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Abstract—The Fast Marching Method is widely used for the
solution of the Eikonal equation in problems arising in science
and engineering applications. A common application is the
calculation of the distance to an interface resulting in a signed
distance field. The Fast Marching Method is a non-iterative
high accuracy method. However, the sequential nature of the
algorithm does not favor a straightforward parallelization. Many
parallelization approaches have been presented so far, but they do
not provide a reasonable parallel efficiency. Recently, a promising
new approach based on an overlapping domain decomposition
technique has been introduced, providing a scalable, widely
applicable parallel algorithm. However, investigations so far were
limited to synthetic point-based problem cases which do not cover
the much more challenging cases of interface re-distancing, where
instead of simplistic point sets, challenging interface geometries
are processed. In this work we fill this gap by analyzing a
shared-memory implementation of the parallel Fast Marching
Method for three-dimensional interface problems, covering the
key challenges and various domain decomposition strategies. The
parallel efficiency and run-time performance is examined on a
dual-socket Ivy Bridge-EP compute node. Our analyses clearly
outline the feasibility limits of a shared-memory parallel Fast
Marching Method.

I. INTRODUCTION

The simulation of an expanding front is a problem arising
in several science an engineering applications, such as compu-
tational fluid dynamics, micro- and nanoelectronics, computa-
tional geometry, and computer vision [1]. The problem can be
described by the Eikonal equation which in Rn reads:

|∇φ(x)|F (x) = 1, x ∈ Ω \ Γ,
φ(x) = 0, x ∈ Γ ⊂ Ω.

(1)

Ω is a domain in Rn, Γ is the initial interface (boundary), φ(x)
is the unknown, and F (x) is a positive speed function. The
interface information propagates in the domain with the speed
F . For F = 1, the solution φ(x) represents the minimum
Euclidean distance of the point x to the interface Γ.

This work is focused on cases where F = 1, with the
objective being the re-calculation of the distance of every
point to the interface. In general, this task is referred to as
re-distancing.

For the solution of this problem the Fast Marching Method
(FMM), as presented [1], is a widely used method. The

FMM is a one-pass (i.e., non-iterative) algorithm based on
an upwind difference scheme. It uses a priority queue in order
to determine the sequence of the nodes to be processed and
works in a similar manner than Dijkstra’s algorithm for finding
the shortest path between nodes in a graph [2]. Because of
the non-iterative nature of this method and its reliance on
a priority queue, parallelization is not straightforward. There
have been many attempts to provide a scalable parallel version
of the FMM [3] [4] [5]. However, only recently a promising
approach, based on overlapping domain decomposition, has
been developed [6]. This approach provides a widely appli-
cable, scalable algorithm for distributed-memory systems. A
shared-memory version of this algorithm has also been devel-
oped [7] [8]. Although the parallel FMM has been investigated
in detail, the evaluations are solely based on simplistic point
sources as input and a single domain decomposition approach.
This is insufficient to evaluate the general applicability to
science and engineering problems as typically much more
challenging interfaces have to be processed as input. In this
work we evaluate an OpenMP-parallelized C++ implementa-
tion of the FMM for a set of challenging interfaces inspired
by real-world problems, with various domain decomposition
scenarios in one and two directions.

The paper is organized as follows: Section II discusses the
related work. The serial and parallel FMM is briefly presented
in Section III. In Section IV an analysis of the accuracy and
the parallel performance of the implementation is provided.
Finally, conclusions and future work are presented in Section
V.

II. RELATED WORK

The underlying algorithm of the FMM is presented in a
detailed and complete form by Sethian in [1]. Since the
FMM does not offer a straightforward way for parallelization,
alternative methods for the solution of the Eikonal equation
have been developed, which are easier to parallelize. The most
predominant are the Fast Sweeping Method (FSM) and the
Fast Iterative Method (FIM). The FSM is presented in [9] and
its parallel variants in [10]. It uses upwind differences for the
discretization, like the FMM, and Gauss-Seidel iterations with
alternating sweeping order for the solution of the discretized
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system. The FIM, presented in [11], manages a list of active
nodes that it iteratively updates until convergence is reached.
It uses a block-based domain decomposition and, unlike the
FMM, it is not relying on a priority queue, thus it is suitable
for Single Instruction Multiple Data based parallelization. The
drawback of these two methods is that because of their iterative
nature they are not as accurate as the FMM.

