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For a density matrix 𝜌(𝑥1, 𝑥2), the Wigner function 𝑤(𝑟, 𝑘) is defined as the result of two 
consecutive transformations: 

1. Introduce characteristic coordinates 

𝑟 = (𝑥1 + 𝑥2) 2⁄   

𝑠 = 𝑥1 − 𝑥2  

an define the sigma  function 

𝜎(𝑟, 𝑠) = 𝜌(𝑟 + 𝑠 2⁄ , 𝑟 − 𝑠 2⁄ ).        (1) 

2. Fourier transformation of 𝜎(𝑟, 𝑠) with respect to 𝑠 gives 𝑤(𝑟, 𝑘). 

In this work we study properties of the sigma function as defined in (1) and its numerical 
application to quantum transport problems. Our first goal is a comparison with the finite 
difference Wigner method [2]. 

Using coordinates (𝑟, 𝑠) the von Neumann-Liouville equation with potential energy  𝑉 takes on 
its characteristic form: 
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Here the potential term 𝑈 is defined as 𝑈(𝑟, 𝑠) = 𝑉(𝑟 + 𝑠 2⁄ ) − 𝑉(𝑟 − 𝑠 2⁄ ). Scattering can be 
included in a relaxation time approximation using the same model as in the finite difference 
Wigner method. 

Differential equation (2) can be transformed into a two-dimensional integral equation of 
Volterra type, see [5]. 

𝜎(𝑅, 𝑆) = 𝜎0(𝑅, 𝑆) + ∬ 𝑈
𝑅𝑆

00
(𝑟, 𝑠)𝑑𝑟𝑑𝑠        (3) 

Here the stationary case is assumed and constants have been absorbed into 𝑈. The term 

𝜎0(𝑅, 𝑆) is a solution to the homogeneous equation and is given by boundary conditions 
(Goursat or Darboux problem). Existence and uniqueness of the solution to (3) can be proved 
similarly to the ordinary differential case (expand into a Neumann series and check 
convergence). 

In typical quantum transport problems inflow conditions on left and right boundaries are given. 
We can impose these boundary conditions through a local Fourier transform. The appropriate 
choice of boundary conditions for upper and lower boundaries is anti-periodic: 

𝜎(𝑟, 𝑠𝑚𝑎𝑥) = −𝜎(𝑟, −𝑠𝑚𝑎𝑥) 

This is consistent with Frensley’s discretization as the shifted Fourier transform used in [2] for 
the Wigner function implies anti-periodic boundary conditions in s-space and periodic 
boundary conditions in k-space according to Martucci’s classification of discrete Fourier 
transforms [4]. 
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From (2) we can derive the continuity equation 
𝜕𝑛

𝜕𝑡
+  

𝜕𝑗

𝜕𝑟
= 0, where local carrier density and 

current density are given by 

𝑛(𝑟) =  𝜎(𝑟, 0),        𝑗(𝑟) =  
−𝑖ℏ

𝑚

𝜕𝜎

𝜕𝑠
 (𝑟, 0).   

Frensley’s discretization in [2] is based on the use of an equispaced k-mesh. This is necessary 

to guarantee conservation of mass which, in the Wigner formulation, is a condition non-local 
in k. In contrast for the sigma equation conservation of mass is a condition local to 𝑠 = 0. 
Consequently global meshing constraints are less stringent and we are not restricted to the 
use of an equispaced mesh in s. Discontinuities in 𝑈 resulting from potential steps can be 
dealt with by using exact matching conditions. 

All operators in (2) can be sparsely discretized. In the stationary case (2) can be solved by a 
shooting method. No big system matrix needs to be stored and the method can easily be 
parallelized. Sparsity of operators can be exploited which is a major numerical advantage in 
comparison with the finite difference Wigner method. 

There is a large body of knowledge on the numerical solution of hyperbolic equations and on 
Volterra integral equations [1] [3]. These methods need to be adapted and specialized for use 
with (2). A  further research topic is incorporation of scattering models beyond the relaxation 
time approximation. 
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