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Abstract

We focus on a surface evolution problem where the surface is represented as a narrow-band
level-set and the local surface speed is defined by a relation to the direct visibility of a source
plane above the surface. A level-set representation of the surface can handle complex evolutions
robustly and is therefore a frequently encountered choice. Ray tracing is used to compute the
visibility of the source plane for each surface point. Commonly, rays are traced directly through
the level-set and the already available (hierarchical) volume data structure is used to efficiently
perform intersection tests.

We present an approach that performs ray tracing on a temporarily generated explicit
surface mesh utilizing modern hardware-tailored single precision ray tracing frameworks. We
show that the overhead of mesh extraction and acceleration structure generation is compensated
by the intersection performance for practical resolutions leading to an at least three times faster
visibility calculation. We reveal the applicability of single precision ray tracing by attesting a
sufficient angular resolution in conjunction with an integration method based on an up to twelve
times subdivided icosahedron.
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1 Introduction

Dynamic surfaces play a key role in a large number of areas including fluid simulations[1],
computer graphics[2], and semiconductor fabrication[3]. Across all these application fields, the
level-set method is widely used to represent the surface. The advantage of the method’s inherent
implicit representation is the robust handling of topological changes, for example, a splitting of
an object into two parts or a merging of two objects[4]. In general, one time step in a dynamic
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surface simulation can be split into (a) the computation of the local surface velocities, (b) the
advection of the level-set, and (c) the normalization of the level-set. When the model for the
surface velocities depends on flux rates originating from a remote source, a computationally
expensive three-dimensional visibility evaluation has to be performed for each surface point.

Our approach increases the performance of this computational bottleneck by integrating
the flux on a temporarily generated explicit surface mesh. Utilizing modern hardware-tailored
single precision ray tracing libraries for the visibility calculations on the explicit mesh promises
a significant performance improvement compared to the established approaches which perform
the ray tracing directly on the level-set data structure.

As a prerequisite for our approach, we investigate the sufficiency of single precision ray
tracing in conjunction with the proposed numerical integration method using pbrt-v3[5][6] as
a reference ray tracer with single and double precision routines. We use the OpenVDB][7][8]
library to represent the surface as a narrow-band level-set. Open VDB provides mesh-to-volume
conversion, narrow-band tracking, advection schemes, ray tracing, and surface extraction. The
intersection tests during the visibility evaluation are performed directly on the OpenVDB
data structure with OpenVDB’s LevelSetRayTracer[9] and on the extracted mesh with the
Embree[10][11] library.

All in all, this paper contributes the following findings relevant for accelerating direct flux
calculations on implicit surfaces:

(1) A suitable flux integration method based on hemisphere sampling (Section 2)
(2) An analysis concerning the suitability of single precision arithmetics (Section 3)

(3) Performance results including an analysis of the introduced overhead (Section 4)

2 Flux Integration Method

To compute the flux of a planar source towards each surface point, the solid angle which renders
the source visible has to be evaluated. We use a subdivided icosahedron to obtain a triangulation
of the hemisphere defined by the local surface normal. Rays are traced towards each of the
centroids of the triangulation. If the rays do not intersect with the geometry, the source is
considered visible under the solid angle defined by the triangle. Once the visibility information
is obtained, we conduct a numerical integration by evaluating the source contribution in the
centroid’s direction and applying a centroid rule analog to the midpoint rule in one-dimensional
numerical integration[12].

2.1 Subdivided Icosahedron

The initial triangulation of the sphere is provided by an icosahedron (12 vertices, 20 faces).
The initial triangles are congruent and equilateral. To increase the resolution, we subdivide
the triangles according to [12]: For each triangle, (a) compute the midpoints of the edges, (b)
project those midpoints onto the unit sphere, and (c) remove the original triangle and connect
the 3 original vertices and the 3 new midpoints to form 4 new triangles. The resulting triangles
will be almost congruent and almost of the same size.

Fig. 1 visualizes an icosahedron and its subdivisions up to n=4 together with the integra-
tion directions originating at the center. Table 1 provides detailed properties of the original
icosahedron and the subdivision steps up to n=9. The number of triangles for subdivision step
n is defined as

Niri(n) = 20 - 47, (1)
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Figure 1: Initial icosahedron (n=0) and subdivisions up to n=4. Starting from n=2, the
top row shows the integration dlrectlons originating at the center and pointing towards each
centroid of the triangles of the spherical mesh. The bottom row visualizes the differences in
size (blue = smaller, red = larger) of the triangles resulting from the subdivisions. Detailed
numerical information about each subdivision step is listed in Table 1.

The corresponding number of vertices is defined by
20 - 20 3
Nyert(n) = 24’ (2)

where it is already transparent that the resulting triangles are not congruent as the first sum-
mand originates from the initial vertices shared by 5 triangles. The subsequent summands
originate from the subdivisions which generate vertices shared by 6 triangles. The angular
resolution a,..s in Table 1 is the angle corresponding to a spherical cap of the same area as a
triangle. For subdivision n

Qes(n) = arccos(1l — NZtLTZ;l) : ﬁ) (3)

where an equal distribution of the solid angle over all triangles is assumed. Further, Table 1
illustrates the effect of the subdivision on the spread of triangle areas A,,in/Amaz, revealing
an asymptotic limit of about 75% for higher subdivisions.