Another set of methods is the family of Two-Scale meth-
ods [12]. The Heap-Cell method, for which the parallel version
is presented in [13], has a two-scale technique which combines
the FMM with FSM on different scales. However, these
methods are out of scope for this work where only one scale
is considered.

There have been many attempts to parallelize the FMM.
In [3] a domain decomposition parallelization of the FMM
is introduced and it forms the basis for other domain-
decomposition techniques; however, the rollback operations
for the communication among the sub-domains introduce com-
putation and communication overheads that limit the parallel
performance. Another domain decomposition parallelization is
presented in [4]; however, the method is not very scalable.
The method proposed in [5] provides a large-scale parallel
FMM; however, it relies on the exact calculation of the
distances in the ghost layer of every sub-domain, which is not
possible for arbitrary interfaces. The method proposed in [6]
is an overlapping domain decomposition approach, originally
developed for a distributed-memory environment. The priority
heap is local to each sub-domain, thus computation takes
place independently in each sub-domain; and communication
is performed with synchronized data exchanges. This is the
most promising approach and a shared-memory adaptation [7]
is used as the basis for our investigations.

III. THE FAST MARCHING METHOD

In this section, a brief overview of the serial and parallel
version of the FMM is given. The discussion of the FMM is
the basis for the analyses presented in Section IV.

A. The Serial Fast Marching Method

The here discussed serial FMM corresponds to the original
method as presented in [1]. The first order Godunov-type finite
difference scheme [14] is used to approximate the gradient
term of the Eikonal equation. The discretized version is given
by:
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where D−
i,j,k and D+

i,j,k define the first order backward and
forward difference operators, respectively, calculated in the
center of each cell. The method has an O(h) accuracy [1].

Note that Eq. 2 shows a special upwind structure, namely
the solution at φi,j,k only depends on the neighboring cells
with a smaller value. The upwind structure is the key element

of the FMM algorithm, as it starts from the interface Γ and is
moving away from it, processing the cells with the smallest
value in each step. In order to identify the upwind directions
and specify the update order, every cell is marked with one of
the three status tags: (1) KNOWN marks the cells where the final
solution is already known, (2) BAND marks the cells that have
been already updated by a KNOWN neighbor, but the solution
may be further updated by a new KNOWN neighbor, and (3)
FAR marks the cells where the solution has not been updated
yet, namely the cells that do not have KNOWN neighbors.

The FMM update loop works as follows. Initially all cells
are marked as FAR and the values are set to infinity. The
cells on the interface Γ are first marked as KNOWN. Then the
neighbors of the interface cells are updated and marked as
BAND. In order to specify the order with which the BAND cells
are processed, they are placed in a priority queue. The cell
with the minimum value is selected from the priority queue, it
is assigned a KNOWN status and all its neighbors are updated.
The newly updated cells are marked as BAND and added to the
priority queue. This loop continues until the queue is empty,
i.e., until the solution in all cells is calculated. There is also
the option to restrict the calculation to a narrow band. In this
case the loop continues until the minimum value in the queue
exceeds the width of the narrow band.

Because of its non-iterative nature, this algorithm provides
a higher accuracy compared to alternative methods. However,
it relies on a global priority queue. This impedes a straight-
forward parallelization, as it would require a locked access
mechanism to the priority queue, which would ruin parallel
efficiency.

B. The Parallel Fast Marching Method

The original parallel FMM implementation was developed
as a distributed-memory approach [6], but was then adapted
to a shared-memory approach [7]; however, both follow the
same strategy.

The first step is the domain decomposition into sub-
domains. Every sub-domain has a ghost layer which is over-
lapping with its neighbors. Fig. 1 shows an example of a
decomposition into four sub-domains. The green lines indicate
where the initial domain is split; the light grey cells overlap.
In our OpenMP implementation, each thread is responsible for
one sub-domain.

