. In Pro-
ceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-
45, pp. 72–83. Washington, DC, USA, IEEE Computer Society.

Stratton, J. A., C. Rodrigues, I. J. Sung, N. Obeid, L. W. Chang, N. Anssari, G. D. Liu, and W. W. Hwu.
2012. “Parboil: A Revised Benchmark Suite for Scientific and Commercial Throughput Computing”.
Technical Report IMPACT-12-01.

AUTHOR BIOGRAPHIES

AMIN JADIDI received the B.Sc. degree from University of Tehran of Tehran, Iran, in 2009, and the M.Sc.
degree from the Sharif University of Technology, Tehran, Iran, in 2011, all in electrical and computer engi-
neering. He currently is a PhD candidate in Department of Computer Science and Engineering, Pennsylvania
State University, University Park, PA, USA. His current research interests include multicore and manycore
architectures, GPGPU architectures, and memory systems. His email address is axj945@cse.psu.edu.

MOHAMMAD ARJOMAND (S’09) received the B.Sc. degree from the Shahid Bahonar University of
Kerman, Kerman, Iran, in 2006, and the M.Sc. and Ph.D. degrees from the Sharif University of Technology,
Tehran, Iran, in 2008 and 2014, respectively, all in computer engineering. He currently holds a post-doctoral
position with the Department of Computer Science and Engineering, Pennsylvania State University, Univer-
sity Park, PA, USA. His current research interests include multicore and manycore architectures, memory
systems, storage systems, and power-aware architectures. Mr. Arjomand is a Student Member of the Asso-
ciation for Computing Machinery. His email address is mxa51@cse.psu.edu.

MAHMUT TAYLAN KANDEMIR is a professor in the Computer Science and Engineering Department
at the Pennsylvania State University. He is a member of the Microsystems Design Lab. Dr. Kandemir’s
research interests are in optimizing compilers, runtime systems, embedded systems, I/O and high perfor-
mance storage, and power-aware computing. He is the author of more than 80 journal publications and over
300 conference/workshop papers in these areas. He is a recipient of NSF Career Award and the Penn State
Engineering Society Outstanding Research Award. He currently serves as the Graduate Coordinator of the
Computer Science and Engineering Department at Penn State. His email address is kandemir@cse.psu.edu.

CHITA R. DAS is a distinguished professor in the Department of Computer Science and Engineering at
Pennsylvania State University. He currently serves as the Dean of the Computer Science Department at
Penn State. His main areas of interest include parallel and distributed computer architectures, multi-core
architectures, mobile computing, performance evaluation, and fault-tolerant computing. He has published
more than 200 papers in the above areas, has served on many program committees, and editorial boards.
He has a PhD in computer science from the University of Louisiana, Lafayette. He’s a fellow of IEEE. His
email address is das@cse.psu.edu.

mailto://axj945@cse.psu.edu
mailto://mxa51@cse.psu.edu
mailto://kandemir@cse.psu.edu
mailto://das@cse.psu.edu

OPENFOAM ON GPUS USING AMGX

Thilina Rathnayake Sanath Jayasena Mahinsasa Narayana

ABSTRACT

Field Operation and Manipulation (OpenFOAM) is a free, open-source, feature-rich Computational Fluid
Dynamics (CFD) software that is used to solve a variety of problems in continuum mechanics. Depending on
the type of problem and required accuracy, an OpenFOAM simulation may take several weeks to complete.
For sufficiently large simulations, linear solvers consume a large portion of the execution time. AmgX is a
state of the art, high performance library which provides an elegant way to accelerate linear solvers on GPUs.
AmgX library provides multi-grid solvers, Krylov methods, smoothers, support for block systems and MPI.
In this work, we implemented OpenFOAM solvers on GPUs using the AmgX library. We also created helper
functions which enable seamless integration of these solvers with OpenFOAM. These functions will take
care of converting the linear system to AmgX’s format and apply the user specified configurations to solve
it. Experiments carried out using a wind rotor simulation and a fan wing simulation show that the use of
AmgX library gives upto 10% speedup in the total simulation time and around 2x speedup in linear system
solving portion within the simulation.

Keywords: GPU, OpenFOAM, AmgX, GPGPU, linear solvers

1 INTRODUCTION

Scientific computing has become a very important part of modern research in many science and engineer-
ing disciplines like fluid dynamics, acoustics, solid mechanics and electro-magnetics. Often scientists and
engineers carry out computer simulations to model and better understand important phenomena like wind
patterns around a plane or turbulence of a fluid. These computer simulations can save time, money and
often gives more flexibility in trying out new things than actually carrying out them in the real world. Com-
putational Fluid Dynamics (CFD) is an important sub-field in scientific computing. CFD is essentially a
combination of fluid dynamics, numerical methods and computer science where computers are used to run
numerical algorithms to solve a fluid dynamics problem. Using computers to solve fluid dynamics prob-
lems has become very popular due to the availability of high performance computers and well developed
numerical methods.

Field Operation and Manipulation (OpenFOAM) (Jasak, Jemcov, Tukovic, et al. 2007) library is an open-
source CFD software package widely used in both academia and industry. OpenFOAM is written in C++
and can be used to solve partial differential equations (PDEs). OpenFOAM can be used in all three phases
of a simulation: pre-processing, solving and post-processing. It contains meshing tools like blockMesh for
pre-processing and visualization software like ParaView for post-processing. OpenFOAM comes with built

SpringSim-HPC 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)

deniz
Typewritten Text

deniz
Typewritten Text
 University of Moratuwa10400, Katubedda, Sri Lanka sanath@cse.mrt.ac.lk

deniz
Typewritten Text
 University of Moratuwa10400, Katubedda, Sri Lankathilinarmtb.10@cse.mrt.ac.lk

deniz
Typewritten Text
 University of Moratuwa10400, Katubedda, Sri Lanka mahinsasa@uom.lk

Rathnayake, Jayasena and Narayana

Figure 1: Overview of OpenFOAM structure (source: OpenFOAM Documentation).

in MPI functionality which allows users to decompose a given mesh into multiple chunks and use multiple
computing nodes (or a single node with multiple cores) to process the chunks in parallel.

Computational scientists have been using Graphic Processing Units (GPUs) to speed up various computa-
tionally intensive tasks in scientific computing. GPUs have been widely used in CFD problems as well.
GPUs have hundreds of cores that can run thousands of threads to perform vector operations over large data
structures. This ability comes handy when solving large linear systems. There are many software libraries
that enable usage of GPUs to run common computational kernels in numerical linear algebra. NVIDIA
CUDA Basic Linear Algebra Subroutines (CUBLAS) library, NVIDIA CUDA Sparse Matrix library (cuS-
PARSE) and NVIDIA AmgX library are some of the popular libraries with NVIDIA GPUs. In this paper we
investigate how OpenFOAM can be combined with NVIDIA AmgX library to run CFD problems in GPUs.

The paper has the following structure. First we look at the structure of OpenFOAM in Section 2 and give
a brief introduction to NVIDIA AmgX library in Section 3. Then we look at the related work in Section 4.
We describe the methodology we followed in Section 5 and present experiments we carried out and their
results in Section 6. Finally, we present the conclusions and recommendations in Section 7.

2 OPENFOAM

OpenFOAM is written in C++ and heavily uses object oriented features in C++ to build the framework
required for simulations. The primary use of OpenFOAM is to create executables known as applications.
These applications can be broadly categorized into solvers and utilities. Solvers are created to solve a
specific problem in continuum mechanics like calculating pressure and velocities of an in-compressible
flow flowing through a specific tube geometry. Utilities are designed to perform tasks that involve data
manipulation. Users can create custom solvers and utilities by using OpenFOAM with some knowledge
about underlying CFD algorithms, physics and programming techniques. OpenFOAM ships with pre and
post processing tools. OpenFOAM utilities have been written on top of these tools to enable users to easily
access them. Thus, the interface to these pre and post processing tools are consistent even though underlying
tool environments can change. The overall structure of OpenFOAM is shown in Figure 1.

OpenFOAM has several methods (algorithms) to solve the linear system resulting after the discretization of
the computational domain and the differential equation. Algorithm selection depends on the resulting linear
system (symmetric, asymmetric), initial and boundary conditions and the convergence characteristics of the
matrix. Table 1 shows the solvers available in OpenFOAM.

Different types of preconditioners and smoothers are used in OpenFOAM to solve linear systems more
efficiently. Preconditioners transform the linear system so that the transformed system converges much
faster than the original. Figure 2 shows the structure of linear solvers available in OpenFOAM along with
preconditioners and smoothers.

Rathnayake, Jayasena and Narayana

Table 1: OpenFOAM linear solvers.

BICCG Diagonal incomplete LU preconditioned BiCG solver
diagonalSolver diagonal solver for both symmetric and asymmetric problems
GAMG Geometric agglomerated algebraic multi-grid solver (also named Generalized

geometric- algebraic multi-grid)
ICC Incomplete Cholesky preconditioned Conjugate Gradients solver
PBiCG Preconditioned bi-conjugate gradient solver for asymmetric lduMatrices using a run-

time selectable preconditioner
PCG Preconditioned conjugate gradient solver for symmetric lduMatrices using a run-time

selectable preconditioner
smoothSolver Iterative solver using smoother for symmetric and asymmetric matrices which uses a

run-time selected smoother

Figure 2: OpenFOAM’s complete linear solver structure.

3 NVIDIA AMGX

AmgX provides a simple way to access accelerated solvers on NVIDIA GPUs (Naumov, Arsaev, Cas-
tonguay, Cohen, Demouth, Eaton, Layton, Markovskiy, Sakharnykh, Strzodka, et al. 2014). NVIDIA
claims that AmgX can provide up to 10x acceleration of the computationally intense linear solver portion
of simulations (AmgX 2016). One of the main advantages of using AmgX is its flexible solver composition
system which allows a user to easily combine various solvers and preconditioners. AmgX has a simple C
API that abstracts the parallelism and GPU implementation. Main features of the AmgX library include,
according to NVIDIA (AmgX 2016):

• Flexible configuration allows for nested solvers, smoothers, and preconditioners.
• Krylov methods: PCG, GMRES, BiCGStab, and flexible variants.
• Smoothers: Block-Jacobi, Gauss-Seidel, incomplete LU, Polynomial, dense LU.
• MPI and OpenMP support.

4 RELATED WORK

In this section, we are first going to look at some of the existing literature on research conducted using
OpenFOAM with GPUs and then do a survey about existing software libraries for porting OpenFOAM
simulations to GPUs.

Rathnayake, Jayasena and Narayana

4.1 Related Research

Amaniz AlOnazi et al. (AlOnazi 2014) have tried to design and optimize OpenFOAM based CFD applica-
tions to hybrid heterogeneous HPC platforms. Although OpenFOAM supports MPI natively, according to
authors, it doesn’t scale well for heterogeneous systems (AlOnazi, Keyes, Lastovetsky, and Rychkov 2015).
Authors have extensively studied Conjugate Gradient (CG) method and identified the bottlenecks when it is
run in a distributed memory system using MPI.

Qingyun He et al. (He, Chen, and Feng 2015) have used a wide variety of existing libraries to speed up
OpenFOAM solvers. Authros have implemented the magnetohydrodynamics (MHD) solver on Kepler-class
GPUs using the CUDA technology. Authors claim that a GPU (GTX 770) can outperform a server-class
4-core, 8-thread CPU (Intel Core i7-4770k). They have used the following libraries for CFD acceleration of
the MHD solver:

1. CUDA for OpenFOAM Link (Cufflink) (Combest and Day 2011), an open source library for GPU
acceleration in OpenFOAM. It supports single and double precision.

2. SpeedIT Plugin (Vratis 2013) to OpenFOAM by Vratis released for demonstration purposes for
GPU acceleration. The free version supports only single precision.

3. GPU linear solvers library for OpenFOAM (ofgpu) (Symscape 2014) by Symscape under GPL li-
cense. It supports only single precision.

Authors accelerated the MHD solver by replacing its linear system solvers since solving matrices occupy
most of program running time. Also, authors replaced sparse matrix vector product (SMVP) kernels with
the corresponding GPU implementations. The vector–vector scalar product is calculated using the NVIDIA
CUBLAS (Nvidia 2008) library. Authors claim that they were able to get a 4x speedup for the benchmarks
using a single GPU.

Jamshidi and Khunjush (Jamshidi and Khunjush 2011) have used the CUSPARSE (CUSPARSE 2017) and
CUBLAS (Nvidia 2008) libraries to implement some of the OpenFOAM solvers. Author’s have identified
that the main computational intensive step in OpenFOAM solvers is the solving systems of linear equations.
They have tested their implementations in three different multi-core platforms including the Cell Broadband
Engine, NVIDIA GPU, and an Intel quad-core Xeon CPU. According to their results, the GPU implemen-
tations achieve the best performances.

4.2 Existing Software for running OpenFOAM on GPUs

Apart from the above research work, there are a few software solutions which attempt to port OpenFOAM
simulation to GPUs.

4.2.1 Paralution

Paralution enables users to use multi/many-core CPU and GPU devices for various numerical linear algebra
kernels (Lukarski and Trost 2014). It supports various back-ends like OpenMP, CUDA and OpenCL. Par-
alution is released under dual license scheme with a open source GPLv3 license and a commercial license.
Free license doesn’t support MPI functionality.

Rathnayake, Jayasena and Narayana

Figure 3: OFAmgX Library.

4.2.2 RapidCFD

RapidCFD is different to other libraries in that it uses GPUs for performing most of OpenFOAM’s function-
ality, not only the linear solvers. RapidCFD avoids copying data during calculations between CPU and GPU
as much as possible. Most of the data structures are created on the GPU itself. Operations on these are then
done by using thrust (Hoberock and Bell 2010) library.

5 METHODOLOGY

In order to speed up the simulations, first thing we need to do is identifying the performance bottlenecks. We
ran a simulation of a wind turbine using callgrind tool which ships with valgrind (Nethercote and Seward
2007) to identify the computationally intensive sections of the program.

According to profiling results, Foam::fvMatrix::solve method in OpenFOAM has the highest accumulated
overhead (discarding the main method). Nearly 1/3 of the simulation time is spent on this single method. In
OpenFOAM, Foam::fvMatrix is the class that holds the matrix resulting from the finite volume discretiza-
tion. solve method is the member which solves the linear system associated with this matrix. So, it can be
concluded that a large portion of the simulation time is spent solving the linear system.

This fact becomes more obvious when we look at the overhead introduced by methods ignoring the overhead
of the callees. Four out of the top 5 hot-spots are methods used in solving the linear system. It is evident
that we can maximize our speed up by making linear solvers run faster i.e., linear solvers are the perfect
candidates to be implemented in GPU.

We used the NVIDIA’s AmgX library described in Section 3 to solve the OpenFOAM’s linear system in the
GPU. We implemented a wrapper library, OFAmgX which enables the easy use of AmgX’s linear solvers
from OpenFOAM. Figure 3 shows the overall structure and interaction of OFAmgX with OpenFOAM. We
found the work done by Chuang and Barba to add AmgX support to PETSc (Pi-Yueh Chuang 2016) really
helpful when writing our library. We especially found their load balancing methodology which is described
in Section 5.2 to be very useful.

As shown in the Figure 3, pre-processing and post-processing takes place in the CPU using normal Open-
FOAM utilities. But during the solving process, linear system (matrix and the right hand side vector) is
copied to the GPU by the AmgX wrapper library and the AmgX solvers are invoked on the system. After
the AmgX library is done with solving the system, results are copied back to the CPU by the OFAmgX.

User can specify the solution algorithm, tolerance values, pre-conditioners and smoothers in the OpenFOAM
side as in a normal OpenFOAM simulation. OFAmgX will read those values and setup the solver in the GPU
according to that information.

Rathnayake, Jayasena and Narayana

Figure 4: Conversion of lduMatrix to CSR Format.

5.1 Data Structure Conversion

Before solving the linear system, OFAmgX has to convert the matrix and the right hand vector to a format
consumable by the AmgX library. After solving the system, OFAmgX has to convert the solution vector
back to a OpenFOAM vector. Conversion between the vectors is pretty straight forward. But the conversion
between the matrices require additional work.

OpenFOAM stores its matrices in the lduMatrix format (CFD-online) (OpenFOAM-Wiki 2016). In the
lduMatrix format, lower, diagonal and upper elements of the matrix are stored separately in different arrays.
Addressing for these elements are stored in another two arrays which stores the row and column index
of each element. This storage method is extremely efficient for storing the matrices resulting from finite
volume discretization.

AmgX solver library only accepts matrix in Compressed Sparse Row (CSR) format (Saad 2003). In CSR
format, only the nonzero elements in the matrix are stored. All the nonzero elements of the matrix are stored
row wise in one array (value in Figure 4) and the column indices of these elements are stored in another
array (column index in Figure 4). A third array keeps track of the index of the start element in each row. To
use AmgX with OpenFOAM, we need to convert lduMatrix format to the CSR format and this is done by
OFAmgX. Figure 4 shows visually how the conversion can be done from lduMatrix to CSR.

5.2 MPI Support

OFAmgX supports using multiple GPUs in a cluster and/or node to solve the linear system with MPI. The
major issue in enabling multiple GPU support is the mapping of MPI processes to the GPUs. Suppose we
have a GPU cluster like Figure 5 with three nodes. First, the global communicator is split into in-node
communicators which are local to each node. Figure 6 shows the cluster after this initial split.

Next, each in node (or local) communicator is divided depending on the number of GPUs available at the
node and the number of MPI processes started at the node. Figure 7 shows the communicators local to each
GPU device after this split. Usually, in OpenFOAM, the number of MPI processes equal to the number of
cores in the node. We want to make sure that each GPU device has almost equal loads.

Rathnayake, Jayasena and Narayana

Figure 5: GPU Cluster with three nodes

Figure 6: Global communicator split into local in-node communicators

Figure 7: Local in-node communicators split by device

Suppose we have n GPU devices and m MPI processes in a given node. If m is divisible by n, then each GPU
device will get m

n MPI processes. This is the case with the leftmost and the rightmost nodes in Figure 7.
Suppose m is not divisible by n and leaves a remainder r after division. Then m− r is divisible by n. In this
case, r devices will get m−r

n +1 MPI processes each and the rest n− r devices get m−r
n MPI processes each.

