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We present a Wigner signed particles analysis of the lense-
governed electron state dynamics based on the quantitative
theory of coherence reformulated in phase space terms.
Electrostatic lenses are used for manipulating electron evolution
and are therefore attractive for applications in novel engineering
disciplines like entangletronics. The signed particle model of

Wigner evolution enables physically intuitive insights into the
processes maintaining coherence. Both, coherent processes and
scattering-caused transitions to classical dynamics are unified by
a scattering-aware particle model of the lense-controlled state
evolution. Our approach bridges the fairly new theory of
coherence with the Wigner signed particle method.
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1 Introduction The refraction of an electron state on
the surface between two domains with different potentials V1

and V2 is described by a notion equivalent to Snell’s law:
k1sinu1 ¼ k2sinu2 or sinu2sinu1 ¼ ek1=ek2, where x is along
and y normal to the interface, kj j is the wave vector length, and
u is the angle between the wave vector and the y-direction.
These simple relations give rise to an approach for electron
state control, where specially shaped potentials (acting as
lenses) are used to focus, guide, reshape, or split an electron
state into components. In particular, the electron state can be
decomposed by the lense into well established density peaks
which may be directed to propagate in desired directions. Of
importance are scenarios where the evolution process retains
initial coherencewhich, however, is destroyed by decoherence
processes like scattering with lattice vibrations, that is
phonons. The electron dynamics, being a complicated
interplay between such processes, can be conveniently
analyzed in phase space using the Wigner theory [1].

Quantum coherence is the underlying concept of
quantum information disciplines and for emerging quantum
engineering disciplines such as entangletronics. It is thus
surprising that the rigorous theory for quantification of
coherence has been suggested only recently [2]. The
developed theory follows the ideas of the corresponding
quantification theory of entanglement. Moreover, it has been
demonstrated that the two concepts are quantitatively

equivalent [3], that is, any nonzero amount of coherence in a
system can be converted into an equal amount of
entanglement between that system and another initially
incoherent one [4]. This means that the two concepts which
describe very different physical notions have a common
mathematical foundation. The mathematical approach has
been developed in the framework of operator mechanics, in
terms of Hilbert spaces, eigenbasis sets, and tensor products.
The formal quantification of coherence in terms of the
information theory is based on identifying a set of states I
with the label “incoherent” and a class of incoherent
operations which map I onto I .

The first goal of our work is to show that the Wigner
formalism provides a legitimate theoretical framework
which presents the basic notions of the quantification theory
of coherence in phase space terms. Furthermore, the
resulting criteria for coherence in phase space in conjunction
with a Wigner signed particle method [5] are applied to
analyze a splitting mechanism by the lense electron
dynamics. The main results reveal (i) how the splitted
parts interact with each-other to maintain the coherence; (ii)
how phonons break this interaction, striving to impose
classical evolution; and (iii) how incoherent states� defined
by the novel theory of coherence � are incorporated in this
picture. The analysis is supported by scattering-aware
Wigner simulations of the splitting process.
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In the next section, we show that the basic notions from
the quantitative theory of coherence can be presented in
phase space by the Weyl–Wigner map.

2 Coherence in phase space terms In the follow-
ing, operators are denoted by the “hat” symbol ð̂Þ, while the
indices i; j label the eigenstates of the chosen basis. For
simplicity, in this section we consider a one-dimensional
phase space x; p.

The Weyl map A x; pð Þ ¼ W Âð Þ:

W Âð Þ ¼
Z

dsdq
h

Tr Âe
i
�hðsx̂þqp̂Þ

� �
e�

i
�h sxþqpð Þ ð1Þ

defines an isomorphism from the algebra of operators
Â x̂; p̂ð Þwith a product and a commutator [,] to the algebra of
phase space functions A x; pð Þ with a non-commutative star
(�)-product and a Moyal bracket [,]M given by:

A�B ¼ W Â � B̂� �
; i�h A;B½ �M ¼ W Â; B̂

� �� �
: ð2Þ

We introduce the nondiagonal eigenvector Wigner
function f ij x; pð Þ for the eigenvectors aiij of the operator Â
of a given physical observable. The following correspond-
ences characterize the map:

aiihaj
�� �� $ f ij x; pð Þ ¼ 1

h
WðjaiihajjÞ ð3aÞ

Â aii ¼ aij jaii $ A�f iið Þ x; pð Þ ¼ aif ii x; pð Þ ð3bÞ

r̂ ¼
X
b

Pb cbihcb

�� �� $ f w x; pð Þ ¼ 1
h
W r̂ð Þ ð3cÞ

dr̂
dt

¼ 1
i�h

Ĥ ; r̂
� � $ df w

dt
¼ 1

i�h
H; f w½ �M ð3dÞ

hAi ¼ Tr r̂Â
� � $ hAi ¼

Z
f wAð Þ x; pð Þdxdp: ð3eÞ

In the case of A ¼ H x; pð Þ, Eqs. (3a) and (3b) involve
states and energies of the Hamiltonian function H.