Each sub-domain has its own priority queue, thus fast
marching is performed simultaneously in each sub-domain
independently of each other, which gives rise to parallelization.
It is important to mention that the solution is also calculated
on the ghost layer, because the information on a sub-domain
containing the interface is more accurate than the one on its
neighbor where the interface is not contained. After applying
the FMM in each sub-domain, there is a synchronized data
exchange of the overlapping data. Updated values in the
overlapping regions are communicated via shared-memory
access to the respective neighbors and placed in a buffer. The
communicated values are integrated under the condition that
they are smaller (in absolute value) than the local ones as



Fig. 1: Partition of the computational domain in four sub-
domains. The green lines show where the partition is split, the
light grey zones represent the cells in the overlapping regions,
and the dark grey zones represent the ghost cells that do not
overlap.

shown in Fig. 2. The newly integrated values are added to
the priority queue and the fast marching loop is restarted.
This procedure is repeated until no data integrations occur
after the data exchange. In case that a narrow band width is
specified the loop continues until the minimum value among
all priority queues is smaller than the width of the narrow
band. To avoid unnecessary restarts, which would degrade
performance, neighboring values, which differ from the local
values by less than a small value (close to the order of
the rounding error, e.g., 10−12), are automatically dismissed
from the local integration mechanism. Neither the performance
nor the accuracy of the overall method are degraded by this
additional step.

The Parallel FMM algorithm has a parameter that puts an
upper limit to how far (from the interface) the computation
will proceed before data is exchanged. This is done in order
to regulate the workload among threads. This parameter, called
stride, is a freely chosen parameter. The fast marching loop
is terminated, when the solution has moved further than a
length of stride away from the beginning of the calculation.
When there are no newly integrated data, the fast marching
loop continues until the queues are empty or the narrow band
threshold is reached. With the stride set to zero there will
be data exchanges every time a cell is updated. Setting the
stride to infinity means that the computation will proceed
until the local priority queues are empty, effectively meaning
that the entire domain is processed.

Despite the promising potential of the Parallel FMM and
its potential to be used in different parallelization scales (i.e.

Thread 0 Thread 1

Thread 1 Thread 0

if φthread 1 < φthread 0 if φthread 0 < φthread 1

Fig. 2: Data exchange: The updated values of the overlap
cells of each thread are copied to a thread-exclusive buffer
of the neighbor. A communicated value is integrated into the
neighbor only if it is smaller than the local value, upholding
the FMM’s fundamental upwind principle.

small scale via a shared-memory approach or large scale via
a distributed-memory approach) there are three challenges for
the parallel performance. The first one is the relative volume
of the overlapping regions where the solution is calculated
by more than one thread. This introduces additional work,
especially when the number of threads is large. The second
is the number of restarts of the fast marching loop after data
exchange, which could lead to recalculation in some cells. The
third challenge comes from the explicit barriers required in
order to prevent race conditions. In the current implementation
there is one explicit barrier before the data integration step and
another one before the global termination criterion is checked.
Aside from that, no further barriers or locks are required.

IV. ANALYSIS

A. Test cases

In order to rigorously evaluate the accuracy and the perfor-
mance of the shared-memory parallel FMM algorithm, the test
cases shown in Fig. 3 are introduced. The plane in Fig. 3a is
the simplest test case. In this case, the numerical results are
expected to have no numerical errors, which is reflected in the
results in Table I. For the plane test case any partition in x-
and/or y-direction results in an even distribution of the inter-
face among the sub-domains, therefore promising an optimal
load balance. For the step interface in Fig. 3b, numerical errors
are expected around the edges of the step and the domain
decomposition does not result in an even distribution unless a
y-direction partitioning scheme is used. Fig. 3c and 3d show a
straight and a shifted pyramid, respectively. The edges and the
sharp corner at the peak are expected to introduce numerical
errors. The straight pyramid can be evenly distributed only
in the case of a partition in the x- or y-direction with two
sub-domains or an xy-partition with four sub-domains (two
in each direction). On the other hand, the shifted pyramid has
this property only for the case that the decomposition splits the



domain in two in the y-direction. As it is displayed in Table I,
for the last three test cases (Fig. 3b, 3c, 3d) the error is in the
order of the resolution and in the worst cases roughly two and
a half times the resolution. Thus, the error is in the expected
O(h) order. It is also important to mention that comparing
the results of the parallel FMM with the serial version, the
maximum difference is in the order of 10−13, verifying the
correctness of the parallel algorithm. These four test cases can
have load-balanced and imbalanced domain decompositions,
which is important in order to have a detailed analysis of the
parallel performance of the FMM, which will be investigated
in the following section.