This is the case with the middle node in Figure 7.

deniz
Typewritten Text
.

deniz
Typewritten Text
.

deniz
Typewritten Text
.

Rathnayake, Jayasena and Narayana

Table 2: Different Experimental Environments

Environment Details
A Intel Xeon @ 2.0GHz x 32, 64 GB RAM with a Tesla C2070 GPU
B Intel core i7 @ 3.40GHz X 4, 16 GB RAM with 2 GTX 480 GPUs
C Intel core i7 @ 1.6GHz X 4, 8 GB RAM with 2 GTX 480 GPUs

5.3 Multiple Solver Support

In a general OpenFOAM simulations, different types of solvers may be used to solve for different physical
quantities. For example, the solver used for calculating pressure in the mesh points may not be used for
calculating the speed at the mesh points. So, it is essential that our wrapper supports multiple types of
solvers to be used in the same simulation.

When transforming solver configurations from OpenFOAM to AmgX, different solvers used in OpenFOAM
have different configurations in AmgX as well. So, the configuration string used by OFAmgX to initialize
solvers in the GPU are unique. We can use this configuration string to keep track of the data structures in
AmgX which are used to run a particular solver.

For a solver to be run by AmgX, a resource handle and a solver handle must be created. To support mul-
tiple solvers, we stored resource handlers of the solvers in one dictionary and solver handlers in another
dictionary. During the simulation, we can select appropriate solver and resource handles depending on the
configuration string and run the required solver on the GPU. Another advantage of this method is that we
only need to initialize the AmgX library once. After initialization is complete, any solver can be run in the
GPU. After the simulation is over, we can finalize the AmgX library. This step needs to be done only once
as well. This saves a lot of time, especially in smaller simulations.

6 EXPERIMENTAL RESULTS

We benchmarked native OpenFOAM, OFAmgX library and Paralution library (Section 4.2.1) library under
three different hardware environments. These environments are listed in Table 2. We used a server (A) and
two desktop machines (B and C). Each machine is equipped with GPUs and two desktop machines have
two GPUs each. All the benchmarks were run using Ubuntu 14.04 and CUDA 6.5. OpenFOAM version 2.4
development version was used in the benchmarks and the latest RapidCFD master from its git repository
was used. All the measurements are in seconds and they report the complete simulation time including data
structure conversion and memory transfer from and back to CPU.

We were unable to setup RapidCFD (Section 4.2.2) successfully in our experimental environments. This
may be due to the fact that it does not support GPUs with sm_20 architecture.

We used two different simulations under each environment to benchmark the libraries. We used a simulation
of a wind turbine (referred to as windLM here onwards) as our first benchmark. This wind turbine simulation
has a very intricate design and has around 1,166,000 mesh points. The second simulation simulates a wing of
a fan (referred to as FanWing2D here onwards) and it is relatively smaller than the former. Table 3 provides
a summary of the simulations used.

We measured the execution time each simulation took under different experimental setups. We used a 95%
confidence interval for the measurements. For the windLM simulation, experiments were carried out with
and without MPI. Table 4 lists the execution time for windLM simulation for the three environments without
using MPI. Tables 5 – 7 list the execution time for the windLM with MPI using 2, 4 and 8 MPI processes.
For the experiments with MPI, multiple MPI processes are created on a single node, not on a cluster.

deniz
Typewritten Text
.

Rathnayake, Jayasena and Narayana

Table 3: Different Simulations used in the benchmarks

Simulation Details
windLM Simulation of a wind turbine with 1,166,000 mesh-points
FanWing2D Simulation of a 2D Fan with 60,000 mesh-points

Table 4: Total simulation time for windLM without MPI (in seconds)

OpenFOAM OFAmgX Paralution
A 648.93 634.07 971.87
B 313.18 296.06 288.98
C 463.46 434.15 428.73

Table 5: Total simulation time for windLM with 2 MPI processes (in seconds)

OpenFOAM OFAmgX Paralution
A 361.30 350.00 Note I
B 216.80 201.15 Note I
C 404.86 365.91 Note I

Table 6: Total simulation time for windLM with 4 MPI processes (in seconds)

OpenFOAM OFAmgX Paralution
A 144.33 152.33 Note I
B 154.33 141.67 Note I

Table 7: Total simulation time for windLM with 8 MPI processes (in seconds)

OpenFOAM OFAmgX Paralution
A 102.67 113.67 Note II
B 154 144.33 Note II

Table 8: Total simulation time for FanWing2D without MPI (in seconds)

OpenFOAM OFAmgX Paralution
A 67.61 79.51 32.71
B 29.18 26.85 31.52
C 50.44 45.24 51.76

Rathnayake, Jayasena and Narayana

Figure 8: Performance of windLM simulation in environment A

Figure 9: Performance of windLM simulation in environment B

For the FanWing2D simulation, experiments are carried out without MPI. Table 8 lists the execution time
for FanWing2D simulation for the three environments without using MPI.

Notes:

I Paralution free version does not support MPI

Figures 8 and 9 summarizes the results of windLM simulation for the environments A and B respectively.
In A, AmgX wrapper gets slower than OpenFOAM as the number of MPI processes increase. This is due to
the fact that it has a single GPU and all the MPI processes start competing to use this GPU. In B, OFAmgX

Rathnayake, Jayasena and Narayana

is always faster but the performance for 8 MPI processes is slower than for 4 MPI processes. This is due to
the same reasons which caused the performance drop in A.

If we consider the time taken to solve the linear system instead of the total simulation time, OFAmgX
gives around 2x speedup depending on the solver. For example, Preconditioned Biconjugate Gradient
(PBiCG) solver with Diagonal Incomplete LU preconditioner takes 441,383 microseconds to complete in
OpenFOAM. In OFAmgX, this only takes 213,115 microseconds to complete.

7 CONCLUSIONS AND RECOMMENDATIONS

According to Section 6, in most of the experimental cases we got closer to a 8% speedup in the total
simulation time by using OFAmgX compared to native OpenFOAM. In some cases it is even faster than
Paralution library. Moreover, our OFAmgX supports domain decomposition using MPI and the free version
of the Paralution library does not have MPI support.

OpenFOAM users can get a significant speed up by running their linear solvers in GPUs using OFAmgX
library. Since we are using AmgX library, users get access to a lot of AmgX features which are not available
in original OpenFOAM.

There are some areas in our wrapper library which can be improved further. Although we added support for
multiple solvers to be used in the same solution, we could not get significant improvements by using multiple
solvers in the same simulation. Also, we could not beat OpenFOAM’s multi-grid solver (GAMG) with the
multi-grid solver available in AmgX library. Improving these may involve finding the best parameter values
that need to be which gives optimal performance in the algorithms implemented with AmgX.

Currently OFAmgX doesn’t support block matrices. If the mesh is large enough, adding support for the
block matrices can be beneficial as well. AmgX library supports block matrices and we need to investigate
how this feature can be used with OpenFOAM to improve the performance.

One limitation of the OFAmgX is the overhead in converting the lduMatrix format to the CSR matrix format.
This conversion needs to be done in order to feed the matrix of the linear system to the AmgX solver. This
conversion takes time and is unavoidable. Also, transferring data from/to GPU is also time consuming and
a limitation of the wrapper.

According to the experiments carried out, performance tend to degrade when more than four MPI processes
are mapped into a single GPU. This is due to the fact that some of the MPI processes have to wait in idle till
the GPU becomes available for their use. Investigating how to fix this issue is one of the challenges.

ACKNOWLEDGMENT

We would like to show our gratitude to the senate research committee of the University of Moratuwa and
the LK Domain registry for supporting this research.

REFERENCES

AlOnazi, A., D. Keyes, A. Lastovetsky, and V. Rychkov. 2015. “Design and optimization of openfoam-based
cfd applications for hybrid and heterogeneous hpc platforms”. arXiv preprint arXiv:1505.07630.

AlOnazi, A. A. 2014. Design and optimization of openfoam-based CFD applications for modern hybrid and
heterogeneous HPC platforms. Ph. D. thesis.

NVIDIA AmgX 2016. “AmgX Documentation”. https://developer.nvidia.com/amgx. Online: accessed July-
2016.

https://developer.nvidia.com/amgx

Rathnayake, Jayasena and Narayana

CFD-online. “lduMatrix”.

Combest, DP and Day, J 2011. “Cufflink: a library for linking numerical methods based on CUDA C/C++
with OpenFOAM”. http://cufflink-library.googlecode.com. Online: accessed July-2016.

CUSPARSE, NVIDIA 2017. “CUBLAS libraries”. https://developer.nvidia.com/cusparse.

He, Q., H. Chen, and J. Feng. 2015. “Acceleration of the OpenFOAM-based MHD solver using graphics
processing units”. Fusion Engineering and Design vol. 101, pp. 88–93.

Hoberock, Jared and Bell, Nathan 2010. “Thrust: A parallel template library”. http://thrust.googlecode.com.
Online: accessed July-2016.

Jamshidi, Z., and F. Khunjush. 2011. “Optimization of OpenFOAM’s linear solvers on emerging multi-core
platforms”. In Communications, Computers and Signal Processing (PacRim), 2011 IEEE Pacific Rim
Conference on, pp. 824–829. IEEE.

Jasak, H., A. Jemcov, Z. Tukovic et al. 2007. “OpenFOAM: A C++ library for complex physics simulations”.
In International workshop on coupled methods in numerical dynamics, Volume 1000, pp. 1–20. IUC
Dubrovnik, Croatia.

Lukarski, Dimitar and Trost, Nico 2014. “PARALUTION project”. http://www.paralution.com. Online: ac-
cessed July-2016.

Naumov, M., M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton, S. Layton, N. Markovskiy,
N. Sakharnykh, R. Strzodka et al. 2014. “AmgX: Scalability and performance on massively parallel
platforms”. In SIAM workshop on exascale applied mathematics challenges and opportunities. SIAM.

Nethercote, N., and J. Seward. 2007. “Valgrind: a framework for heavyweight dynamic binary instrumenta-
tion”. In ACM Sigplan notices, Volume 42, pp. 89–100. ACM.

Nvidia, C. 2008. “Cublas library”. NVIDIA Corporation, Santa Clara, California vol. 15, pp. 27.

OpenFOAM-Wiki 2016. “Matrices in OpenFOAM”. https://openfoamwiki.net/index.php/OpenFOAM_
guide/Matrices_in_OpenFOAM. Online: accessed July-2016.

Pi-Yueh Chuang, L. A. B. 2016. “Using AmgX to Accelerate PETSc-Based CFD Codes”. GPU Technology
Conference.

Saad, Y. 2003. Iterative Methods for Sparse Linear Systems, 2nd edition. Philadelpha, PA, SIAM.

Symscape 2014. “ofgpu: GPU Linear Solvers for OpenFOAM”. http://www.symscape.com/
gpu-1-1-openfoam. Online: accessed July-2016.

Vratis 2013. “SpeedIT Plugin for OpenFOAM”. http://speedit.vratis.com/index.php/products. Online: ac-
cessed July-2016.

AUTHOR BIOGRAPHIES

THILINA RATHNAYAKE earned a BSc Engineering in Computer Science and Engineering from the Uni-
versity of Moratuwa. His research interests include parallel and high performance computing and scientific
computing.

SANATH JAYASENA is an Associate Professor in the Dept. of Computer Science and Engineering in the
Faculty of Engineering at the University of Moratuwa, Sri Lanka. His research interests include parallel and
high-performance computing, machine learning and local language computing.

MAHINSASA NARAYANA is a Senior Lecturer in the Dept of Chemical and Process Engineering in the
Faculty of Engineering at the University of Moratuwa, Sri Lanka. His research interests are in the areas of
renewable energy, process control, modeling and simulation.

http://cufflink-library.googlecode.com
https://developer.nvidia.com/cusparse
http://thrust.googlecode.com
http://www.paralution.com
https://openfoamwiki.net/index.php/OpenFOAM_guide/Matrices_in_OpenFOAM
https://openfoamwiki.net/index.php/OpenFOAM_guide/Matrices_in_OpenFOAM
http://www.symscape.com/gpu-1-1-openfoam
http://www.symscape.com/gpu-1-1-openfoam
http://speedit.vratis.com/index.php/products

PIVOTING STRATEGY FOR FAST LU
DECOMPOSITION OF SPARSE BLOCK MATRICES

Lukas Polok
Brno University of Technology,

Faculty of Information Technology,
IT4Innovations Centre of Excellence

Bozetechova 1/2, Brno 61266, Czech Republic
ipolok@fit.vutbr.cz

Pavel Smrz
Brno University of Technology,

Faculty of Information Technology,
IT4Innovations Centre of Excellence

Bozetechova 1/2, Brno 61266, Czech Republic
smrz@fit.vutbr.cz

SpringSim-HPC 2017, April 23-26, Virginia Beach, VA, USA

©2017 Society for Modeling & Simulation International (SCS)

ABSTRACT

Solving large linear systems is a fundamental task in many interesting problems, including finite element
methods (FEM) or (non-)linear least squares (NLS) for inference in graphical models such as simultaneous
localization and mapping (SLAM) in robotics or bundle adjustment (BA) in computer vision. Furthermore,
the problems of interest here are sparse. The most time-consuming parts are sparse matrix assembly and
linear solving. An interesting property of these problems is their block structure. The variables exist in
multi-dimensional space such as 2D, 3D or se(3) and hence their respective derivatives are dense blocks.
In our previous work (Polok et al. 2013), we demonstrated the benefits of explicitly representing blocks in
sparse matrices, namely faster matrix assembly and arithmetic operations. Here, we propose and evaluate a
novel sparse block LU decomposition. Our algorithm is on average 3× faster (best case 50×), causes less
fill-in and has comparable or often better precision than the conventional methods.

Keywords: LU decomposition, sparse matrix, block matrix, register blocking, direct methods.

1 INTRODUCTION

Solving a linear system of the form Ax = b is not trivial, unless A has specific properties such as being a
triangular matrix. Then, the last element of the unknown vector x is given by a ratio of the corresponding
elements in A and b. Next, the second last element can be calculated by substituting the first element and
solving another simple ratio and so on, until all of x is recovered–a process called back-substitution. There
are several algorithms for bringing a matrix into triangular form, Gaussian elimination, LU decomposition,
Cholesky factorization and QR decomposition (Davis 2006). These algorithms decompose the original
matrix A into a product of two or more factor matrices that are triangular or otherwise easily invertible
(diagonal or orthogonal). The solution to the original linear system then becomes a sequence of solutions
for each of those factors, ultimately yielding x. In the case of LU decomposition, this amounts to first solving
Ly = b to get an intermediate vector y, and then solving Ux = y.

Notably, Cholesky factorization has the lowest time complexity of all these algorithms. It decomposes
A = R⊤R where R is upper-triangular matrix identical to that in QR decomposition, up to the sign (Cholesky
will always yield R with positive diagonal entries). It is required that A be square, positive-definite (SPD)
matrix. Matrices involved in least squares problems are SPD, which makes Cholesky an attractive choice for
this class of applications. The disadvantage of using Cholesky for over-determined systems is the need to
form a part of the Moore-Penrose pseudoinverse, A+ = (A⊤A)-1A⊤ that typically results in solving a system
in the form (A⊤A)x = A⊤b. The formation of the square matrix A⊤A may in some cases increase the amount

Polok and Smrz

of memory needed and does increase the condition number, making the system more difficult to solve from
numerical precision point of view.

If the matrix A is sparse, there is another interesting facet to the Cholesky decomposition, the fill-in. Ideally,
R would have the same sparsity pattern as the upper triangle of A. However, in the course of calculating
the factorization, other non-zero entries may be introduced in R and those are referred to as the fill-in. The
number of nonzeros in R directly affects the speed of the factorization and subsequent backsubstitution.
The amount of fill-in is dependent on the ordering of matrix rows and columns and fill-reducing orderings
have been proposed in the literature, most notably the minimum degree ordering (George and Liu 1989, Liu
1985) and the faster approximate minimum degree (AMD) ordering (Amestoy, Davis, and Duff 1996).

The older LU decomposition is more general than Cholesky, and can factorize any square, invertible matrix
into a product A = LU , where L is a lower-triangular matrix with unit diagonal and U is a general upper
triangular matrix. This means the matrix no longer needs to be SPD. Since the diagonal of L is always the
same, it does not need to be stored and sometimes L and U are stored together in a single matrix. Similar
to Cholesky, LU decomposition also introduces fill-in and it is also possible to use the AMD algorithm for
finding a fill-reducing ordering.

Unlike Cholesky factorization, LU is not inherently numerically stable and requires pivoting. A pivot is an
element of the diagonal of A, that will serve as a divisor for other values in the decomposition algorithm.
The magnitude of the pivot is of great importance if the numerical precision is finite. Using a small pivot
will amplify the values in the matrix and lead to roundoff errors. The pivoting schemes therefore choose the
largest pivot, either from the current column (referred to as partial pivoting) or from the so far unreduced
remainder of the matrix, full pivoting.

While these strategies improve numerical stability, they also cause row or row and column reordering. This
subsequently interferes with the fill-reducing ordering of the matrix and may inadvertently increase fill-in
to unacceptable levels. In this paper, we show that block-based pivoting helps to reduce this effect, while
at the same time not destroying the precision of the result. This strategy is a proof of concept and shows
that block pivoting is possible and applicable to all kinds of decompositions that require it, be it LU, QR
or LDL⊤ (a different form of Cholesky factorization that can work with symmetric indefinite matrices but
which requires pivoting). We chose the LU factorization to demonstrate it because it is relatively simple to
implement and has a potentially greater practical impact than LDL⊤.

The remainder of this paper is structured as follows. The next section summarizes related work, especially
from the point of view of related sparse block matrix research and of pivoting strategies that were proposed
in the literature. Section 3 briefly revisits principles of LU decomposition and common forms of algorithms
for performing it. Section 4 describes the design of the proposed algorithm and how it differs from the
standard LU decomposition methods implemented in packages such as CSparse (Davis 2006). Finally,
Section 5 describes the evaluation of the proposed method.