b 2 B (cf. Eq. (3c)) labels the pure states r̂b ¼ cbihcb

�� ��
with probabilities Pb, so that the Wigner function f w can be
expressed as a linear combination of pure state Wigner
functions f bw x; pð Þ ¼ 1

hWðjcbihcbjÞ or via the nondiagonal
functions f ij. The second equation shown in (3d), is the
Wigner equation. The relation in Eq. (3e) allows to use the
classical expressions A x; pð Þ for the physical observables.

The equation system (3a)–(3e) demonstrates the full
algebraic equivalence of the operator and Wigner
formalisms. Any operator mechanics results obtained
by algebraic considerations can be expressed in Wigner
terms and vice-versa.

The Weyl map allows to transfer the concepts of the
information theory of coherence in the Wigner phase space
picture. In particular, the definition of coherence becomes:
For a fixed basis aiij one has to use Eq. (3a) for the set of
eigenvector Wigner functions f ij to define the incoherent
states as

ŝ ¼
X
i

Pi aiihaij j $ f w;s ¼
X
i

Pif ii ð4Þ

where Pi are probabilities. The set of such states is denoted
by I . Any other state which cannot be written in this way is
defined coherent [4]. Incoherent states involve only diagonal
elements f ii. From Eq. (3a) we conclude that coherence is
directly related to the existence of nondiagonal elements f ij
in the state representation of f w.

Finally the measure for coherence in phase space
C f wð Þ ¼ minD f w; f w;s

� �
where f w;s 2 I is introduced from

the measure for distance D. The latter can be based on the
von Neumann entropy or trace distance [2]. We note that the
time evolution of the linearized von Neumann entropy, or
purity, has been already used for the analysis of the
reduction of coherence and time reversibility due to random
interfaces [6].

In this way, the rules and notions of the resource theory
of coherence have been reformulated in terms of phase space
functions, establishing theWigner formalism as a legitimate
approach for analysis of coherent processes.

3 Wigner signed particles In the following, we
summarize the concepts of signed particles, needed for our
analysis. First derived from the Wigner formalism [5],
these concepts can be postulated to derive back theWigner
theory [7]. Thus the signed particle approach is fully
equivalent to the Wigner formalism1. Furthermore, it
enables considerable physical insights into various
quantum mechanical processes. The signed particle
approach: (i) point-like particles with classical features,
such as drift over Newtonian (field-less) trajectories and
of Boltzmann type scattering carry the quantum informa-
tion by their positive or negative sign [8]; (ii) physical
averages hAi, Eq. (3e), in a phase space region are given by
the sum

P
nsign nð ÞAn for all particles n in this region; (iii)

couples of one positive and one negative particles are
generated by rules dictated from (3d) and propagate in
space by distinct but fixed momentum which may be
changed only by a scattering event; (iv) particles with
opposite sign which meet in the phase space annihilate
each-other. The annihilation property is crucial for
understanding how scattering strives to impose classical,
incoherent behavior.

1 This is in full analogy with the Boltzmann particle model which can be
used to derive the Boltzmann equation, but actually contains more
physical information, since the Boltzmann particle model describes also
processes of noise and correlation.
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In the next section, the developed phase space notions
and the signed particle model are applied to analyze lense-
governed scattering-aware quantum dynamics.

4 Lense-governed quantum dynamics The con-
cept of electrostatic lenses was experimentally first
demonstrated in 1990 accompanied by computer simula-
tions [9, 10]. Coherent effects of focusing and splitting of a
single electron state have been investigated by Wigner
simulations [11, 12]. We present scattering-aware simu-
lations of lense-controlled electron dynamics. They are used
to support the analysis of the roots of coherence in terms of
signed particles and validate the intuitive model of the
process of decoherence. The simulations have been
conducted with VIENNAWD [13] in a two-dimensional
phase space, denoted by x ¼ x; yð Þ, and p ¼ ðpx; pyÞ.