(a) Plane (b) Step

(c) Straight Pyramid (d) Shifted Pyramid

Fig. 3: Test cases in the domain Ω = [−0.96, 0.96]3: (a)
plane in XY, (b) planar surface in XY with a step, (c)
pyramid with the peak at (0, 0, 0.5), (d) pyramid with the
peak at (0.5, 0, 0.5). The respective interface is in grey. The
numerical solution is displayed for all test cases, high values
are represented with red hues and low values with blue hues.

Plane Step Straight Pyramid Shifted Pyramid

h = 0.02 10−13 0.0277 0.0262 0.0505

h = 0.01 10−13 0.0163 0.0199 0.0278

h = 0.005 10−13 0.0094 0.0094 0.0109

TABLE I: Maximum numerical error for various resolutions
h.

B. Benchmarking Platform
Benchmarking results have been produced on a single node

of the Vienna Scientific Cluster 3 (VSC-3). A VSC-3 node has

two sockets, each offering an 8-core Intel Xeon E5-2650v2 Ivy
Bridge-EP processor, running at 2.6 GHz with 20MB of L3
cache. Therefore, the node offers 16 physical and 32 logical
cores which are accompanied by 64 GB of DDR3 memory.

C. Parallel Performance Results

The parallel performance of the four test cases is tested for
partitioning in x-direction, y-direction, and xy-direction. For
the straight pyramid a z-direction partitioning is also tested
in order to cover the influence of different decomposition
strategies for a more intricately shaped interface. However,
this z-decomposition analysis is only presented for the straight
pyramid, as the behavior is similar for the shifted pyramid.
For the xy-partition it is not always possible to have an equal
number of threads in each direction, thus a representative
selection has been made: 1x1, 1x2, 2x2, 2x4, 4x4. In all test
cases the partitions are equidistant in each direction.

The runtime and parallel speedup for the plane problem
are shown in Fig. 4. A good parallel scalability is observed
for all domain decompositions. The reason is that the part
of the interface which each thread owns has the same shape,
and thus represents a load-balanced situation. However, the
speedup is not ideal. As it is mentioned in Section III-B there
are overlapping regions among the threads and the solution
is also calculated in the ghost layer. This is leading to an
increased overall amount of work, since some parts of the
domain are calculated by more than one thread. As the number
of threads is increasing, the number of gridpoints in those
regions is also increasing, leading to a higher overall workload.
Therefore, the parallel performance is affected.

For the step problem, Fig. 5, the parallel performance is
good for the decomposition in y-direction but poor for the xy-
decomposition and even poorer for the x-direction. Decom-
posing the domain in y-direction results in a load-balanced
domain decomposition, similarly to the plane problem. Here,
the speedup is even higher than for the step, because the
overall workload is higher (comparing the runtime for one
thread), thus parallelization has a better effect. On the other
hand, a domain decomposition in x-direction results in an
inhomogeneous decomposition. The step itself belongs to one
thread which has to communicate the calculated values to
its neighbors. Then, the fast marching loop is repeated. The
number of repetitions (i.e., restarts) is displayed in Table II.
Restarting the calculation means, in this case, that additional
work is required in order to compute the solution, which
obviously degrades the performance. The performance for
the xy-decomposition is affected by that and the x-direction
decomposition shows a very poor performance, because a large
number of restarts is performed.

For the straight pyramid problem, as discussed in Section
IV-A, an even distribution of the interface is possible in the
case that the domain is split in two in x-and/or y-direction.
Therefore, as it is shown in Fig. 6, a linear speedup is
observed for the x-and y-decomposition for two threads and
in xy-decomposition for four threads. The worst case for this



problem is the z-direction decomposition. As it is shown in
Table III, the number of restarts increases dramatically, when
the number of threads is increasing. In fact, for 8 and 16
threads, some threads do not own any part of the interface and
they remain idle until the first communication step. Then, after
the first restart, the workload of these threads is higher than the
others leading to a completely imbalanced load distribution.