2 RELATED WORK

While the formats for representing sparse block matrices date back to the early basic linear algebra sub-
programs (BLAS) proposal (Du and Marrone 1992), there are surprisingly only a few implementations that
support them. The most popular sparse matrix package, CSparse (Davis 2006), a part of SuiteSparse only
supports element-wise sparse matrices in compressed sparse column (CSC) format. Despite that, it is also
being extensively used in applications where block matrices occur.

E.g. Google’s Ceres solver (Agarwal and Mierle 2012), a NLS implementation behind popular products
such as 3D maps or Street View uses CSparse for linear solving (other choices are also available, though, by
using a dense solver or an iterative one). It also defines its own block storage format that serves to accelerate

Polok and Smrz

the sparse matrix assembly, but this format is abandoned in favor of CSC as soon as arithmetic operations
on the matrix are required.

NIST Sparse BLAS (Carney, Heroux, Li, and Wu 1994) supports matrices in the compressed sparse row
(CSR) format and in addition also the block compressed sparse row (BSR), a format for block matrices
where all the blocks in a single matrix are the same size, and variable block compressed sparse row (VBR),
a general format for block matrices where a single matrix can contain blocks of different dimensions. Unfor-
tunately, there are no algorithms for matrix decompositions in NIST Sparse BLAS, nor is there an associated
package that would contain them. Also, the triangular solving options are limited–only matrices with unit
diagonal are supported.

There are more libraries that support the BSR format, most notably Intel MKL (F. 2009) or PETsc (Balay
et al. 2015). Those can be readily used for solving linear systems, although limited to matrices containing
only square blocks of a single dimension. This effectively limits their use to simpler problems with only
variables of a single type (multiple variable types would in most cases yield blocks of several different
dimensions and thus also rectangular blocks).

In our previous work (Polok, Ila, and Smrž 2013), we proposed an efficient block matrix storage format and
several algorithms for performing arithmetic operations. The results were compared to CSparse and Ceres,
proving the proposed implementation superior. We furthermore demonstrated the ability to outperform
other block matrix implementations used in robotics (Polok, Šolony, Ila, Zemčík, and Smrž 2013). Later
on, an implementation of sparse block Cholesky was added and its variant for incremental solving was also
proposed (Polok, Ila, Šolony, Smrž, and Zemčík 2013).

Blocking is a popular technique for attaining higher memory throughput in dense implementations, used
e.g. in LAPACK (Anderson et al. 1987). In Eigen (Guennebaud, Jacob, et al. 2010), the partially pivoted
LU decomposition is blocked, splitting the matrix to rectangular blocks. Each such block contains a part of
the diagonal and all the elements under it, so that the blocking would not interfere with pivot choice. After
decomposing this block, the changes are communicated to the lower-right submatrix in a blockwise manner.

Ultimately, the choice of pivoting algorithm can have a great impact on the performance, due to required
communication and memory access patterns. There were many pivoting algorithms proposed in the litera-
ture. MA21 (Duff 1981a, Duff 1981b) is one of the early examples, producing such a row permutation that
the matrix ends up having nonzero diagonal entries. While not the best pivoting strategy for sparse decom-
positions, it showed potential in improving iterative solver convergence. The latter work (Duff and Koster
1999) expanded into obtaining such an ordering that the magnitude of the diagonal entries is maximized. It
explores maximum product of the diagonal entries, which is the pivoting strategy applied in this paper.

Parallel implementations of LU decomposition often try to avoid pivoting during the decomposition phase
itself, often by using threshold pivoting (a pivot permutation only takes place if its magnitude is larger by a
given threshold than that of the natural pivot), or by performing static pivoting beforehand (Li and Demmel
2003). This helps to reduce communication and synchronization otherwise required.

Schenk and Gärtner (2006) propose a pivoting strategy for the LDL⊤ factorization, not entirely unlike the
method proposed here. Their algorithm chooses pivots of size 1×1 or 2×2 that are factorized in blockwise
fashion (and in the case of 2×2, the blocks themselves are also subject to intra-block pivoting that the
authors refer to as perturbation). In this work, we use pivoting at the granularity of the naturally occurring
blocks, rather than choosing the size of the pivots.

Polok and Smrz

Algorithm 1 Two Dense LU Decomposition Algorithms.
Require: That A is an invertible n×n matrix, P is n×n identity matrix.

1: function PIVOTING(A, P, k)
2: p = CHOOSEPIVOT(Ak:end,k) ◃ Choose a pivot from the lower portion of column k.
3: if p ̸= k then
4: SWAP(Ak,∗, Ap,∗) ◃ Swap the pivotal row with the next unreduced row in A.
5: SWAP(Pk,∗, Pp,∗) ◃ Swap the same rows in the permutation matrix P.
6: end if
7: return (A,P)
8: end function

9: function SUBMATRIXLU(Λ)
10: for k = 0 to n−1 do ◃ For each column in A.
11: (A, P) = PIVOTING(A, P, k)
12: for i = k+1 to n−1 do
13: Ai,k = Ai,k/Ak,k ◃ Divide by the chosen pivot.
14: end for
15: for j = k+1 to n−1 do ◃ Right-looking, exclusive.
16: for l = k+1 to n−1 do
17: Al, j = Al, j −Al,k ·Ak, j ◃ Scatter contributions to the so far unreduced submatrix.
18: end for
19: end for
20: end for
21: end function

22: function COLUMNLU(Λ)
23: for k = 0 to n−1 do ◃ For each column in A.
24: for j = 0 to k−1 do ◃ For all elements strictly above the pivot.
25: A j,k = A j,k/A j, j ◃ Divide U by the past pivots.
26: for l = j+1 to n−1 do ◃ Left-looking.
27: Al,k = Al,k −A j,k ·Al, j ◃ Gather contributions from the already factorized columns.
28: end for
29: end for
30: (A, P) = PIVOTING(A, P, k)
31: for i = k+1 to n−1 do
32: Ai,k = Ai,k/Ak,k ◃ Divide L by the chosen pivot.
33: end for
34: end for
35: end function

3 LU DECOMPOSITION

In this section, the basic algorithm for LU decomposition is revised, to give insights how the blocked al-
gorithm will be implemented. Two basic transformation of a dense algorithm are in Algorithm 1. The
SUBMATRIXLU is right-looking version of the algorithm and it is a common way of implementing dense
LU decomposition. It is right-looking and produces one column of L and one row of U at a time. This is
sometimes referred to by the order of the loops, as the kij algorithm.

Polok and Smrz

The (partial) pivoting is performed by choosing a particular element from the lower part of the current
column of A (Algorithm 1, line 2). The choice is typically performed as:

pk = argmax
j

(
|A j,k| ·w j ·

{
1+ t if j = k
1 otherwise

)
, j ≥ k , (1)

where w j is approximate pivot weight vector, determined by taking row-wise L∞ norm of A or 1 if no
weighting is used and t is pivot threshold or 0 if no pivot thresholding is used. Upon choosing a pivot, the
corresponding row is swapped with the current row k and this change is collected in the permutation matrix
P (lines 4 and 5). If the weight vector w was used, the same swap would be performed there as well. To
perform full pivoting, one would choose a pivot from the entire submatrix Ai, j | i ≥ k∧ j ≥ k.

This algorithm yields a decomposition LU = PA, where the matrices overwrite A with LU − I, where I is an
identity matrix–the unit diagonal of L that is not explicitly stored. This is a common way of representing the
decomposition in the dense case.

The same algorithm is, however, not well suited for direct implementation of a sparse decomposition, as it
requires access to both rows and columns of the matrix. If using a sparse storage format such as CSC, the
matrix access pattern needs to be by columns–accessing the matrix by rows amounts to searching for every
element and would be overly costly. Instead, by changing the order of the loops to kji, it is possible to
arrive at COLUMNLU that only requires column-wise access. It is a left-looking algorithm and produces
one column of the factorization at a time.

Conceptually, the first half of this algorithm is triangular solving (lines 24 to 29) and the rest is just choosing
the pivot and column scaling. Note that in sparse case, swapping rows for pivoting would be inefficient and
the implementations instead maintain a row permutation and simply renumber rows of all elements at the
end (Davis 2006). Also note that due to always having only a single unreduced column, full pivoting is
not easily attained. In the sparse case, the L and U matrices are stored separately, as it saves the work of
searching for the diagonal elements when back-substituting later on.

4 PROPOSED ALGORITHM

The proposed algorithm is based on the procedure COLUMNLU described in the previous section, with
several differences. The key difference is the use of a sparse block structure described in (Polok, Ila, and
Smrž 2013). It is a column-major data structure similar to VBR (Du and Marrone 1992). It allows blocks
of different sizes in a single matrix where the edges of the blocks must be aligned with each other, forming
non-overlapping block rows and block columns. Each block is stored as a dense matrix, with the elements
of all blocks being serialized in a single pooled array. This improves cache coherency of in-order traversal
of the elements. Care is also taken for the blocks to be aligned in memory to allow vectorization using SSE
instructions.

From the algorithmic point of view, each Ai, j is a dense matrix rather than a scalar value. Thus, the product
at line 27 of Algorithm 1 is actually a dense matrix product. Similarly, the division at line 25 is triangular
solution of the form L-1

j, j ·U j,k and the division at line 32 is another triangular solution, this time of the form
Li,k ·U -1

k,k where the triangular block Uk,k is on the right. Those expressions are both evaluated using forward
and back-substitution, respectively.

Another difference is the choice of the pivot block, which we refer to as the inter-block pivoting. For
element-wise sparse matrices, this can be done according to (1). For blockwise matrices, this formula cannot
be used directly and a way of reducing the blocks to scalar values needs to be devised. We tested a number of
different metrics, including trace or L1, L2 and L∞ norms of the block or of its diagonal, to no avail. Finally,

Polok and Smrz

using a product of diagonal entries in a block permuted to have the largest diagonal values (Duff and Koster
1999) gave reasonable results. This stems from the fact that all the off-diagonal elements will be in sequence
divided by all the diagonal elements of the pivot block in the back-substitution mentioned above, and thus
the final scaling is equal to their product. We also use pivot weighting by taking block row-wise L∞ norm of
A. This helps to choose better pivots in matrices with uneven distribution of off-diagonal value magnitudes.

Packages such as CSparse perform pivoting by element renumbering, leading to unsorted CSC matrices (the
order of elements in each column is undefined). This potentially creates suboptimal memory access patterns
if the number of elements in each column is greater than the effective size of the CPU cache. The proposed
implementation addresses this problem differently and produces and maintains an ordered representation at
all times. To do that, a method described in (Gustavson 1978) is employed: a dense vector of the same size
as the current block column is used, along with a bit array to accumulate the values of the blocks and the
sparsity pattern, respectively. Once the decomposition of the current block column is finished, the contents
of this dense accumulator are scattered to the L and U matrices, in order.

An important difference is the factorization of the pivot block. This is a simple dense LU factorization and
brings a choice of partial or full intra-block pivoting (Interestingly, the factorization of the pivot block does
not immediately depend on or affect any other blocks.). Full pivoting has the advantage of revealing the
rank of this pivot block. If the block is rank deficient, care must be taken when evaluating Li,k ·U -1

k,k. If
the columns of Li,k corresponding to the zero diagonal entries in Uk,k are also null, the division needs to be
avoided otherwise the floating-point arithmetics would produce special values. If, on the other hand, those
columns are nonzero, using this pivot would lead to division by zero and a different pivot needs to be chosen.
If there is no full-rank pivot block in the current block column then either the factorization needs to fail, or
elements from multiple different blocks would need to be combined. In the proposed implementation, this
problem was handled by failing the factorization since it did not occur in the tested matrices.

In any case, the intra-block pivoting required by the pivot block factorization potentially reorders the rows
and columns of this block and the changes need to be reflected on the rest of the matrix. While pivoting
the columns affects only the current block column and can be applied immediately to all the other blocks,
pivoting the rows affects the already processed block row of L and future block rows in U . Since accessing
the matrix row-wise is prohibitive, the row permutation is only applied to the rows of U as they are produced
and the permutation in L is performed at the end, after the factorization finishes.

5 EXPERIMENTAL EVALUATION

The proposed algorithm was evaluated on matrices from the University of Florida Sparse Matrix Collec-
tion (Davis 1994). Since the matrices in this dataset do not contain any information about block struc-
ture, a modified algorithm, based on routines CSRKVSTR and CSRKVSTC described in Saad (1994),
was used to find block matrices with a particular block size and allowing a small amount of fill-in. In
addition to that, we compared the implementations on block matrices associated with some standard
SLAM problems in robotics: Parking Garage (Kümmerle et al. 2011), KITTI Sequence 00 (Geiger
et al. 2013), Sphere 2500 (Kaess, Ranganathan, and Dellaert 2007) and BA problems in computer vision:
Fountain-P11 (Strecha et al. 2008), Lourakis bundle1 (Lourakis and Argyros 2004), Mazaheri bundle_-
adj (Davis 1994), Venice871 (Kümmerle et al. 2011), Fast & Furious 6 (Double Negative Visual Effects,
http://www.dneg.com/.) and Guildford Cathedral (http://cvssp.org/impart/.).

All the matrices were pre-ordered using the same fill-reducing ordering, obtained by AMD of AA⊤ with
dense columns dropped and applied at the granularity of blocks. This means that all the tested methods
operated on identical inputs. The time to produce this ordering is not included in the timing results (since all
the methods would use the same ordering scheme). Ultimately, this slightly favors element-wise approaches
since the time complexity of the ordering algorithm is higher than linear in the size of the matrix (Heggernes,

http://www.dneg.com/
http://cvssp.org/impart/

Polok and Smrz

Eisestat, Kumfert, and Pothen 2001) and thus ordering at the level of blocks is faster than ordering at the
level of elements would be.

The experiments were performed on the Salomon supercomputer, part of the IT4I Czech National Super-
computing Center. Each compute node is equipped with a pair of 12-core Xeon E5-2680 v3 running at
2.50 GHz and 128 GB of RAM. Note that these CPUs have turbo boost technology which adjusts the clock
frequency based on the available thermal envelope. This function was disabled for the benchmarks, so as to
not make the results dependent on the variations in the temperature. All of the processing times would be
lower with turbo boost enabled. The code was compiled as x64, and used 64-bit pointers. During the tests,
the computer was not running any time-consuming processes in the background. We used the g++ (gcc)
4.4.7 compiler (the proposed implementation is written in C++, while CSparse is written in C).

Each test was run at least ten times and until cumulative time of at least 5 seconds was reached, and the
average time was calculated in order to avoid measurement errors, especially on smaller matrices. Note
that each timing run was performed in a new process, so that there would be no cache reuse. We further
experimented with flushing the cache lines containing the data, using the combination of _mm_clflush()
and _mm_mfence() intrinsics. Furthermore, a 100 MB block of memory was read and written to make
sure that the cache was completely flushed (care was taken that these accesses would not bypass the cache).

The effect of thus flushed cache was a small slow-down, on average 3.80% for CSparse and 2.86% for
the proposed method (worst case 25.86% for CSparse and 14.43% for proposed). This effect was more
pronounced on smaller matrices, as the larger matrices do not fit in the cache at once anyway. The flushing
of the cache did not change the ranking of the methods on any of the tested matrices. The tests presented
in the remainder of the evaluations herein are without flushing the cache, as it seems more natural that the
matrix to be factorized is already (partially) in the cache (since the factorization function would be most
likely called on a matrix that was just produced by other computation). It also makes the presented results
more comparable to the results of other researchers. But note that there is still no cache reuse between
individual benchmark runs as those are performed each in a new process.

Apart from the obvious timing evaluation and also recording the statistics about the factorization sparsity,
relative factorization precision was evaluated, as:

∥PAQ−LU∥
∥A∥

, (2)

where P and Q are the block row and column permutation matrices (Q is only used in the proposed imple-
mentation, if full intra-block pivoting is applied).

Results for the SLAM and BA datasets can be seen in Table 1. In these datasets, the block partitioning is
easily anticipated (unlike in the rest of the benchmarks where the block structure was estimated and might
not exactly map to the original variables in some cases). Note that the system matrices of these datasets are
symmetric but neither implementation took advantage of this fact, and the numbers of nonzeros (denoted
“Nnz.”) are reported for both halves of the matrix. It is a common practice in solving BA problems to apply
Schur complement as:

A =

(
C U
V L

)
(3)

Schur(A) =C−UL-1V , (4)

where the variables in A are partitioned in such a way that C contains the camera variables and L contains
the landmark variables. Due to the structure of the problem, L is block diagonal and easily invertible. The
solution to the linear system Ax = b then lies in decomposition of Schur(A) rather than of the entire A. To

Polok and Smrz

Table 1: Results on SLAM and BA datasets. The times are in milliseconds unless specified otherwise. The
first group are SLAM datasets, followed by a BA dataset and finally Schur-complemented BA datasets.

CSparse Proposed
Name Size Nnz. Time LU nnz. Error Time LU nnz. Error
Garage 9966 285696 104.273 1135362 8.16·10−16 69.415 936360 3.53·10−16

KITTI 00 27246 477072 194.675 2078526 6.48·10−16 114.596 1673244 1.90·10−16

Sphere 2500 15000 268164 2597.737 6557052 1.46·10−15 1250.732 5190048 1.04·10−15

Fountain 23853 554427 1921.963 10602408 3.49·10−15 68.678 1112814 1.73·10−15

Lourakis 3115 31572 20.703 88473 7.55·10−16 13.011 86436 2.75·10−15

Mazaheri 3330 247068 149.431 793026 5.51·10−16 80.813 614880 2.94·10−16

Venice871 5226 5469048 125.990 s 26586570 4.30·10−15 57.254 s 26439624 1.17·10−15

FF6 960 137160 291.344 702228 1.21·10−15 162.147 604584 2.30·10−16

Cathedral 552 125244 82.581 278310 1.86·10−15 54.886 263592 3.06·10−16

reflect this in the tests performed here, the matrices of BA datasets in Table 1 are first Schur-complemented
and then the results are reported for the LU decomposition of this Schur complement. An exception was
made for the Fountain dataset due to its small size–the resulting times would be very close to zero.