Figure 1 shows a typical electron splitting experiment,
where an initial Wigner pure state (corresponding to a
minimum uncertainty wave packet Cmin) moves along the
y-direction towards the lense. The initial Gaussian-
shaped envelope of plane waves (the chosen basis eipjx=�h)

identifies the nondiagonal Wigner basis as f ij x;pð Þ ¼
eix pi�pjð Þd ðpi þ pjÞ=2� p

� �
which has the ability to form

interference patterns. In contrast, incoherent states (cf. Eq.
(4)) are represented by d pi � pð Þ which characterizes a
classical particle with fixed momentum and an even
distribution in the phase space. Thus classical and
incoherent perceptions become synonyms so that a loss
of coherence is equivalent to a transition to classical
behavior. A major part of the state is already located in the
region of the lense potential after 75 fs of evolution. The
generation of particle couples takes place according to (iii)
and thus negative particles begin to appear. In the process of
evolution the newborn particles move according to (i) in all
directions of the space, in turn generating couples of new
particles. After 150 fs the electron is outside the region of the
lense and is split into two symmetric and well separated
density peaks (cf. Fig. 2). It is important to note that the two

peaks cannot be considered as two separated electrons
which advance in the phase space in an eventually entangled
way. Indeed, the pure state evolution is time reversible so
that if one of the peaks is evolved backwards to the time
origin, it will become a subset cin 2 Cmin. However, cin is
not a physically admissible state, since the uncertainty
relations are violated by subsets of the spatial (momentum)
variables defining the minimum uncertainty state Cmin.

2

Thus, the task corresponds to a coherent evolution of a
single electron. By virtue of (ii) with A ¼ 1, the density in a
domain Dx around x at time t is given by the summation of
the signs of all particles there. Contributions give the locally
generated particles which are still in Dx, together with
particles initialized in the past, t0 < t, at different phase
space points x0;p0, whose trajectories, determined by
x0; p0; t0, cross Dx at the time of interest t. We note that
domains with negligible physical density but finite
density of signed particles also contribute to the dynamics.
Furthermore, any changes of the density in the given domain
causes corresponding changes in the rest of the space as
imposed by the normalization condition.

Any process which influences the free movement of the
signed particles not only modifies their distribution and thus
the expectation values of the physical quantities (cf. Eq.
(3e)), it also reduces the interaction between the phase space
regions and thus causes decoherence. The latter is often
associated and demonstrated by the emblematic model of
quantum Brownian motion, described by the Fokker–Planck
equation. Since this equation is obtained as a limit of a more
general model, obtained by the inclusion of phonon
scattering in the Wigner electron evolution [14], we
consider the effect of the phonons on the splitting process.
It is important to note that phonons strive to impose
equilibrium behavior and that the equilibrium distribution of
a quantum electron in a potential belongs to the set of
incoherent states (cf. Eq. (4)). Indeed, the Wigner
representation of the Gibbs operator is of the formP

bPbf
b
w, where Pb are given by the equilibrium distribution

Figure 1 Electron density after 75 fs evolution of the initial
minimum uncertainty condition. The white shape shows the
electrostatic lense.

Figure 2 Electron density after 150 fs evolution. Two well
established density peaks leave the lense.

2 The case that cin is proportional to Cmin, is not possible, since the
evolution would recover both peaks.
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function of the energy Eb. The latter, together with the
eigenstate Wigner functions f bw, are given by Eq. (3b). Thus,
phonons destroy the coherence, striving to transform the
quantum state evolution towards an incoherent state.

The random change of the momentum not only prevents
a particle to follow it’s coherent behavior impeding the
interaction between adjacent regions: Particles which would
never meet in the phase space under coherent conditions,
now, in accordance with (iv) have a finite probability to
annihilate. Annihilation effectively destroys the effect of
quantum generation. Furthermore, due to the random choice
of the after-scattering direction, generated signed particles
stay around the common place of birth, thus giving rise to
localization. In this way scattering strives to turn the
quantum evolution into a classical diffusive evolution.
These processes are well demonstrated in Fig. 3, represent-
ing the difference of the coherent and phonon-modified
densities. The regions where the latter dominates (the
difference is negative) are marked in blue. The chosen

example illustrates well the transition from quantum to
classical behavior.

The quantum initial condition also may be interpreted
as an initial classical distribution of electrons. The
generated couples of positive and negative particles are
annihilated due to scattering, which effectively destroys
the quantum effect of the electric potential. Because of
the lack of annihilated negative particles, the initial
number of positive particles (but not the individual initial
particles) remains the same, so that the particle
distribution can be described by a classical distribution
function. This is pronounced even more after 150 fs of
evolution shown in Fig. 4. The spread of the phonon-
aware density is restricted as compared to the quantum
counterpart, clearly demonstrating the scattering-induced
localization.

5 Summary It is shown that the Wigner formalism
offers not only a legitimate formulation of the recently
developed theory of coherence. The signed particle model of
theWigner evolution, used for analysis of electrostatic lense
controlled electron dynamics, provides an intuitive physical
picture of the processes which maintain coherence. In
particular coherence is associated with the existence of
nondiagonal Wigner basis states. In this picture, scattering
works against the quantum action of the potential, pushing
the evolution towards classical behavior associated with
incoherent states.
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