On the other hand, for the shifted pyramid, as shown in
Fig. 7, the speedup is acceptable only in the case of the y-
decomposition with two threads. In all other cases the interface
is unevenly distributed. Especially the peak of the pyramid is
not owned by more than two threads, but it influences the
computation in the biggest portion of the domain. Therefore,
as shown in Table IV, the large number of restarts decimates
the performance.

Threads 2 4 8 16
X 1 1 3 6
Y 0 0 0 0

XY 0 1 1 1

TABLE II: Number of restarts for the step case.

Threads 2 4 8 16
X 1 2 4 7
Y 1 2 4 7

XY 1 2 3 3
Z 1 2 5 10

TABLE III: Number of restarts for the straight pyramid case.

Threads 2 4 8 16
X 1 3 5 10
Y 1 2 3 7

XY 1 2 3 5

TABLE IV: Number of restarts for the shifted pyramid case.

The effect of the stride parameter (cf. Section III-B) is
studied for the step problem with x-direction partitioning. In
Fig. 8, different values of stride are tested. As it can be
seen, using a stride smaller than infinity reduces the run-
time slightly but it does not bring any significant improvement
to the performance. Different stride parameters are also
tested for other test cases but only minor improvements have
been noticed.

In order to investigate the influence of different grid sizes
on the parallel efficiency the step problem with y-direction
decomposition, which shows a good scalability, is chosen.
In Fig. 9, the performance for three different grid sizes is
presented. Here, the grid performance for the 3843 grid (i.e.
the green lines) is the same as presented in Fig. 5. As it is
shown in Fig. 9 the performance for up to 8 threads is scalable
for all grid sizes. However, for 16 threads the performance
with the smaller grids is suboptimal: A decomposition of the
domain in 16 parts, leaves the grid which has initially 96
points only with 8 grid points per sub-domain in y-direction
(6 after decomposition plus 2 of the ghost layer), and the grid
with initially 192 points only with 18 points per sub-domain
in y-direction. The computational time in this cases is very
small such that the cost of OpenMP parallelization and the
explicit barriers (cf. Section III-B) overcomes the benefits of
parallelization. Moreover, for 16 threads the effect of NUMA
is present that further increases the parallelization overhead.

V. CONCLUSION

The parallel FMM, has been evaluated for interfaces in-
spired by practical problems and for different domain decom-
position scenarios. The parallel FMM is widely applicable and
has a straight-forward implementation. In terms of parallel
performance, the method shows good scalability for cases
where the interface is (close to) evenly partitioned among
the sub-domains. However, the performance is not ideal due
to the overlapping nature of the domain decomposition. On
the other hand, poor performance has been noticed in case
of an uneven domain decomposition. In addition to this,
the choice of the stride parameter does not contribute any
significant improvement to the performance. Our analyses
show the parallel efficiency limits of the parallel FMM’s
static domain decomposition approach. Therefore, future work
will investigate dynamic domain decomposition approaches to
further increase the speedup.
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(a) (b)

Fig. 4: Runtime (a) and parallel speedup (b) for the plane test case with various partitions. Resolution h = 0.005, 384 gridpoints
in each direction, stride is set to infinity.

(a) (b)

Fig. 5: Runtime (a) and parallel speedup (b) for the step test case with various partitions. Resolution h = 0.005, 384 gridpoints
in each direction, stride is set to infinity.

(a) (b)

Fig. 6: Runtime (a) and parallel speedup (b) for the straight pyramid test case with various partitions. Resolution h = 0.005,
384 gridpoints in each direction, stride is set to infinity.



(a) (b)

Fig. 7: Runtime (a) and parallel speedup (b) for the shifted pyramid test case with various partitions. Resolution h = 0.005,
384 gridpoints in each direction, stride is set to infinity.

(a) (b)

Fig. 8: Runtime (a) and parallel speedup (b) for the step test case, with partition in x-direction and various stride values.
Resolution h = 0.005, 384 gridpoints in each direction.

(a) (b)

Fig. 9: Runtime (a) and parallel speedup (b) for the step test case, with partition in y-direction and various grid sizes. Stride
is set to infinity.
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