The proposed implementation gets consistently better times and better precision, with the exception of the
Lourakis dataset. The precision is in the 10−16 to 10−15 range, which corresponds to the roughly 15 digits
that the double precision floating-point numbers can hold. The good speed is caused by the fact that these
matrices are diagonally dominant and the proposed implementation can perform most of the pivoting inside
of the blocks, reaching lower fill-in and thus also lower number of arithmetic operations than CSparse.

The results on the other matrices, from the University of Florida Sparse Matrix Collection, are in Table 2.
The matrices are grouped by block size, starting with 4×4 and ending with 6×6. Although the collection
contains much more block matrices, they typically contain mixtures of multiple block sizes. To limit the
size of the evaluation to a reasonable size, we decided to only select matrices with a single block size (note
that the implementation supports multiple block sizes, e.g. Fountain-P11 contains 6×6, 6×3, 3×6 and
3×3 blocks).

While the good precision and sparsity holds up, the speedup grows with block size and the proposed imple-
mentation is slightly slower for 4×4 blocks. Such behavior is to be expected from blocked implementation
where there are more nested loops and thus a larger ratio of control flow to arithmetics instructions. This
could be easily improved by loop unrolling, e.g. as suggested in Polok, Ila, and Smrž (2013). Note that
CSparse failed to factorize 12 of the tested matrices and so they were omitted to save space (on those matri-
ces, the average relative error of the proposed implementation was 5.648 ·10−16, with the worst case relative
error being 1.363 ·10−15). Additionally, several more matrices were omitted from groups of matrices having
the same structure and getting the same results (e.g. Schenk/AFE_af_shell1 through Schenk/AFE_af_shell9
or the Simon/venkat group).

While already giving good results, there are several ways to improve the implementation to be even faster.
In our previous work, we proposed fixed block size (FBS) optimization (Polok, Ila, and Smrž 2013), a form
of register unrolling that is conveniently accessible by using the C++ language, making different block sizes
or even their mixtures easily attainable via a simple interface and without having to manually rewrite or
optimize any code. Using this optimization makes this method faster also on matrices with 3× 3 blocks,
the proposed method is faster than CSparse on 31 out of 33 matrices with average speedup 2.46×. The
results of this optimization are plotted in Figure 1. This plot shows the speedup of the optimized algorithm
compared to the results reported in Tables 1 and 2 as “Proposed”. The speedup is greater for larger matrices
and for smaller block sizes, especially for 3×3 and 4×4 that fit well in the SSE registers. The smaller gains

Polok and Smrz

Table 2: Results on matrices from the University of Florida Sparse Matrix Collection. The times are in
milliseconds unless specified otherwise. The first group are matrices with 4× 4 blocks, followed by 5× 5
and 6×6 blocks. Note that the names of the matrices were abbreviated in some cases, in order to save space.

CSparse Proposed
Name Size Nnz. Time LU nnz. Error Time LU nnz. Error
HB/steam3 80 928 0.043 1068 1.37·10−17 0.132 1248 5.36·10−20

Simon/raefsky3 21200 1488768 8211.861 149·105 1.00·10−15 8800.133 133·105 5.56·10−16

Simon/venkat01 62424 1717792 5010.632 178·105 3.55·10−16 6870.423 179·105 1.77·10−16

Janna/CoupC3D 416800 223·105 4.023 h 151·107 4.70·10−16 3.103 h 148·107 5.25·10−16

Oberwolf./piston 2025 100015 13.396 177445 2.26·10−16 14.486 148600 6.91·10−17

Fluorem/GT01R 7980 430909 1608.026 4446585 7.95·10−16 1232.581 3744400 8.94·10−05

Schenk/shell1 504855 176·105 446.545 s 382·106 7.49·10−15 356.576 s 384·106 1.32·10−15

Schenk/shell10 151·104 527·106 2.541 h 168·107 5.07·10−14 1.515 h 168·107 8.29·10−15

Schenk/0_k101 503625 176·105 486.978 s 398·106 6.74·10−15 379.897 s 399·106 2.24·10−15

HB/bcsstk02 66 4356 0.285 4422 2.21·10−16 0.394 4752 1.49·10−16

HB/bcsstk14 1806 63454 52.663 366174 9.70·10−16 28.607 281952 3.20·10−16

Nasa/nasasrb 54870 2677324 20.933 s 407·105 1.28·10−15 8.769 s 302·105 6.15·10−16

Simon/olafu 16146 1015156 3094.454 7964682 4.25·10−16 1739.891 6871176 1.11·10−13

DNVS/shipsec1 140874 7813404 1458.87 s 314·106 5.75·10−16 295.690 s 210·106 9.31·10−16

DNVS/x104 108384 102·105 367.990 s 174·106 2.18·10−15 73.593 s 100·106 8.90·10−16

BenElechi/B.E.1 245874 132·105 172.599 s 180·106 1.83·10−15 101.651 s 180·106 7.23·10−16

on large block sizes is given by the fact that those are already quite efficient even without this optimization.
Note that the optimized method is never slower, and also that the precision of the results is identical to that
of the unoptimized version.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an implementation of intra-/inter-block pivoting scheme based on the maximum
diagonal product scoring of the pivot blocks. It serves as a showcase that limiting pivot search to relatively
small blocks can yield excellent precision while at the same time promoting locality of reference and reduc-
ing the number of nonzero elements in the resulting factorization, as shown by the experimental evaluation.
The proposed method was demonstrated on LU decomposition but is applicable also on other decomposition
types, such as QR or LDL⊤.

The evaluation presented here was in comparison with CSparse. While it is very popular, it is a simplical,
serial code. It would be interesting to compare the proposed algorithm to also other, more advanced imple-
mentations such as superLU (Li et al. 1999), MUMPS (Amestoy, Duff, L’Excellent, and Koster 2001) or
HSL MA50 (Duff and Reid 1996). This evaluation would be well beyond scope (and space) of this study
and we shall report it in a follow-up paper. A quantitative comparison of performance is in Figure 2, the pro-
posed implementation peaks at 5.714 GFLOP/s, average is 2.537 GFLOP/s (single core performance). (The
figures were arrived at by calculating the number of FLOPs required for the factorization, using the function-
ality described at https://sf.net/p/slam-plus-plus/wiki/Counting%20FLOPS%20in%20Sparse%20Matrix%
20Operations/, and dividing that by average runtime (including the symbolic factorization) reported in Ta-
bles 1 and 2. The Fountain-P11 dataset was excluded as the proposed implementation yields substantially
more sparse factorization and the resulting figure would be unrealistic (31 GFLOP/s).)

The LU decomposition is also amenable to parallelization, which is another interesting direction, especially
with respect to GPU implementation. Finally, the block methods are orthogonal to multifrontal and supern-

https://sf.net/p/slam-plus-plus/wiki/Counting%20FLOPS%20in%20Sparse%20Matrix%20Operations/
https://sf.net/p/slam-plus-plus/wiki/Counting%20FLOPS%20in%20Sparse%20Matrix%20Operations/

Polok and Smrz

0

2

4

6

8

1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+9 1E+10

R
e

gi
st

e
r

B
lo

ck
in

g
Sp

ee
d

u
p

Factorization Non-Zero Elements

SLAM BA 3x3 4x4 5x5 6x6

Figure 1: Relative speedup of the fixed block size (register blocking) optimization, compared to the unopti-
mized proposed algorithm.

1.111

3.259

5.714

1.399

2.537

0

1

2

3

4

5

6

7

CSparse Proposed Proposed FBS

P
er

fo
rm

an
ce

 [
G

FL
O

P/
s]

Maximum

Average

Figure 2: Quantitative evaluation of the compared algorithm performance in floating point operations per
second (FLOP/s). The bottom of the bars indicates worst-case performance (0.56 GFLOP/s for CSparse,
0.50 GFLOP/s proposed and 0.78 GFLOP/s proposed with FBS optimization).

odal methods, that should both increase the performance even more, by using frontal matrices or supernode
blocks and enabling dense computation on larger than the natural blocks.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic from
the National Programme of Sustainability (NPU II) project IT4Innovations excellence in science (LQ1602).
The access to the Salomon supercomputer was supported by the IT4Innovations centre of excellence, via
the Block LU Decomposition (BLUD) project (DD-17-5).

Polok and Smrz

REFERENCES

S. Agarwal and K. Mierle 2012. “Ceres Solver”. http://ceres-solver.org/.

Amestoy, P. R., T. A. Davis, and I. S. Duff. 1996. “An approximate minimum degree ordering algorithm”.
SIAM J. on Matrix Analysis and Applications vol. 17 (4), pp. 886–905.

Amestoy, P. R., I. S. Duff, J.-Y. L’Excellent, and J. Koster. 2001. “A fully asynchronous multifrontal solver
using distributed dynamic scheduling”. SIAM J. on Matrix Analysis and Applications vol. 23 (1), pp.
15–41.

Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney et al. 1987. LAPACK Users’ guide, Volume 9. SIAM.

Balay, S., S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D.
Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, and H. Zhang.
2015. “PETSc Users Manual”. Technical Report ANL-95/11 - Revision 3.6, Argonne National Labora-
tory.

Carney, S., M. A. Heroux, G. Li, and K. Wu. 1994. “A Revised Proposal for a Sparse BLAS Toolkit”.
Technical report, SPARER.

Davis, T. 1994. “The University of Florida Sparse Matrix Collection”. In NA Digest. Citeseer.

Davis, T. A. 2006. Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2). SIAM.

Du, I., and M. Marrone. 1992. “A proposal for user level sparse BLAS”. Technical report, Rutherford Ap-
pleton Laboratory, Oxfordshire and CERFACTS, Toulouse and IBM Semea, Cagliari.

Duff, I. S. 1981a. “Algorithm 575: Permutations for a zero-free diagonal [F1]”. ACM Trans. Math. Soft-
ware vol. 7 (3), pp. 387–390.

Duff, I. S. 1981b. “On algorithms for obtaining a maximum transversal”. ACM Trans. Math. Software vol. 7
(3), pp. 315–330.

Duff, I. S., and J. Koster. 1999. “The design and use of algorithms for permuting large entries to the diagonal
of sparse matrices”. SIAM J. on Matrix Analysis and Applications vol. 20 (4), pp. 889–901.

Duff, I. S., and J. K. Reid. 1996. “The design of MA48: a code for the direct solution of sparse unsymmetric
linear systems of equations”. ACM Trans. Math. Software vol. 22 (2), pp. 187–226.

F., J. 2009. “Intel Math Kernel Library. Reference Manual”. Technical report, Intel Corporation, Santa Clara,
USA, 630813-054US.

Geiger, A., P. Lenz, C. Stiller, and R. Urtasun. 2013. “Vision meets Robotics: The KITTI Dataset”. Intl. J.
of Robotics Research.

George, A., and J. Liu. 1989. “The evolution of the minimum degree ordering algorithm”. SIAM Rev. vol.
31 (1), pp. 1–19.

Gaël Guennebaud and Benoît Jacob and others 2010. “Eigen v3”. http://eigen.tuxfamily.org.

Gustavson, F. G. 1978. “Two fast algorithms for sparse matrices: Multiplication and permuted transposi-
tion”. ACM Trans. Math. Software vol. 4 (3), pp. 250–269.

Heggernes, P., S. Eisestat, G. Kumfert, and A. Pothen. 2001. “The computational complexity of the mini-
mum degree algorithm”. Technical report, Technical Report No. ICASE-2001-42, Institute for Computer
Applications in Science and Engineering.

Kaess, M., A. Ranganathan, and F. Dellaert. 2007, April. “iSAM: Fast Incremental Smoothing and Mapping
with Efficient Data Association”. In IEEE Intl. Conf. on Robotics and Automation (ICRA), pp. 1670–
1677. Rome, Italy.

http://ceres-solver.org/
http://eigen.tuxfamily.org

Polok and Smrz

Kümmerle, R., G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. 2011, May. “g2o: A General Frame-
work for Graph Optimization”. In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA).
Shanghai, China.

Li, X., J. Demmel, J. Gilbert, iL. Grigori, M. Shao, and I. Yamazaki. 1999. “SuperLU User’s Guide”.
Technical report, Technical Report No. LBNL-44289, Lawrence Berkeley National Laboratory.

Li, X. S., and J. W. Demmel. 2003. “SuperLU_DIST: A scalable distributed-memory sparse direct solver
for unsymmetric linear systems”. ACM Trans. Math. Software vol. 29 (2), pp. 110–140.

Liu, J. W. 1985. “Modification of the minimum-degree algorithm by multiple elimination”. ACM Trans.
Math. Software vol. 11 (2), pp. 141–153.

Lourakis, M., and A. Argyros. 2004. “The design and implementation of a generic sparse bundle adjustment
software package based on the Levenberg-Marquardt algorithm”. Technical report, Technical Report
340, Institute of Computer Science-FORTH, Heraklion, Crete, Greece.

Polok, L., V. Ila, and P. Smrž. 2013. “Cache Efficient Implementation for Block Matrix Operations”. In
Proc. of the High Performance Computing Symp., pp. 698–706, ACM.

Polok, L., V. Ila, M. Šolony, P. Smrž, and P. Zemčík. 2013. “Incremental Block Cholesky Factorization for
Nonlinear Least Squares in Robotics”. In Robotics: Science and Systems (RSS).

Polok, L., M. Šolony, V. Ila, P. Zemčík, and P. Smrž. 2013. “Efficient Implementation for Block Matrix
Operations for Nonlinear Least Squares Problems in Robotic Applications”. In IEEE Intl. Conf. on
Robotics and Automation (ICRA). IEEE.

Saad, Y. 1994. “SPARSKIT: a basic tool kit for sparse matrix computations–Version 2”. Technical report,
Computer Science Department, Univ. of Minnesota, Minneapolis, MN.

Schenk, O., and K. Gärtner. 2006. “On fast factorization pivoting methods for sparse symmetric indefinite
systems”. etna vol. 23 (1), pp. 158–179.

Strecha, C., W. von Hansen, L. Van Gool, P. Fua, and U. Thoennessen. 2008. “On benchmarking camera
calibration and multi-view stereo for high resolution imagery”. In IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), pp. 1–8. IEEE.

AUTHOR BIOGRAPHIES

LUKAS POLOK was born in Brno (Czech Republic). Lukas received a MSc in Computer Science with a
specialization in computer graphics and multimedia at Brno University of Technology, where he is presently
employed as a researcher, working on efficient linear algebra algorithms using GPUs for general purpose
calculations. His email address is ipolok ‘at’ fit.vutbr.cz.

PAVEL SMRZ is an associate professor in the Department of Computer Graphics and Multimedia, Faculty
of Information Technology, Brno University of Technology, Czech Republic, where he leads the Knowledge
Technology Research Group. His research interests include big data processing, hardware-accelerated ma-
chine learning, large-scale distributed and parallel processing, human-computer interaction, and information
extraction. His email address is smrz ‘at’ fit.vutbr.cz.

mailto://ipolok `at' fit.vutbr.cz
mailto://smrz `at' fit.vutbr.cz

FAULT TOLERANT VARIANTS OF THE FINE-GRAINED PARALLEL INCOMPLETE
LU FACTORIZATION

Evan Coleman
Naval Surface Warfare Center

Dahlgren Division
17320 Dahlgren Rd
Dahlgren, VA, USA
ecole028@odu.edu

Masha Sosonkina
Dept. of Modeling, Simulation
and Visualization Engineering

Old Dominion University
5115 Hampton Blvd
Norfolk, VA, USA
msosonki@odu.edu

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology
266 Ferst Drive

Atlanta, GA, USA
echow@cc.gatech.edu

ABSTRACT

This paper presents an investigation into fault tolerance for the fine-grained parallel algorithm for computing
an incomplete LU factorization. Results concerning the convergence of the algorithm with respect to the
occurrence of faults, and the impact of any sub-optimality in the produced incomplete factors in Krylov
subspace solvers are given. Numerical tests show that the simple algorithmic changes suggested here can
ensure convergence of the fine-grained parallel incomplete factorization, and improve the performance of
the use of the resulting factors as preconditioners in Krylov subspace solvers if faults do occur.

Keywords: Fault tolerance, parallel preconditioning, incomplete factorization, GPU acceleration.

1 INTRODUCTION

Fault tolerance methods are devised to increase both reliability and resiliency of high-performance com-
puting (HPC) applications. On future exascale platforms, the mean time to failure (MTTF) is projected
to decrease dramatically due to the sheer size of the computing platform (Cappello, Geist, Gropp, Kale,
Kramer, and Snir 2014). There are many reports (Asanovic et al. 2006, Cappello et al. 2014, Snir et al.
2014, Geist and Lucas 2009) that discuss the expected increase in the number of faults experienced by HPC
environments. This is expected to be a more prevalent problem as HPC environments continue to evolve
towards larger systems. As the landscape of HPC continues to grow into one where experiencing faults
during computations is increasingly commonplace, the software used in HPC applications needs to continue
to change alongside it in order to provide an increased measure of resilience against the increased number
of faults experienced. Sparse linear solvers constitute one of the major computational areas for applications
that are run in HPC environments. These solvers are used in a variety of applications. In order to improve
the performance of these solvers, oftentimes a preconditioner is used in conjunction with the Krylov sub-

SpringSim-HPC 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)

Coleman, Sosonkina, and Chow

space solver. One of the most commonly used classes of preconditioners is incomplete LU factorization.
Future HPC environments are likely to include a heterogeneous mixture of computing resources containing
different types of accelerators (e.g., GPUs and MICs), and therefore algorithms that can take advantage of
the computing structure of accelerators naturally will be advantageous. The fine-grained parallel incomplete
LU (FGPILU) algorithm proposed in (Chow and Patel 2015) is such an algorithm. The main contribution
of this work is to analyze the ability of this algorithm to complete successfully despite the occurrence of a
computing fault, and to offer variants of the original algorithm that aid in this goal.

