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P:34 Wigner modelling of surface roughness in quantum wires
P Ellinghaus, J Weinbub, M Nedjalkov, and S Selberherr
TU Wien, Austria

Aggressively scaled More Moore devices, such as FinFETs and nanowire transistors, are designed around the
concept of spatial confinement, where electrons are not point-like particles with a continuous spectrum of
the momentum: The finite electron size precludes - according to the Heisenberg principle - a well-determined
momentum component. Physical processes are usually modelled by a decomposition of the problem into
transport and eigenvalue tasks. In quantum wires, the transport is along the wire, where homogeneous
conditions are assumed, while the eigenvalue problem in the transverse plane is posed in terms of
eigenfunctions and energy subbands. Within this approach shape variations (e.g. roughness) are treated as
perturbations which give rise to scattering. Scattering probability models based on the Fermi Golden Rule
depend explicitly on the in-plane eigenfunctions, while the subband energies appear in the energy
conserving delta function. The eigenvalue problem can be solved either for an ideal wire or with account for
the rough interface [1]. A statistical averaging is performed, which gives rise to a roughness-aware, but
homogeneous model as long as the probability is independent of the position along the wire. The electron
dynamics is captured by the long-time limit of the electron-surface potential interaction process.

In this work, we use the Wigner function approach to simulate the time-dependent electron dynamics in the
presence of surface potential variations. The generic process is tunnelling; no artificial borders are
introduced. Identical, minimum uncertainty Wigner states [2] f,,=Nexp {(r— 15)?/sc’}exp {(k- k0)*20?}
are periodically injected, with r centered in the source contact of the wire and o, , = 2nm,
corresponding to the equilibrium distribution around kO with the effective mass m+ = 0.19 at T= 300K. A
signed particle method [3][4] with coherence length L,= L,,= 45nmis applied. The behavior of currents
and densities in the time domain provides rich information about the involved physics. Figure 1 shows an
initial penetration in the walls, until the potential modifies the initial distribution with the evolution of the
electrons along the channel. The current, calculated with the Ramo-Shockley theorem, linearly increases due
to the 5f speriodic injection of electron states. After 400f's, steady-state conditions are reached. Figure 2
compares densities of the ideal and the rough wire. The latter is obtained by superimposing variations of the
potential with a correlation function Lyexp {4x/c;} [5] on the ideal geometry. The assumption for
homogeneous conditions is challenged in both cases, in particular the source and drain regions are well
identified in the ideal case. Figure 3 shows the current evolution in the time domain for three different values
of k, . States with a higher k, , travel faster, therefore a steady-state is reached earlier. Moreover, the
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effect of the surface roughness is also less pronounced. The difference of the wave vector probability
distributions (cf. Figure 4) shows both a reduction of the probability for high kvalues and the existence of
negative kvalues due to the quantum reflection caused by the rough potential.

We conclude that the homogeneous conditions may be disturbed in considerable parts near the wire
contacts, when the system is open. The effect of the non-ideal surfaces depends not only on the geometry of
the wire, but also on the boundary conditions imposed on the electron system.
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Figure 1. 100fs evolution of density and current. The Snm wide 0.8eV potential walls smoothly drop to zero for a
distance of 2Znm towards the middle of the channel. The eleciron states are centered around », given by x =
10nm, v = Onm. Tunnelling is the only process which controls the penetration of the electrons into the walls.
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Figure 2. After 400fs evolution the system reaches steady-state. The potential variations are characterized by a

mean offset of 0.5nm and a correlation length of 5num. The density is homogeneous in the middle half of the ideal
wire.
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Figure 3. Current evolution for different Figure 4. Difference of the ideal and rough wave vector
values of k; ,; Ak corresponds to Lmel. distributions in transport direction.
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