Typically, faults are divided into two categories: hard faults and soft faults (e.g., Bridges, Ferreira, Heroux,
and Hoemmen 2012). Hard faults cause immediate program interruption and typically come from negative
effects on the physical hardware components of the system or on the operating system itself. Soft faults
represent all faults that do not cause the executing program to stop; they are the focus of this work. Most
often, these faults refer to some form of data corruption that is occurring either directly inside of, or as a
result of, the algorithm that is being executed. Currently, they often manifest as bit-flips. As the rate that
faults occurring in HPC environments continues to increase, it becomes increasingly important to ensure
that these solvers are able to execute without suffering the negative consequences associated with a fault
occurring. In order to properly investigate the impact of soft faults, one needs to select a fault model that
fully encapsulates all of the potential impacts of a soft fault, implement the selected fault model into the
algorithm to be investigated, and conduct the necessary experiments to determine the potential impact of
a fault occurring during the selected algorithm. This paper examines the potential impact of soft faults on
the fine-grained parallel incomplete LU factorization, and also investigates the use of fine-grained parallel
incomplete LU algorithm generated preconditioners on Krylov subspace solvers. The structure of this paper
is organized as follows: in Section 2, a brief summary of some related studies is provided, in Section 3,
details concerning the fault model that is used throughout this work are given, in Section 4, background
information is provided for the fine-grained parallel incomplete LU algorithm, in Section 5, a theoretical
examination of the fine-grained parallel incomplete LU algorithm with respect to its stability in the presence
of faults is undertaken, in Section 6, a series of numerical results are provided, while Section 7 concludes.

2 RELATED WORK

The expected increase in faults is detailed in Asanovic et al. 2006, Cappello et al. 2014, Snir et al. 2014,
Geist and Lucas 2009. The self-stabilizing variant of the FGPILU algorithm introduced here was inspired
by the self-stabilizing iterative solvers presented in Sao and Vuduc 2013, which in turn are built upon the
ideas of selective reliability Bridges et al. 2012. The work done in this study to show the effectiveness of
iterative methods when using a (possibly faulty) FGPILU preconditioner is done using the CG algorithm
Saad 2003. The analysis of the potential performance of a Krylov subspace method using a potentially sub-
optimal FGPILU algorithm is related to the analysis in Sao and Vuduc 2013. The results for the experiments
conducted for this effort are presented similarly to the results in Chow and Patel 2015, Chow, Anzt, and
Dongarra 2015, but with more of a focus on the impact that a soft fault can have on the execution of both
the FGPILU algorithm, and the performance of an FGPILU preconditioner in a linear solver.

3 FAULT MODEL

Soft faults typically manifest as bit-flips. However, for the purposes of this study, a more numerical approach
was taken to model the impact of a soft fault. It is important when looking forward towards producing fault
tolerant algorithms for future computing platforms not to become too dependent on the precise mechanism
that is used to model the instantiation of a fault. Much of the current research (e.g., Bronevetsky and
de Supinski 2008) treats faults exclusively as a bit flip; which reflects the current method in which faults
occur. Regardless of how a fault manifests in future hardware, the result will be a corruption of the data that
is used by the algorithm. To this end, a more generalized, numerical scheme for simulating the occurrence

Coleman, Sosonkina, and Chow

of a fault is adopted. Several numerically based fault models have been utilized in recent studies. These
include a perturbation-based fault model that injects a random perturbation into every element of a key data
structure (Coleman and Sosonkina 2016b), and a numerical fault model that is predicated on shuffling the
components of an important data structure (Elliott, Hoemmen, and Mueller 2015). Other numerical models,
such as inducing a small shift to a single component of a vector have been considered as well Bridges,
Ferreira, Heroux, and Hoemmen 2012. The fault model used in this paper is a modified version of the one
initially developed in Coleman and Sosonkina 2016b and is related to the fault model developed in Elliott,
Hoemmen, and Mueller 2015. Specifically, similar to Coleman and Sosonkina 2016b, the modified model
(denoted here as mFTM) targets a single data structure and injects a small random perturbation into its each
component only episodically, as opposed to doing so persistently contrary to in Coleman and Sosonkina
2016b. For example, if the targeted data structure is a vector x and the maximum size of the perturbation-
based fault is ε , then proceed as follows: Generate a random number ri ∈ (−ε,ε) for every component
xi, where i ranges over entire length of x. Then set x̂i = xi + ri for all i’s. The resultant vector x̂ is, thus,
perturbed away from the original vector x. After a fault occurs, it is possible for an algorithm to detect the
error and correct it. It was shown in Elliott, Hoemmen, and Mueller 2015 that the numerical soft-fault model
proposed there corresponds to a “sufficiently bad” impact of a soft fault rather than tries to determine the
“damage” exactly of a soft fault. By construction, the mFTM follows in the footsteps of the ones in Elliott,
Hoemmen, and Mueller 2015. An exploration of the similarities and differences between the two models
is presented in (Coleman and Sosonkina 2016a). Hence, simulating these numerical soft fault models for
iterative algorithms may force them to run consistently through bad errors only. Furthermore, by varying
the size of the perturbation in mFTM, it is possible to produce steadily impactful errors.

4 FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION

In the same manner as other incomplete LU factorizations, the fine-grained parallel incomplete LU (FG-
PILU) factorization attempts to write an input matrix A as the approximate product of two factors L and U
where, A ≈ LU . In traditional incomplete LU factorizations (for an overview, see Saad 2003), the individual
components of both L and U are computed in a manner that does not lend itself naturally to parallelization.
The recent FGPILU algorithm proposed in Chow and Patel 2015 allows each element of both of the factor
to be computed asynchronously (i.e. independently), and progress towards the “true” incomplete LU factors
in an iterative manner. To do this, the FGPILU algorithm progresses towards the factors L and U by using
the property (LU)i j = ai j for all (i, j) in the sparsity pattern S of the matrix A, where (LU)i j represents the
(i, j) entry of the product of the current iterate of the factors L and U . This leads to the observation that the
FGPILU algorithm (given in Algorithm 1) is defined by two non-linear equations:

li j =
1

u j j

(
ai j −

j−1

∑
k=1

likuk j

)
ui j = ai j −

i−1

∑
k=1

likuk j . (1)

Following the analysis presented in (Chow and Patel 2015), it is possible to collect all of the unknowns
li j and ui j into a single vector x, then express these equations as a fixed-point iteration x(p+1) = G

(
x(p)
)

,
where the function G implements the two non-linear equations described above. In a fault-free environment,
it can be proven that the FGPILU algorithm is locally convergent in both the synchronous and asynchronous
cases (see Section 3 in Chow and Patel 2015). The FGPILU algorithm is given in Algorithm 1. Keeping
with the terminology used in (Chow and Patel 2015, Chow, Anzt, and Dongarra 2015) each of the passes
that the algorithm makes in updating all of the li j and ui j elements is referred to as a “sweep”. After each
sweep of the algorithm, the L and U factors progress closer to the L∗ and U∗ factors that would be found
with a traditional incomplete LU factorization. To do this, the factors L and U are first seeded with an initial
guess. In this study, the initial L factor will be taken to be the lower triangular part of A and the initial U
will be taken to be the upper triangular portion of A. Adopting the approach in both (Chow and Patel 2015,
Chow, Anzt, and Dongarra 2015) a scaling of the input matrix is first performed on A such that the diagonal

Coleman, Sosonkina, and Chow

Algorithm 1: FGPILU algorithm as given in (Chow and Patel 2015)
Input: Initial guesses for li j ∈ L and ui j ∈U
Output: Factors L and U such that A ≈ L U
1 for sweep = 1,2, . . . ,m do
2 for (i, j) ∈ S do in parallel
3 if i > j then
4 li j = (ai j −∑

j−1
k=1 likuk j)/u j j

5 else
6 ui j = ai j −∑

i−1
k=1 likuk j

elements of A are equal to one. This can be accomplished by performing a similarity transformation with
an appropriate scaling matrix D and using it to update A so that, A = DADT . As pointed out in (Chow and
Patel 2015), this diagonal scaling is imperative to maintain reasonable convergence rates for the algorithm,
so the working assumption throughout this paper is that all matrices have been scaled appropriately.

5 FAULT TOLERANCE FOR THE FGPILU ALGORITHM

In this section, some theoretical bounds on the impact of a fault on the FGPILU algorithm are developed,
and these projected impacts are used to develop fault tolerant adaptations to the original FGPILU algorithm.
Using the fault model described in Section 3, if a fault occurs at the computation of the kth iterate (affecting
the outcome of the (k+1)st vector, it is possible to write the corrupted (k+1)st iteration of x as

x̂(k+1) = G
(

x(k)
)
+ r , (2)

where the vector r accounts for the occurrence of a fault. Note that the magnitude of r corresponds only to the
soft fault that was injected (as implemented in mFMT) and is not a part of the FGPILU algorithm itself: For
a no-fault sweep, r = 0. To track the progression of the FGPILU algorithm, it was proposed in (Chow and
Patel 2015) to monitor the non-linear residual norm. This is a value τ = ∑(i, j)∈S

∣∣∣ai j −∑
min(i, j)
k=1 likuk j

∣∣∣, which
decreases as the number of sweeps progresses the algorithm closer to the conventional ILU factorization. If
a fault occurs then one or both non-linear equations from the FGPILU algorithm will have some amount of
error. In particular, the update equations for li j and ui j will become

li j =
1

u j j

(
ai j −

j−1

∑
k=1

likuk j

)
+ ri j , ui j = ai j −

j−1

∑
k=1

likuk j + ri j , (3)

where ri j represents the component of the vector r that maps to the (i, j) location of the matrix. This shows
that if a fault occurs during the computation of the incomplete LU factors that the non-linear residual norm
τ will be affected. In order to ensure that a fault does not negatively affect the outcome of the algorithm, a
simple monitoring of the non-linear residual norm is proposed. In principle, since S ⊂ A, when the FGPILU
algorithm converges, the non-linear residual norm will be at a minimum. Further, since there is a contribution
from every (i, j) ∈ S, the individual non-linear residual norms for each (i, j) ∈ S, denoted here by τi j, can be

defined as τi j =
∣∣∣ai j −∑

min(i, j)
k=1 likuk j

∣∣∣, where the total non-linear residual norm can always be recovered by
taking the sum of all the individual non-linear residual norms over all (i, j) ∈ S. To establish a baseline for
fault tolerance, define individual non-linear residual norms τi j for each (i, j) ∈ S based on the initial guess
that is used to seed the iterative FGPILU algorithm. In particular, if L∗ and U∗ are the initial guesses for the
incomplete L and U factors, then take l∗i j ∈ L and u∗i j ∈U and define baseline individual non-linear residual
norms τ∗

i j using the original values τi j and the values l∗i j ∈ L and u∗i j ∈U .

Coleman, Sosonkina, and Chow

Since for each sweep of the FGPILU algorithm, the components li j ∈ L and ui j ∈ U can be computed,
by testing the individual non-linear residual norms it is possible to determine if a large fault occurred.
Specifically, it is of interest to determine if a fault occurred that was large enough to cause a potential
divergence of the algorithm. To do this, first a tolerance t is set and then a fault is signaled if τi j > t. Since
the individual non-linear residual norms are generally decreasing as the FGPILU algorithm progresses, set
t =max(τ∗

i j) initially (Line 3 of Algorithm 2), and then update t during the course of the algorithm if desired.
Note that if a fault is signaled by any of the individual non-linear residual norms, it is only known that a
fault occurred somewhere in the current row of the factor L or the current column of the factor U . As such,
the conservative approach would require the rollback of both the current row of L and the current column of
U to their values at the previous checkpoint (e.g., Lines 5 to 9 of Algorithm 2). Further, it is possible for the
individual non-linear residuals as defined to increase by a small amount, especially at early iterations. To
counteract the potential for reporting false positives on fault detection, the derivative of the global non-linear
residual can be checked to ensure that it is also increasing before switching the current row and/or column
(see Line 15 of Algorithm 2). This algorithm is detailed in Algorithm 2.

Algorithm 2: Checkpoint-Based Fault Tolerant FGPILU (CP-FGPILU)
Input: Initial guesses for li j ∈ L and ui j ∈U
Output: Factors L and U such that A ≈ LU

1 for (i, j) ∈ S do in parallel
2 τi j =

∣∣∣ai j −∑
min(i, j)
k=1 likuk j

∣∣∣
3 t = max(τi j)
4 for sweep = 1,2, . . . ,m do
5 if Fault then
6 Set i = maxi, j(k1

i j) and j = maxi, j(k2
i j)

7 Rollback {lik}i−1
k=1 and {uk j} j−1

k=1
8 Fault = FALSE
9 sweep = sweep−1

10 else
11 for (i, j) ∈ S do in parallel
12 if i > j then li j = (ai j −∑

j−1
k=1 likuk j)/u j j

13 else ui j = ai j −∑
i−1
k=1 likuk j

14 τi j =
∣∣∣ai j −∑

min(i, j)
k=1 likuk j

∣∣∣
15 if τi j > t and τ ′ > 0 then
16 Set k1

i j = i and k2
i j = j

17 Fault = TRUE

Note that if a fault is detected, the algorithm only restores (i.e., “Rollback”) the affected row of L and
column of U . Additionally, since in practice it has been proposed (Chow and Patel 2015, Chow, Anzt, and
Dongarra 2015) to use a limited number of sweeps of the FGPILU algorithm as opposed to converging the
algorithm according to the global non-linear residual norm, the number of sweeps conducted is decremented
so that all elements of L and U are updated at least the desired number of times. Also, while no global
communication is required to check for the presence of a fault, if a fault is detected there will be some
communication required between processes to fix the effects of the fault. Note also that when using the CP-
FGPILU algorithm, the size of the faults that are not caught by the algorithm are determined by the tolerance
that is set. In particular, ||r|| ≤ t, where r represents a fault that was not caught by the proposed checkpointing

Coleman, Sosonkina, and Chow

scheme, since if ||r|| > t than the fault would be caught by the check on Line 15 of Algorithm 2. This, in
turn, affects the update equations Eqs. (2) and (3).

Algorithm 3: Self-Stabilizing Fault Tolerant FGPILU (SS-FGPILU)
Input: Initial guesses for li j ∈ L and ui j ∈U
Output: Factors L and U such that A ≈ LU

1 for sweep = 1,2, . . . ,m do
2 if sweep ≡ 0 mod F then
3 for (i, j) ∈ S do in parallel
4 if {∥li j∥,∥ui j∥}≫ ∥ai j∥ or |{li j,ui j}−ai j|/|ai j|> β or {li j,ui j}= {0,NaN} then

{li j,ui j}= ai j

5 if i > j then li j = (ai j −∑
j−1
k=1 likuk j)/u j j

6 else ui j = ai j −∑
i−1
k=1 likuk j

7 else
8 for (i, j) ∈ S do in parallel
9 if i > j then li j = (ai j −∑

j−1
k=1 likuk j)/u j j

10 else ui j = ai j −∑
i−1
k=1 likuk j

It is also possible to develop a variant of the checkpoint-based fault tolerant algorithm that replaces the
entire factors L and U as opposed to only the affected areas - call this variant the Checkpoint All variant
(CPA-FGPILU). In this case, a fault is declared if the currently computed global non-linear residual norm
τ is some factor α greater than the previously computed non-linear residual norm τi−1. Note that, due to a
combination of the asynchronous nature of the the FGPILU algorithm, the non-linear residual norm will not
be strictly monotonically decreasing, especially as the algorithm proceeds closer to convergence. Therefore
using the factor α = 1, i.e., expecting a strict monotonic decrease, may cause the algorithm to report false
positives, especially when nearing convergence.

The other variant of the FGPILU algorithm is a so-called self-stabilizing version that relies on completing
an update sweep successfully with some regularity in order to ensure that the resulting L and U factors will
form an effective preconditioner. While the two checkpoint-based fault tolerance schemes introduced above
can be shown to be effective numerically (see Section 6), it is possible to recover from the occurrence of a
fault without the need for storing intermediate copies of the computed L and U factors. The update sweep
must be computed reliably; in particular, it cannot be negatively affected by the occurrence of a fault. In the
algorithm as shown in Algorithm 3, an update sweep is expected every F iterations. The expectation is that
the steps that are undertaken during the “update sweep” will be able to mitigate any potential consequences
of a fault occurring during the prior F −1 iterations.

5.1 Convergence of the fault tolerant FGPILU algorithm variants

In Chow and Patel 2015, the convergence of the original FGPILU algorithm (Algorithm 1) is examined
by investigating the properties of the non-linear equations that define the algorithm, which are captured in
the fixed point function G(x) and the associated Jacobian G′(x). In order to examine the convergence of
both the CP-FGPILU and SS-FGPILU algorithms, consider the modified version of G(x) that allows for
the occurrence of a fault Since, the mFTM from Section 3 considers faults as a corruption of data via one-
time perturbation, the modified Jacobian is equal to the original Jacobian. This implies that the local and

Coleman, Sosonkina, and Chow

global convergence results from Chow and Patel 2015 hold for the modified equations that describe the fault
tolerant variants of the FGPILU algorithm. Generally, convergence for all of the variants relies on their
producing the elements in the original domain of the problem (using either checkpointing or a stabilizing
step); as the elements are updated convergence will eventually occur. For the proposed self stabilizing
FGPILU, following Theorem 2 from Sao and Vuduc 2013, a result about the convergence may be stated as:

Theorem 1. For any state of li j ∈ L and ui j ∈U, if a correction is performed in the kth sweep, all subsequent
iterations are fault-free, no elements in the final L and U factors differ by more than β percent from the
original factors in the matrix A, and β is chosen such that if a fault occurs a fault is signaled, then the
SS-FGPILU algorithm will converge.

Proof. This follows from noticing that the correcting (or “stabilizing”) step (Lines 2 to 6 of Algorithm 3)
ensures that the state li j ∈ L and ui j ∈ U of the incomplete L and U factors will be in the original domain
of the problem and then invoking the convergence arguments for the original FGPILU algorithm (see Chow
and Patel 2015) which rely upon the assumptions and base arguments from Frommer and Szyld 2000.

Note that finding an appropriate value for the the constant β may be difficult in practice in situations where
approximate L and U factors cannot be determined by alternative means. The theorem only guarantees that
if such parameters exist and can be found that the algorithm will converge successfully. The convergence of
the checkpoint-based variants of the FGPILU variants follows directly from the convergence of the original
FGPILU algorithm. Assuming that faults do not occur after a certain number of sweeps, the algorithm will
converge under the assumption that it was successfully returned to a state not affected by a fault. Note that if
a fault is detected, the state is restored to the last known good state - how recent that state is depends on the
frequency with which the checkpoint is stored. More frequent storage of a “good” state via checkpointing
will slow down the overall progression of the algorithm, but will provide a more recent fail-safe state if a
fault is detected.

Finally, note that for all variants of the FGPILU algorithm if a fault occurs that is not caught by either the
stabilizing step in Algorithm 3, or by the checkpointing step in Algorithm 2 it is possible for the Jacobian to
move to a regime where the fixed point mapping that represents the FGPILU algorithm is no longer a con-
traction. In this case, the fault tolerance mechanisms of the FPGILU variants will not help, and subsequent
iterations of the algorithm will not aid in convergence. Since the application of the FGPILU preconditioner
is effectively only an approximate application of the conventional, fault-free ILU preconditioner, the appli-
cation of the generated preconditioners can be expressed as, z̃ j ≈ P−1v j. Both Chow and Patel 2015, Chow,
Anzt, and Dongarra 2015 have shown that it is possible to successfully use the incomplete LU factoriza-
tion resulting from the FGPILU algorithm before the algorithm has converged according to the progress of
the non-linear residual. It is possible that any adverse affects that a fault may have on the convergence of
the FGPILU generated incomplete LU factors will not have a meaningful impact on the convergence of the
overarching iterative method (e.g. CG, GMRES, etc). This impact will be explored numerically in Section 6.

6 NUMERICAL RESULTS

The experimental setup for this study is an NVIDIA Tesla K40m GPU on the Turing High Performance
Cluster at Old Dominion University. The nominal, fault-free iterative incomplete factorization algorithms
and iterative solvers were taken from the MAGMA open-source software library (Innovative Computing Lab
2015). All of the results provided in this study reflect double precision, real arithmetic. The test matrices
that were used predominantly come from the University of Florida sparse matrix collection maintained by
Tim Davis (Davis 1994), and the matrices selected for this study are the same as the ones that were selected
for the study (Chow, Anzt, and Dongarra 2015) that detailed the performance of the FGPILU algorithm on

Coleman, Sosonkina, and Chow

GPUs without the presence of faults. There are six matrices selected from the University of Florida sparse
matrix collection, and mimicking the approach in Chow, Anzt, and Dongarra 2015, all six of these matrices
were reordered using the Reverse Cuthill-McKee (RCM) ordering in an effort to decrease the bandwidth
and help to improve convergence. The two other test matrices that were used come from the finite difference
discretization of the Laplacian in both 2 and 3 dimensions with Dirichlet boundary conditions. For the 2D
case, a 5-point stencil was used on a 500×500 mesh, while for the 3D case, a 27-point stencil was used on a
50×50×50 mesh. All of the matrices considered in this study are symmetric positive-definite (SPD) and as
such the symmetric version of the FGPILU algorithm (i.e. the incomplete Cholesky factorization) was used.
Also, recall from Section 4 that each of the eight matrices used in this study will be symmetrically scaled to
have a unit diagonal in order to help improve the performance of the FGPILU algorithm. A summary of all
of the matrices that were tested is provided in Table 1.

Table 1: Summary of the 8 symmetric positive-definite matrices used in this study

Matrix Name Abbreviation Dimension Number of Non-zeros
APACHE2 APA 715,176 4,817,870

ECOLOGY2 ECO 999,999 4,995,991
G3_CIRCUIT G3 1,585,478 7,660,826
OFFSHORE OFF 259,789 4,242,673

PARABOLIC_FEM PAR 525,825 3,674,625
THERMAL2 THE 1,228,045 8,580,313
LAPLACE2D L2D 250,000 1,248,000
LAPLACE3D L3D 125,000 3,329,698

The experiments are divided into two sets. This first set of experiments focuses on the convergence of
the FGPILU algorithm despite the occurrence of faults and features comparisons of the L and U factors
produced by the preconditioning algorithms. Faults are injected into the FGPILU algorithm following the
methodology described in Section 3. Due to the relatively short execution time of the FGPILU algorithm
on the given test problems, a fault is induced only once during each run, at a random sweep number before
convergence. Three fault-size ranges were considered: ri ∈ (−0.01,0.01), ri ∈ (−1,1), and ri ∈ (−100,100).
Results for the three ranges are averaged and presented in Section 6.1. The second set of experiments
shows the impact of using in a Krylov subspace solver the preconditioners obtained from the first set of
experiments. Note that in all of the experiments conducted, the condition u j j = 0 was never encountered.
Since all the test matrices are SPD, the preconditioning algorithms are Incomplete Cholesky variants, and
the the solver is the preconditioned conjugate gradient (PCG), as implemented in the MAGMA library.

6.1 Convergence of FGPILU algorithm

In order to obtain representative results, a fault from each range is injected once, on a single iteration and the
results are averaged over approximately 30–40 runs per problem, all of which are successfully converged
cases. For the purposes of this study, the FGPILU algorithm is said to have converged successfully if the
non-linear residual norm progresses below 10−8. Although this threshold is unnecessarily small from a
practical point of view,—it is possible to achieve good performance from a preconditioner with a larger non-
linear residual norm—it was chosen so that more sweeps would have to be conducted before the algorithm
converges to better judge the impact of faults. The progression of the non-linear residual norm for a single
fault-free run of each problem is depicted in Fig. 1(left), which is a as an example of the typical progression
of the non-linear residual norm as the algorithm progresses towards convergence.

To illustrate the potential impact of a fault, Fig. 1(right) shows the impact a fault can have on the FGPILU
algorithm when it is injected (and ignored) at the beginning, the middle, or near the end of how long it would

deniz
Typewritten Text
.

Coleman, Sosonkina, and Chow

Figure 1: The progression of the non-linear residual for 30 sweeps of a typical fault-free run for each of the 8
test problems (left). The progression of the non-linear residual for the Apache test problem for three different
fault injection times and fault size in the (−1,1) range (right). The horizontal dashed line is indicated the
FGPILU convergence tolerance of 10−8.

take the algorithm to converge with no faults present. Note from Fig. 2(left) that the Apache test problem
converges in 20 iterations when faults are not present. From Fig. 1(right), it may be observed that it took
about twice as many sweeps for FGPILU to converge under a single occurrence of a fault; and the number
of these extra sweeps is similar for the three injection places. Although the example shown in Fig. 1(right)
is typical of what what was observed experimentally with the test cases selected, it is by no means general
or conclusive: Faults may cause the FGPILU algorithm to diverge entirely or the resulting L and U factors
may cause the PCG solver to either stagnate or even diverge. A major point of the example in Fig. 1(right)
is to report the beneficial effects on FGPILU convergence of larger number of sweeps if faults are ignored in
FGPILU and to show the non-monotonous decrease of the FGPILU residual norm after a fault takes place.

Aggregate results for the performance of several variants of FGPILU algorithm are provided in Fig. 2 as
follows: when no attempt is made to mitigate the impact of the faults (denoted No FT), the CPA-FGPILU
variant wherein the L and U factors may be replaced in their entirety (CPA), CP-FGPILU described in
Algorithm 2 (CP), SS-FGPILU which is given in Algorithm 3 (SS). As in Fig. 1, additional sweeps of
the FGPILU algorithm are conducted until the non-linear residual norm falls below 10−8. Since the fault
injection could occur on any single sweep, results from all runs are averaged to find the total number of
sweeps necessary for the algorithm to converge.

Figure 2(left) shows the average number of sweeps to reach convergence for the cases that were successful.
Note that this number is generally lower for the checkpoint-based schemes, but that this is not the case
for all of the problems that were tested. However, the higher success rate of the CPA-FGPILU and CP-
FGPILU algorithms combined with the generally faster convergence of those methods suggests that, with
the parameters used in this study, they are more effective at mitigating faults. The small degradation in
the number of sweeps to convergence depicted in Fig. 2(left) for certain problems (i.e., L3D) for the No
FT variant reflects the fact that only successful runs are included in the averages here. In Fig. 2(right), a
corresponding drop in the “success rate” can be seen for the problems where the increase in the number
of sweeps required is not as large as expected for variants without fault mitigation. Here, a preconditioner
is deemed as resulting in success if the PCG solve using it terminates before the maximum number of
iterations is reached. For the FGPILU variants tested, the success rates captured in Fig. 2(right) show that
both of the checkpoint-based variants are usually more successful than the self-stabilizing one at mitigating
faults and producing acceptable preconditioners. It is important to note that a large, unoptimized value of

Coleman, Sosonkina, and Chow

Figure 2: The numbers sweeps required for convergence for each of the 8 test problems (left). The percent-
age of runs that produced a preconditioner that corresponded to a successful PCG solve (right).

β = 4 was used for the percent difference check inside of the SS runs, and that this value may certainly be
improved and tuned for the particular case at hand. The lower success rates associated with the SS-FGPILU
algorithm are due to the fact that some of the smaller faults are not caught by this large value of β and the
Jacobian moves to a portion of the domain where the mapping is not a contraction. Finding a way to obtain
optimal parameters for the SS-FGPILU algorithm efficiently from intrinsic properties of the linear system
in question is left as future work.

6.2 Preconditioner Performance in Iterative Methods

In this set of experiments, a maximum number of 3000 PCG iterations was used; any run that had not
converged by that point was declared to have diverged. While all of the preconditioners to be evaluated are
forms of incomplete LU decomposition, they are constructed by algorithms described in Section 6.1. For the
purpose of an extended comparison, results are provided for the traditional Incomplete Cholesky (IC) and
the Fine Grained Parallel Incomplete Cholesky (ParIC); neither of these two variants is subjected to faults.
Figure 3 captures only the cases in which a preconditioner was successfully prepared (c.f. Fig. 2(right)).
Figure 3(left) indicates that a successful FGPILU variant is typically capable of accelerating the PCG solve
to the levels similar to those achieved by the no-fault constructions of incomplete LU. The timing results
presented in Fig. 3(right) are for the total time required for the preconditioner preparation and PCG solve.
While the former may vary much depending on which variant is considered, the latter is rather uniform
across the variants due to their similar numbers of iterations performed to convergence. More efficient
implementations of the fault tolerance mechanisms and a more realistic tolerance for the non-linear residual
norm may improve the performance of the three fault-tolerant variants of the FGPILU algorithm.

7 CONCLUSIONS

This paper has investigated the potential of the FGPILU algorithm to tolerate and mitigate certain soft faults
arising in the construction of L and U factors. Three recovery techniques were presented. Namely, they are
(1) checkpointing of the entire data structure comprising the factors, (2) checkpointing of select pieces of
the data structure, or (3) self-stabilizing of the algorithm to avoid checkpointing altogether. Comparisons
of the three techniques suggest that, while checkpointing appears to be somewhat more robust, the self-
stabilizing algorithm is competitive and may be preferred due to its greater flexibility of fault mitigation,

Coleman, Sosonkina, and Chow

Figure 3: The numbers of iterations required for the successful PCG solves for each of the 8 test problems
(left). The time required for the successful PCG solves for each of the 8 test problems (right).

e.g., when its parameters are are tuned for a better success rate on a given problem. Conversely, if the
selective checkpointing scheme is optimized (e.g., by checkpointing less frequently or by rolling back fewer
elements) the cost of checkpointing may be further reduced. The fault-tolerant techniques and findings
presented in this paper may be readily applied to the asynchronous iterative methods in general to make
them more robust in the presence of soft faults. While it has been shown that it is possible to generate
a suitable ILU preconditioner with a small number of sweeps of the FGPILU algorithm in prior work,
the use of asynchronous preconditioning algorithms is increasing in general, and as new asynchronous
preconditioning algorithms are developed some may use the FGPILU algorithm as a building block and
require the FGPILU algorithm to execute successfully inside of a more complex preconditioning scheme.
In these cases, it may be important to have the FGPILU algorithm converge more completely, and the work
presented here could be used as a starting point towards ensuring that can happen successfully even when
computing faults happen to occur.

ACKNOWLEDGMENTS

This work was supported in part by the Air Force Office of Scientific Research under the AFOSR award
FA9550-12-1-0476, by the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Re-
search under the grant DE-SC-0016564 and through the Ames Laboratory, operated by Iowa State University
under contract No. DE-AC00-07CH11358, by the U.S. Department of Defense High Performance Comput-
ing Modernization Program, through a HASI grant, through the ILIR/IAR program at NSWC Dahlgren, and
by the Turing High Performance Computing cluster at Old Dominion University. The authors would also
like to thank the reviewers for their comments that helped improve the quality of this paper.

REFERENCES

Asanovic, K., R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Patterson, W. Plishker, J. Shalf,
S. Williams et al. 2006. “The landscape of parallel computing research: A view from Berkeley”. Techni-
cal report, Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berke-
ley.

Bridges, P., K. Ferreira, M. Heroux, and M. Hoemmen. 2012. “Fault-tolerant linear solvers via selective
reliability”. arXiv preprint arXiv:1206.1390.

Coleman, Sosonkina, and Chow

Bronevetsky, G., and B. de Supinski. 2008. “Soft error vulnerability of iterative linear algebra methods”. In
Proceedings of the 22nd annual international conference on Supercomputing, pp. 155–164. ACM.

Cappello, F., A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. 2014. “Toward exascale resilience: 2014
update”. Supercomputing frontiers and innovations vol. 1 (1).

Chow, E., H. Anzt, and J. Dongarra. 2015. “Asynchronous iterative algorithm for computing incomplete
factorizations on GPUs”. In International Conference on High Performance Computing, pp. 1–16.
Springer.

Chow, E., and A. Patel. 2015. “Fine-grained parallel incomplete LU factorization”. SIAM Journal on Scien-
tific Computing vol. 37 (2), pp. C169–C193.

Coleman, E., and M. Sosonkina. 2016a. “A Comparison and Analysis of Soft-Fault Error Models using
FGMRES”. In Proceedings of the 6th annual Virginia Modeling, Simulation, and Analysis Center Cap-
stone Conference. Virginia Modeling, Simulation, and Analysis Center.

Coleman, E., and M. Sosonkina. 2016b. “Evaluating a Persistent Soft Fault Model on Preconditioned Itera-
tive Methods”. In Proceedings of the 22nd annual International Conference on Parallel and Distributed
Processing Techniques and Applications.

Davis, TA 1994. “The University of Florida Sparse Matrix Collection”. http://www.cise.ufl.edu/research/
sparse/matrices/.

Elliott, J., M. Hoemmen, and F. Mueller. 2015. “A Numerical Soft Fault Model for Iterative Linear Solvers”.
In Proceedings of the 24nd International Symposium on High-Performance Parallel and Distributed
Computing.

Frommer, A., and D. Szyld. 2000. “On asynchronous iterations”. Journal of computational and applied
mathematics vol. 123 (1), pp. 201–216.

Geist, A., and R. Lucas. 2009. “Major computer science challenges at exascale”. International Journal of
High Performance Computing Applications.

Innovative Computing Lab 2015. “Software distribution of MAGMA”. http://icl.cs.utk.edu/magma/.

Saad, Y. 2003. Iterative methods for sparse linear systems. Siam.

Sao, P., and R. Vuduc. 2013. “Self-stabilizing iterative solvers”. In Proceedings of the Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems, pp. 4. ACM.

Snir, M., R. Wisniewski, J. Abraham, S. Adve, S. Bagchi, P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson
et al. 2014. “Addressing failures in exascale computing”. International Journal of High Performance
Computing Applications.

AUTHOR BIOGRAPHIES

EVAN COLEMAN is a scientist with the Naval Surface Warfare Center Dahlgren Division. He holds an
MS in Mathematics from Syracuse University and is working on a PhD in Modeling and Simulation from
Old Dominion University. His email address is ecole028@odu.edu.

MASHA SOSONKINA is a Professor of Modeling, Simulation and Visualization Engineering at Old Do-
minion University. Her research interests include high-performance computing, large-scale simulations,
parallel numerical algorithms, and performance analysis. Her email address is msosonki@odu.edu.

EDMOND CHOW is an Associate Professor in the School of Computational Science and Engineering at
Georgia Institute of Technology. His research interests are in numerical methods and high-performance
computing for solving large-scale scientific computing problems. His email is echow@cc.gatech.edu.

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
http://icl.cs.utk.edu/magma/
mailto://ecole028@odu.edu
mailto://msosonki@odu.edu
mailto://echow@cc.gatech.edu

EVALUATING EFFECTS OF APPLICATION BASED AND AUTOMATIC ENERGY
SAVING STRATEGIES ON NWCHEM

Vaibhav Sundriyal
Department of Modeling,

Simulation, and Visualization Engineering
Old Dominion University

Norfolk, VA, 23529
vsundriy@odu.edu

Ellie Fought
Department of Chemistry

Iowa State University
Ames, IA 50010, USA
foughtel@iastate.edu

Masha Sosonkina
Department of Modeling,

Simulation, and Visualization Engineering
Old Dominion University

Norfolk, VA, 23529
msosonki@odu.edu

Theresa L. Windus
Department of Chemistry

Iowa State University
Ames, IA 50010, USA
twindus@iastate.edu

ABSTRACT

High-performance application developers are becoming increasingly aware of effects of the increasing en-
ergy consumption on the costs and reliability of modern computing systems. A traditional way to achieve
energy savings is by changing the processor frequency dynamically during application execution. Several
techniques have been proposed in the past at application, library, and transparent level. In this work, the
effect of two such techniques, at application and transparent levels, are evaluated in terms of their effects
on the execution time and energy consumption for different algorithms in the quantum chemistry package
NWChem. Experimental results depict that there is no clear winner between the two methods since the
transparent-level makes decisions without intimate knowledge of the application while the strategy based
solely on application does not take into the account the platform characteristics at the runtime. Hence, it is
argued that the best strategy would be a hybrid of the two levels.

Keywords: DVFS, Energy, Power, NWChem, Oversubscription.

1 INTRODUCTION

Power consumption has become a major concern in the design of modern computing systems due to the
fact that power consumption varies as the product of the square of the voltage and the operating frequency
which are interdependent as well. For the current topmost petascale computing platforms in the world, it is
typical to consume power on the order of several megawatts, which at current prices may cost on the order
of several million dollars annually. To address this challenge, power and energy optimizations are needed in
modern computing platforms at all levels: application, system software, and hardware.

SpringSim-HPC 2017, April 23-26, Virginia Beach, VA, USA
©2017 Society for Modeling & Simulation International (SCS)

Sundriyal, Fought, Sosonkina and Windus

The CPU and memory subsystems are the major energy consumers in a computing system, together con-
tributing about 50-70% (Ge, Feng, Song, Chang, Li, and Cameron 2010) of the node power. To tackle
the issue of increasing power consumption during application execution, DVFS (Dynamic Voltage and Fre-
quency Scaling) has been one of the most used techniques in recent times. The current generation of Intel
processors provides different power states (P-states) DVFS. More specifically, the Intel “Haswell-EP” mi-
croarchitecture provides a total of ten P-states. The delay of switching from one state to another depends on
the relative ordering of the current and desired states, as discussed, e.g., in (Park, Shin, Chang, and Pedram
2010). The user may write a value to model-specific registers (MSRs) to change the P-state of the proces-
sor. The “Haswell” micro-architecture estimates power and energy consumption of the CPU and memory
through the built-in MSRs, which certainly facilitates power-measurement efforts. The terms PF and MF
are used to denote processor-frequency scaling and memory-frequency scaling, respectively, in this work.

In general, energy savings can be obtained by making judicious use of DVFS in modern computing systems
at application/library/transparent levels. Since modifying the application itself can be tedious and does not
provide enough information about the application characteristics on a particular hardware platform, this
approach in general has been ignored by the researchers in the past.

In this work, an application and a transparent level DVFS based technique is evaluated in terms of its energy
saving potential on NWChem on two different hardware platforms providing different DVFS applicability
domains. The obtained results provide deep insight into the behavior of the different MP2 algorithms when
operated under a specific DVFS based strategy along with the differing hardware platforms. The rest of the
paper is organized as follows. Section 2 describes the related work and Section 3 provides an overview of the
NWChem package. Section 4 discusses the salient features of the two DVFS based techniques. Section 5
details the experimental hardware and the results, while Section 6 concludes the paper and discusses the
future work.

2 RELATED WORK

With regards to the library/automatic level application of DVFS, mainly two approaches exist. The first
approach focusses on identifying stalls during the execution by measuring architectural parameters like in-
structions retired and memory accesses per second from performance counters as proposed in (Ge, Feng,
Feng, and Cameron 2007, Hsu and Feng 2005, Huang and Feng 2009). The adaptive frequency scaling
approach "ondemand" present in the linux kernel was compared to automatic strategy in (Huang and Feng
2009) and it was shown to be considerably less effective. The other approaches primarily focus on scal-
ing processor frequency during slack or communication operations during application runtime. The tech-
niques in the past have targeted communication intervals in parallel applications that use either explicit
message passing (Freeh and Lowenthal 2005, Lim, Freeh, and Lowenthal 2006) or global address-space
primitives (Vishnu, Song, Marquez, Barker, Kerbyson, Cameron, and Balaji 2010) and then scales the fre-
quency for those intervals. Oversubscribing the processor cores (Iancu, Hofmeyr, Blagojevic, and Zheng
2010) is another technique which can be used to reduce execution time and lower power consumption of
a parallel application. Since the efficacy of oversubscription is highly dependent on the inherent nature of
the application and operating system features, it has not been widely used as a dedicated technique to im-
prove energy efficiency in modern computing systems. An application based DVFS strategy focusing on
NWChem was proposed in (Sundriyal, Fought, Sosonkina, and Windus 2016) which applied either PF of
MF depending on the phase of the execution.

David et al. (David, Fallin, Gorbatov, Hanebutte, and Mutlu 2011) propose a memory-frequency scaling
mechanism based on a memory bandwidth usage estimate such that frequency scaling is applied whenever
memory-bandwidth usage goes below a certain level. In (Ge, Feng, He, and Zou 2016) authors study the
impact of power allocation to different components of a computing system and attempt to determine the

Sundriyal, Fought, Sosonkina and Windus

optimal allocation budget using derived heuristics and profiling. The Intel Haswell-EP processor generation
is studied in terms of its new features in micro-architectural innovations and frequency scaling especially the
per core frequency scaling capability, in (Hackenberg, Schöne, Ilsche, Molka, Schuchart, and Geyer 2015).
An algorithm to automatically determine performance and power models of parallel applications without
relying on previous execution data was proposed in (Sensi, Torquati, and Danelutto 2016).

3 NWCHEM OVERVIEW

NWChem (Valiev, Bylaska, Govind, Kowalski, Straatsma, Dam, Wang, Nieplocha, Apra, Windus, and
de Jong 2010) is an ab initio computational chemistry software package that provides many methods for
computing the properties of molecular and periodic systems using standard quantum mechanical descrip-
tions of the electronic wavefunction or density. It is a scalable, portable, open-source computational chem-
istry software package, which was designed to be used on multiple platforms and with different computer
hardware. However, the prime design target is high performance computers and efficient use of all of the
hardware components on those platforms.

Møller-Plesset Second Order Perturbation Theory (Knowles, Andrews, Amos, Handy, and Pople 1991,
Lauderdale, Stanton, Gauss, Watts, and Bartlett 1991), or MP2, is an electron correlation method used
in association with the self-consistent field, or Hartree Fock (HF) method, in quantum chemistry. MP2 is
based on the foundational Rayleigh-Schrödinger perturbation theory using the Fock operator as the unper-
turbed operator, and is one of the most widely used quantum mechanical correlation methods available.
The HF method is an iterative procedure that assumes that each electron is in a mean field of the other
electrons and, therefore, ignores the instantaneous correlations of the electrons with one another. The MP2
method is a correction to include this correlation energy. There are three common MP2 algorithms used in
NWChem: semi-direct, direct, and resolution of the identity MP2 (Feyereisen, Fitzgerald, and Komornicki
1993, Bernholdt and Harrison 1996), or RI-MP2.

In two of the MP2 methods (direct and semi-direct) within NWChem, an order N5 transformation of the
atomic orbital integrals to the molecular orbital integrals is required, where N is the number of atomic orbital
basis functions for the molecule of interest. This is the computational bottleneck for these MP2 energy
methods. The direct MP2 performs all calculations and stores all of its integrals and other data to local
memory. Any integrals that cannot be stored in memory are recalculated when they are subsequently needed
in the calculations. For semi-direct MP2 some transformed integrals get stored in memory or recalculated
and some (expensive ones) get written to disk. The semi-direct method is widely used, particularly because
of its lower memory requirements. Both direct MP2 and semi-direct MP2 use very similar mathematical
algorithms in their calculations and mostly differ in the integral storage.

RI-MP2, on the other hand, uses the resolution of the identity mathematical approximation to transform four-
center integrals to three-center integrals. Each of the three-center integrals requires less time to compute, but
results in more terms to calculate. RI is only exactly true when the basis set is complete which in general, is
not possible for a finite basis set and so a large auxiliary basis sets is used to have a more complete basis set
for the RI part. This approximation also changes the order N5 MO integral transformation into an order N4

operation. However, the final energy evaluations is still order N5 due to the extra multiplications involved to
approximate the four-center integrals. The NWChem implementation also uses on order N2 total memory
and order N3 disk storage (much less than the semi-direct method, but more than the direct method).

In this work, the test cases are referred to by the system size, i.e., the number of atoms in the system, and
by the MP2 algorithm employed: The test-name suffix “s” stands for semi-direct, “d” for direct, and “r” for
RI-MP2. The system with 40 atoms having 335 standard and 800 auxiliary basis functions per molecule
was chosen for the experimental evaluation. Although a 55-atom system was used in the authors’ work
(Sundriyal, Fought, Sosonkina, and Windus 2016) to experiment with large calculations, the 40-atom input

Sundriyal, Fought, Sosonkina and Windus

was chosen here instead, to provide fair comparisons of the platforms used in terms of efficient executions
of the calculations. Conventional SCF was used in all the experiments conducted. Each test was executed at
least three times to determine reproducibility of the results and the average values of those runs are presented
in the paper.

4 OVERVIEW OF THE STRATEGIES

4.1 Application Based

A “hands-on” instrumentation (denoted as “HI”) of the code DVFS based strategy was proposed in (Sun-
driyal, Fought, Sosonkina, and Windus 2016) with steps as follows to save energy:

• If in the startup section, then lower the MF while keeping PF at the maximum.
• If in the HF section, then lower the PF while keeping MF at the maximum.
• If in the MP2 section, then lower the MF and set the PF to the maximum.

The proposed HI strategy was further refined based on the range of the available PFs considered. The
aggressive HI uses the minimum values of the respective, processor and memory frequencies to aggressively
target possible energy savings. On the other hand, the moderate HI strategy uses the middle value in the
range of available processor and memory frequencies. Since the results in (Sundriyal, Fought, Sosonkina,
and Windus 2016) depicted that the aggressive HI provided higher energy savings compared to moderate
HI, the aggressive HI is considered for evaluation purposes in this work.

4.2 Automatic Strategy

An automatic runtime strategy proposed in (Sundriyal and Sosonkina 2016b) is considered here as transpar-
ent to the application. This strategy predicts the micro-operations retired at different processor and memory
frequencies along with the system power consumption and selects the appropriate processor–memory fre-
quency pairs that minimize total energy consumption while satisfying the performance-loss constraint. The
runtime strategy makes use of timeslices and uses history-window approach to predict application future
behavior.

The base performance model that has been employed in the automatic strategy is

µτ(i, j) =
fp(i)

CPMexe +MLIF(j)×α ×MAPM×β × fp(i)
fp(1)

. (1)

where

• µτ(i, j) is the actual number of micro-operations retired per second at processor frequency fp(i) and
memory frequency fm(j).

• CPMexe is the number of cycles per micro-operations retired barring the memory accesses in a
second.

• α (0 ≤ α ≤ 1) is the OOO (out-of-order) overlap factor, which determines the extent of memory
stalls overlapped with execution cycles.

• MAPM is the number of memory accesses per micro operation retired in a second.
• β is the number of cycles corresponding to the memory-access latency.

Sundriyal, Fought, Sosonkina and Windus

• MLIF(j) is the memory latency increase factor at the memory frequency fm(j) which depicts the
relative increase in memory latency at memory frequency fm(j) compared to the highest memory
frequency fm(1).

Using this performance model and an adaptive mechanism to adjust dynamically the memory and compute-
intensity of an application, the strategy was shown delivering significant energy savings for the SPEC
CPUTM 2006 and NAS parallel benchmarks.

5 EXPERIMENT SETUP AND RESULTS

Two different testbeds are used in this work, each of them having a particular DVFS granularity and sub-
sequent effective frequency. DVFS granularity refers to the grouping of cores in a processor socket with
respect to independent frequency and voltage scaling domains. In (Sundriyal and Sosonkina 2016a), it was
determined that an energy saving strategy will be ineffective on an application which has variable workload
nature on different cores, executing on a hardware platform which doesn’t have per core DVFS granularity.

The effective frequency feff can be defined as the frequency experienced by a multicore node, when each core
i (i = 0, . . . ,n− 1) is in a certain P-state fi. For expressing the effective frequencies of the two platforms
used in this work, n core testbeds are considered, where n is even, and supporting a specific level of the
DVFS application.

1. Marquez1 is comprised of a single node with two Intel Xeon CPU E5-2630 v3 “Haswell-EP” eight-
core processors (two sockets) with 32 GB of main memory. The Intel Xeon E5-2630 v3 processor
provides thirteen P-states ranging from 1.2 to 2.0 GHz. The Intel Xeon CPU E5-2630 v3 (“Haswell-
EP”) processor on Marquez has multiple fully integrated voltage regulators providing an individual
voltage for each core which results in per core P-states (PCPS) (Hackenberg, Schöne, Ilsche, Molka,
Schuchart, and Geyer 2015). This enables independent frequency scaling “per core” rather than
“per-socket”. (Marquez is funded and operated by Old Dominion University.)

2. Styx has an Intel i5-4590 “Haswell” quad-core processor and 8 GB of main memory with timing
specification 9-9-9-24. The processor frequency ranged from 3.3 GHz to 0.8 GHz; for memory, the
frequency range was from 1.6 GHz to 0.8 GHz. The processor frequency was modified by writing a
specific alpha-numeric value to model specific register (MSR) IA32_PERF_CTL.

The effective frequency feff for the two platforms can be expressed as,

1. For the PCPS level (as in Marquez),
feff = fi . (2)

2. For the socket level (as in Styx),

feff = max(f0, f1, . . . , fn−1) . (3)

The experiments were conducted on a single node each of Styx and Marquez. For measuring the node power
consumption, a Wattsup power meter was used with a sampling rate of 1 Hz. The processor frequency was
modified by writing a specific alpha-numeric value to model specific register (MSR) IA32_PERF_CTL. A
performance loss of 10% was chosen for the automatic strategy. Table 1 depicts the value of the relevant
parameters needed for Equation (1) for the two hardware platforms. An important point to notice here is the
significantly lower value of memory latency and out-of-order overlap factor in case of Marquez compared
to Styx which can potentially turn a memory intensive task on Styx to a compute intensive task on Marquez.

https://www.wattsupmeters.com

Sundriyal, Fought, Sosonkina and Windus

Table 1: Parameters for Marquez and Styx relevant for the automatic strategy.

Marquez Styx
OOO Overlap Factor-α 0.28 0.58

Memory Latency (in Cycles)-β 200 270
Processor Frequency Range 1.2-2.4 GHz 0.8-3.3 GHz
Memory Frequency Range 1.33-2.666 GHz 0.8-1.6 GHz

(a)

0

100

200

300

400

500

600

700

800

900

1000

Styx

Startup

HF

MP2

40r 40d 40s

T
im

e
 (

s
)

(a)

0

10

20

30

40

50

60

70

80

Marquez

Startup

HF

MP2

40r 40d 40s

T
im

e
 (

s
)

(a) (b)

Figure 1: Execution time for different sections in the 40-atom system solved by three MP2 algorithms on
(a) Styx and (b) Marquez, where 40r, 40d and 40s refer to the RIMP2, Direct and Semi-direct algorithms,
respectively.

 40r 40d 40s
0

5

10

HI

Automatic

P
e

rf
o

rm
a

n
c

e
 L

o
s

s
 (

%
)

40r 40d 40s

-10

-5

0

5

E
n

e
rg

y
 D

if
fe

re
n

c
e

 (
%

)

HI

Automatic

 (a) (b)

Figure 2: For Styx, total performance degradation (a) and energy difference (b) for the 40-atom system solved by the
three MP2 algorithms under the HI and Automatic strategies.

Sundriyal, Fought, Sosonkina and Windus

(a)

0

5

10

15

20

25

30

35

Startup

HF

MP2

40r 40d 40s

P
e

rf
o

rm
a

n
ce

 L
o

s
s

 (
%

)

HI

(a) (b)

0

1

2

3

4

5

6

7

8

9

Automatic

Startup

HF

MP2

40r 40d 40s

P
e

rf
o

rm
a

n
c

e
 L

o
s

s
 (

%
)

Figure 3: For Styx, breakdown of performance degradation by section for the 40-atom system solved by three MP2
algorithms operating under (a) HI and (b) Automatic strategy.

5.1 Section Timings

Figure 1 depicts the execution time of different sections for the 40-atom system for the three algorithms
executing on Styx (Fig. 1(a)) and Marquez (Fig. 1(b)). It can be observed that the startup section tends to
take nearly the same time for all the three algorithms on Styx whereas on Marquez, it is variable. As for the
HF section, it has the highest proportion of the execution time for all the inputs on Styx. On Marquez, the
startup section dominates the execution time for the RIMP2 inputs, but in the case of direct and semi-direct,
the HF section executes for slightly lower time than MP2 section. Considering the MP2 section, RIMP2 is
the fastest of the three followed by semi-direct and direct.

5.2 Styx

Figure 2 shows the performance loss and change in energy consumption for the three MP2 algorithms when
operated under the HI and Automatic strategies compared to the baseline case in which both PF and MF
were set at their highest levels on Styx. The section wise performance loss for the 40-atom system solved by
the three MP2 algorithms operating under the HI and Automatic strategies is provided in Fig. 3. It can be
noted here that a negative value of energy difference denotes an overall increase in energy consumption.

In the case of RIMP2 algorithm, the HI and Automatic strategy both result in a moderate performance
loss of ∼1%. The startup section in RIMP2 shows fairly compute intensive behavior enabling both HI
and Automatic strategies to scale the memory frequency to its lowest value (0.8 GHz). During the HF
section in RIMP2 algorithm, the Automatic strategy mostly executes at 2.8-3.0 GHz PF since the nature
of the workload in terms of memory accesses per instruction remains quite variable with most of the time
processor remaining in an idle state. During the MP2 stage in RIMP2, the Automatic strategy chooses MF
of 1.066 GHz, compared to 0.8 GHz in the HI strategy.

For all the three algorithms, the HF section tends to be mostly I/O intensive with minor compute intensive
phases in between. Therefore, reducing the PF during the HF section contributes to negligible overall
performance degradation for the three algorithms operating under the HI strategy as noticed in Fig. 3(a).
Since the behavior of HF section remains the same across the three algorithms in terms of workload, the
Automatic strategy, ends up executing the HF mostly at the highest PF and MF and does not result in any

Sundriyal, Fought, Sosonkina and Windus

 40r 40d 40s
0

5

10

15

HI

Automatic

P
e

rf
o

rm
a

n
c

e
 L

o
s

s
 (

%
)

40r 40d 40s

-5

0

5

E
n

e
rg

y
 D

if
fe

re
n

c
e

 (
%

)

HI

Automatic

 (a) (b)

Figure 4: For Marquez: Total performance degradation (a) and energy difference (b) for the 40-atom system
solved by the three MP2 algorithms under the HI and Automatic strategies.

significant performance degradation. The MP2 section in RIMP2 tends to be much more compute intensive
compared to direct and semi-direct MP2 and hence reducing the MF to its lowest value under HI results
in negligible performance degradation. On the other hand, majority of the performance degradation for the
overall direct and semi-direct execution is due to significant performance loss in the respective MP2 sections
under the HI strategy. To summarize, average performance degradations across the three algorithms are 4%
and 0.88% for the HI and Automatic strategies, respectively.

With regards to energy savings, the HI and Automatic strategies reduce the energy consumption by 3.1% and
2.2%, respectively for the RIMP2 algorithm. However, the direct(-1.8%) and semi-direct (-6.4%) algorithms
experience an overall increase in energy consumption when operated under the HI strategy due to the fact
that they don’t offer neither substantially memory or CPU intensive behavior to benefit from either PF or
MF, respectively. Also, under the HI strategy, the MF scaling applied to the MP2 section in direct and semi-
direct algorithms degrades overall performance significantly. The Automatic strategy remains somewhat
conservative with respect to frequency scaling throughout the direct and semi-direct execution and only
applies MF of 1.33 GHz during the MP2 section. The average energy savings across the three algorithms
are -1.8% and 1.33% for the HI and Automatic strategies, respectively.

The 40 atoms inputs behave largely similar to the 55 atoms system used in (Sundriyal, Fought, Sosonkina,
and Windus 2016) in terms of relative timings of HF, SCF and MP2 sections and the effect of PF and MF
on these timings as HF and MP2 sections tend to be compute intensive whereas SCF is largely memory/IO
intensive. The difference mainly exists in the extent to which different sections in the three algorithms are
affected by PF and MF. For example, the inability of HI strategy to provide energy savings for 40d and 40s
inputs mainly comes from the resulting higher performance degradation through application of MF in the
MP2 section, compared to the 55 atom inputs. At this point, the change in processor and memory intensity
of these algorithms with varying system size is under investigation.

5.3 Marquez

Figure 4 depicts the performance loss and change in energy consumption for the three MP2 algorithms when
operated under the HI and Automatic strategies compared to the baseline case in which both PF and MF were
set at their highest levels on Marquez. The performance loss broken down for different sections of the 40-
atom system execution solved by the three MP2 algorithms operating under the HI and Automatic strategies

Sundriyal, Fought, Sosonkina and Windus

(a) (a)

0

0.05

0.1

0.15

0.2

0.25

Automatic

Startup

HF

MP2

40r 40d 40s

P
e

rf
o

rm
a

n
c

e
 L

o
s

s
 (

%
)

(a) (b)

0

10

20

30

40

50

60

70

HI

Startup

HF

MP2

40r 40d 40s

P
e

rf
o

rm
a

n
c

e
 L

o
s

s
 (

%
)

Figure 5: For Marquez, breakdown of performance degradation by section for the 40-atom system solved by three
MP2 algorithms operating under (a) HI and (b) Automatic strategy.

on Marquez is shown in Fig. 5. Due to a lower OOO overlap factor and higher speed and bandwidth provided
by the DDR4 compared to the DDR3 on Styx, the three inputs tend to be relatively CPU intensive compared
to their execution behavior on Styx. Consequently, the HI strategy results in considerable performance loss
for all the three algorithms averaging 8.5%.

The Automatic strategy on the other hand, being aware of the change in platform and the relevant hardware
parameters, executes the three inputs at the highest PF most of the time with execution dipping to 1.2 GHz
PF in short bursts for direct and RIMP2 algorithms whereas the semi-direct algorithm tends to be the most
compute intensive and no PF is applied to it. Also, no MF is applied to the three algorithms since the
corresponding reduction in DRAM power is not enough to compensate for the performance loss incurred as
per Automatic strategy. It can be seen in Fig. 5 that section-wise performance degradation is significantly
lower for Automatic compared to HI and it mostly comes from profiling on Marquez. Therefore, the incurred
performance loss for the Automatic strategy is much less compared to the HI for the three algorithms.
More specifically, the average performance loss for the three algorithms is 1.2% when operated under the
Automatic strategy.

Due to aggressive application of both PF and MF and the subsequent reduction in power which is insufficient
to compensate for the performance loss, the HI strategy increases the energy consumption for all three
algorithms, averaging -2.3%. The Automatic strategy on the other hand is extremely conservative in applying
both PF and MF and saves energy for both RIMP2 (0.8%) and direct(1.2%). No frequency scaling is applied
to the semi-direct algorithm under the Automatic strategy so there is a slight increase in energy consumption
due to the minor profiling overhead.

6 CONCLUSIONS AND FUTURE WORK

This work studied the energy saving potential of the two variants of the DVFS based strategies evaluating
three different algorithms in NWChem: RI-MP2, direct MP2, and semi-direct MP2, where the last two
methods differ in the treatment of memory and disk storage of the integrals and intermediate data. The
two DVFS based strategies were chosen such that one of them operates transparently to the application
(automatic) and the other manages changes in the applications source code itself to insert calls to frequency
scaling (HI).

Sundriyal, Fought, Sosonkina and Windus

The strategies were evaluated on two different platforms which differ in the processor generation, number
of cores, processor frequency and amount and speed of memory. It was observed that the workload behavior
of the three algorithms changed on the two platforms due to the difference in the hardware parameters and
the Automatic strategy adapted to these changes in a better manner compared to HI. Overall, the Automatic
strategy was the more conservative of the two in terms of minimizing performance degradation whereas the
HI strategy in some cases ended up saving more energy albeit at the cost of application performance. In fact,
when calculating the 40-atom system, NWChem doesn’t provide enough opportunity to apply frequency
scaling on the two platforms. So, even employing an HI moderate strategy, would not make much of a
difference except it would only decrease the increase in energy savings noticed with the aggressive strategy
by a bit. Since NWChem is one of the prominent quantum chemistry applications and enjoys a large user
community, the findings of this paper are beneficial to an important scientific domain (ab initio quantum
chemistry), which is a focus of a large number of HPC packages, such as GAMESS (Schmidt, Baldridge,
Boatz, Elbert, Gordon, Jensen, Koseki, Matsunaga, Nguyen, Su, Windus, Dupuis, and Montgomery 1993)
and PSI4 (Turney, Simmonett, Parrish, Hohenstein, Evangelista, Fermann, Mintz, Burns, Wilke, Abrams,
Russ, Leininger, Janssen, Seidl, Allen, Schaefer, King, Valeev, Sherrill, and Crawford 2012), each having
computational stages as considered in this paper.

Each of the two strategies that have been studied in this work have their own pros and cons. While the
HI strategy is relatively easy to deploy and apply, it suffers from the fact that it is not aware of the nature
of the underlying platform since the extent of application of frequency scaling is predetermined. On the
other hand, the Automatic strategy constantly profiles the application to collect runtime information used
in the decision making for frequency scaling but it can be difficult to deploy and can also suffer when the
underlying hardware platform is changed since it relies on hardware performance counters. Future work
would focus on getting the best of both worlds by combining these two strategies into a hybrid strategy. The
hybrid strategy would consist of relevant hardware parameter information of a base platform. Depending on
the platform on which NWChem would be executing, the hybrid strategy would adjust the frequency levels
for the three sections by comparing the relevant hardware parameters of the base platform to the current
platform. In this manner, appropriate frequencies would be chosen for the startup, HF and MP2 sections of
the code without actually transparently profiling the application.

REFERENCES

Bernholdt, D. E., and R. J. Harrison. 1996. “Large-scale Correlated Electronic Structure Calculations: The
RI-MP2 Method on Parallel Computers”. Chem. Phys. Lett. vol. 250, pp. 477–484.

David, H., C. Fallin, E. Gorbatov, U. Hanebutte, and O. Mutlu. 2011. “Memory Power Management via
Dynamic Voltage/Frequency Scaling”. In Proceedings of the 8th ACM International Conference on
Autonomic Computing, pp. 31–40.

Feyereisen, M., G. Fitzgerald, and A. Komornicki. 1993. “Use of Approximate Integrals in ab initio Theory.
An Application in MP2 Energy Calculations”. Chem. Phys. Lett. vol. 208, pp. 359.

Freeh, V., and D. Lowenthal. 2005. “Using Multiple Energy Gears in MPI Programs on a Power-Scalable
Cluster”. In Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 164–173.

Ge, R., X. Feng, W. Feng, and K. Cameron. 2007, Sep.. “CPU MISER: A Performance-Directed, Run-Time
System for Power-Aware Clusters”. In Parallel Processing, 2007. ICPP 2007. International Conference
on, pp. 18.

Ge, R., X. Feng, Y. He, and P. Zou. 2016, Aug. “The Case for Cross-Component Power Coordination on
Power Bounded Systems”. In 2016 45th International Conference on Parallel Processing (ICPP), pp.
516–525.

Sundriyal, Fought, Sosonkina and Windus

Ge, R., X. Feng, S. Song, H. Chang, D. Li, and K. Cameron. 2010. “PowerPack: Energy Profiling and Anal-
ysis of High-Performance Systems and Applications”. Parallel and Distributed Systems, IEEE Transac-
tions on vol. 21, pp. 658–671.

Hackenberg, D., R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and R. Geyer. 2015, May. “An Energy
Efficiency Feature Survey of the Intel Haswell Processor”. In Parallel and Distributed Processing Sym-
posium Workshop (IPDPSW), 2015 IEEE International, pp. 896–904.

Hsu, C., and W. Feng. 2005, nov. “A Power-Aware Run-Time System for High-Performance Computing”.
In Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference, pp. 1.

Huang, S., and W. Feng. 2009, May. “Energy-Efficient Cluster Computing via Accurate Workload Char-
acterization”. In Cluster Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM International
Symposium on, pp. 68–75.

Iancu, C., S. Hofmeyr, F. Blagojevic, and Y. Zheng. 2010. “Oversubscription on Multicore Processors”. In
Parallel Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pp. 1–11.

Knowles, P., J. Andrews, R. Amos, N. Handy, and J. Pople. 1991. “Restricted Møller—Plesset Theory for
Open-Shell Molecules”. Chem. Phys. Lett. vol. 186, pp. 130–136.

Lauderdale, W., J. Stanton, J. Gauss, J. Watts, and R. Bartlett. 1991. “Many-body Perturbation Theory with
a Restricted Open-shell Hartree—Fock Reference”. Chem. Phys. Lett. vol. 187, pp. 21–28.

Lim, M., V. Freeh, and D. Lowenthal. 2006. “Adaptive, transparent frequency and voltage scaling of com-
munication phases in MPI programs”. In Proceedings of the 2006 ACM/IEEE conference on Supercom-
puting.

Park, J., D. Shin, N. Chang, and M. Pedram. 2010. “Accurate Modeling and Calculation of Delay and En-
ergy Overheads of Dynamic Voltage Scaling in Modern High-Performance Microprocessors”. In 2010
International Symposium on Low-Power Electronics and Design (ISLPED), pp. 419–424.

Schmidt, M. W., K. Baldridge, J. Boatz, S. Elbert, M. Gordon, J. Jensen, S. Koseki, N. Matsunaga,
K. Nguyen, S. Su, T. Windus, M. Dupuis, and J. J. Montgomery. 1993, November. “General atomic
and molecular electronic structure system”. J. Comput. Chem. vol. 14, pp. 1347–1363.

Sensi, D. D., M. Torquati, and M. Danelutto. 2016, December. “A Reconfiguration Algorithm for Power-
Aware Parallel Applications”. ACM Trans. Archit. Code Optim. vol. 13 (4), pp. 43:1–43:25.

Sundriyal, V., E. Fought, M. Sosonkina, and T. L. Windus. 2016. “Power Profiling and Evaluating the Effect
of Frequency Scaling on NWChem”. In Proceedings of the 24th High Performance Computing Sympo-
sium, HPC ’16, pp. 19:1–19:8. San Diego, CA, USA, Society for Computer Simulation International.

Sundriyal, V., and M. Sosonkina. 2016a. “Effect of Frequency Scaling Granularity on Energy-Saving Strate-
gies”. Submitted to the International Journal of High Performance Computing Applications..

Sundriyal, V., and M. Sosonkina. 2016b. “Joint Frequency Scaling of Processor and DRAM”. The Journal
of Supercomputing vol. 72 (4), pp. 1549–1569.

Turney, J., A. Simmonett, R. Parrish, E. Hohenstein, F. Evangelista, J. Fermann, B. Mintz, L. Burns,
J. Wilke, M. Abrams, N. Russ, M. Leininger, C. Janssen, E. Seidl, W. Allen, H. Schaefer, R. King,
E. Valeev, C. Sherrill, and T. Crawford. 2012. “Psi4: An Open-source ab initio Electronic Structure
Program”. Wiley Interdisciplinary Reviews: Computational Molecular Science vol. 2 (4), pp. 556–565.

Valiev, M., E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. V. Dam, D. Wang, J. Nieplocha, E. Apra,
T. Windus, and W. de Jong. 2010. “NWChem: A Comprehensive and Scalable Open-source Solution
for Large Scale Molecular Simulations”. Computer Physics Communications vol. 181 (9), pp. 1477 –
1489.

Sundriyal, Fought, Sosonkina and Windus

Vishnu, A., S. Song, A. Marquez, K. Barker, D. Kerbyson, K. Cameron, and P. Balaji. 2010. “Design-
ing Energy Efficient Communication Runtime Systems for Data Centric Programming Models”. In
Proceedings of the 2010 IEEE/ACM Int’l Conference on Green Computing and Communications &
Int’l Conference on Cyber, Physical and Social Computing, GREENCOM-CPSCOM ’10, pp. 229–236.
Washington, DC, USA, IEEE Computer Society.

AUTHOR BIOGRAPHIES

VAIBHAV SUNDRIYAL is working as a Research Scientist at ODU Research Foundation. He holds a PhD
in Computer Engineering from Iowa State University. His research interests lie in computer architecture and
power management especially in HPC systems. His email address is vsundriy@odu.edu.

ELLIE FOUGHT is a graduate student in Department of Chemistry at Iowa State University working
towards her Ph.D. She is working on incorporating power considerations when optimizing quantum me-
chanical algorithms. She has also examined NMR properties for organic complexes. Her email address is
foughtel@iastate.edu.

MASHA SOSONKINA received her Ph.D. from Virginia Tech, and currently is Professor in the Depart-
ment of Modeling, Simulation and Visualization Engineering at the Old Dominion University. Her research
interests include applied computational mathematics, high performance computing and chemical and bio-
logical sciences. Her email address is msosonki@odu.edu.

THERESA L. WINDUS is a Professor in the Department of Chemistry at Iowa State University. She earned
her Ph.D. from Iowa State University in 1993 and did post-doctoral research at Northwestern University.
Her research interests include high performance computing and methods for accurate energies. Her email
address is twindus@iastate.edu.

mailto://vsundriy@odu.edu
mailto://foughtel@iastate.edu
mailto://msosonki@odu.edu
mailto://twindus@iastate.edu

	HPC_Cover
	Virginia Beach, VA, USA
	William Thacker
	Lukas Polok
	Josef Weinbub
	Masha Sosonkina

	SpringSim17 Welcome Letter
	HPC Welcome
	Introduction
	Methodology
	Allinea MAP
	Evaluation

	Allinea Performance Reports
	Evaluation

	Intel Profile Function or Loop Execution Time
	Evaluation

	Intel Trace Analyzer and Collector
	Evaluation

	Intel VTune Amplifier
	Evaluation

	Summary and Conclusions
	Introduction
	Related Work
	Methods
	Workload Generation
	 Basic Simulator Execution

	Shared Burst Buffer Simulation
	Local Burst Buffer Simulation Flow
	Simulation Configuration

	Results
	To Protect or Not To Protect
	Effects of Repair/Recovery Time on Overall Productivity
	To Share or Not to Share

	Conclusion
	Introduction
	Parallelization and PGAS Languages
	Paper Contributions

	Background
	Coarray Fortran
	Unit Test and Test-Driven Development
	pFUnit: A Unit Testing Framework for Parallel Fortran

	Extending pFUnit with CAF Support
	An Example of CAF Unit Test Using pFUnit
	Limitations: Team Support

	Case study: PSBLAS
	Conclusions
	Introduction and Motivation
	Notations and background
	Implicants and representation of set of all satisfying assignments
	XOR-SAT and associated problems

	Implicant based approach for solution of Boolean systems
	Satisfying assignments of simultaneous equations
	Examples of representing solutions by implicants
	Notation for larger examples

	Proposed algorithm to find all solutions
	Time Complexity and Results on Random Cases
	Procedure for generating matrix A
	 Analysis of complexity of solving the system and experimental test cases

	Experimental test case results

	Conclusion
	Introduction
	Background
	Motivation
	Investigating Resource Underutilization

	GPU Resource Management
	Run-Time Characterization
	 Memory-Intensive Kernels
	Regulating Number of Active Cores

	Experimental Results
	Methodology
	Evaluation

	Related Work
	Conclusions
	Introduction
	OpenFOAM
	NVIDIA AmgX
	Related Work
	Related Research
	Existing Software for running OpenFOAM on GPUs
	 Paralution
	 RapidCFD

	Methodology
	Data Structure Conversion
	MPI Support
	Multiple Solver Support

	Experimental Results
	Conclusions and Recommendations
	Introduction
	Related Work
	LU Decomposition
	Proposed Algorithm
	Experimental Evaluation
	Conclusions and future work
	Introduction
	Related Work
	Fault Model
	Fine-Grained Parallel Incomplete LU Factorization
	Fault Tolerance for the FGPILU algorithm
	Convergence of the fault tolerant FGPILU algorithm variants

	Numerical Results
	Convergence of FGPILU algorithm
	Preconditioner Performance in Iterative Methods

	Conclusions
	Introduction
	Related Work
	NWChem Overview
	Overview of the Strategies
	Application Based
	Automatic Strategy

	Experiment Setup and Results
	Section Timings
	Styx
	Marquez

	Conclusions and Future Work