2.2 Numerical Integration

The integration method permits infinite planar sources with an arbitrary angular distribution
function fs..(®) with direction @(6, ). In the following, we utilize sources with a power cosine
distribution and a downward mean direction. The angular distribution functions are defined as
fsre(®) = cos(0)™. For n = 1, the angular distribution function is reduced to fq..(®) = cos(f)
and therefore constitutes an ideal-diffuse source.
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subdivisions Niri Nyert Ares Amin/Ama:c Tmin
n=0 20 12 25.842 1.00000  0.9000000
n=1 80 42 12.839 0.84222  0.9750000
n=2 320 162 6.409 0.78820  0.9937500
n=3 1280 642 3.203 0.77377  0.9984375
n=4 5120 2562 1.602 0.77010  0.9996094
n=>»s 20480 10242  0.801 0.76918  0.9999023
n=6 81920 40962 0.400 0.76895 0.9999756
n="7 327680 163842 0.200 0.76889  0.9999939
n==y§ 1310720 655362  0.100 0.76888  0.9999985
n=9 5242880 2621442  0.050 0.76888  0.9999996

Table 1: Properties of an icosahedron and its subdivision up to n=9: N,; = number of triangles,
Nyert = number of vertices, a,..s = angular resolution, A, /Anma: = ratio of triangle areas,
Tmin = smallest radius occurring in triangulation.

We approximate the integral of the direct flux
F; = / fsre(©®)(On;)dwe, with dwe = sinfdfdyp (4)
Q

received at surface location ¢ (surface normal = n;) by triangulating the hemisphere based on
a subdivided icosahedron

Niri Niri

R / Fure(@)ONIA = 3 fre(©5) Oy - (5)

where @, is the direction towards the centroid of triangle j and A; is the area of triangle j.
A centroid rule is used in Eq. 5 to integrate over the area of a triangle.

Using a power cosine source and a visibility function f,;s(®) that evaluates to 0, if a surface
is intersected in direction ®, and 1 otherwise, the direct flux at surface location i is

Niri

Z Juis(© COS(QCJnsrc) (eqni) : A]} (6)

where ngyc is the upward pointing normal of the source plane, and nj is the normal direction
of the surface at position 1.

2.3 Validation

We use analytic solutions for the direct flux received on horizontal and vertical surfaces to
validate our integration method. The direct flux originating from an unobstructed power cosine
source on a horizontal surface is

w/2 27 9
Frori = / / [cos(@)”“] sinfdfdyp =
0 0 n

+ 2

™ (7)
and for a vertical surface under the same source

m/2 /2
Fyert :/0 /o [cos(0)"sin(0)sin(p)] sinfdfdy = 2/0 [cos(6)"sin(0)] sinfdf .  (8)
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Figure 2: Direct flux received on a horizontal (a) and vertical (b) surface using our integration
method. An unobstructed source with a power cosine distribution with exponents n = [1, 5]
is used. The resolution of the icosahedron is increased by up to 5 subdivisions, resulting in a
maximal angular resolution «,..s = 0.8 degrees (see Table 1). The dotted lines are the analytic
solutions obtained from Eq. 7 and 8. The solid lines in (b) show the average of the flux over
all 4 vertical faces of a cube; the error bars indicate the maximum deviation amongst the 4

vertical faces.

In Fig. 2, we compare the numerical results with the analytic solutions for sources with power
cosine exponents and subdivisions up to 5. The flux rates approach the analytic solutions with
an relative error below 1% for 3 subdivisions and far below 0.1% for 5 subdivisions.

3 Single Precision Ray Tracing

Hardware-tailored ray tracing libraries like Embree[11](Intel, open source), Optiz Prime[13]
(nvidia, closed source), and RadeonRays[14](AMD, open source) provide highly-optimized ray
tracing kernels for the corresponding platforms. The mentioned software packages support only
single precision arithmetics; a change of the floating point type is not favored due to the internal
optimizations which base on platform specific intrinsics.
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Figure 3: Evaluation of the angular resolution using single precision (red) and double precision
(blue) ray tracing arithmetics. The maximum distance d,,q, between the intersection point
(found by ray tracing) and the reference point is shown as solid line and the scale on the
left. The resulting angular error .., is shown as dashed line and the scale on the right. The
angular resolutions of the subdivided icosahedron are shown as dotted lines for up to n = 12
subdivisions. Additionally for n=12, a buffer region (2 decades) for the angular resolution is
shown as a gray box indicating the region, where the difference in the angular resolution drops
below 1%.

The integration method described above (cf. Section 2.2) uses ray tracing to detect visibility
of the source along a certain direction. The resulting information is binary and the influence
of the arithmetic precision can be isolated. To evaluate the applicability of single precision ray
tracing in our integration method, we compare the angular resolutions which are achieved for
single and double precision ray tracing. A spherical mesh in double precision, generated by
subdividing an icosahedron 6 times, serves as a reference mesh. The radius of the reference
mesh is scaled from r» = 1076 to » = 10' and rays are traced from the origin towards each
vertex of the mesh. The distance between the intersection point (found by ray tracing) and the
vertex on the reference mesh is computed for all vertices.

In Fig. 3 the maximum distance d,,, and the corresponding angular error ae,, =
atan(dmaz /1) is plotted over the radius r of the reference sphere. The maximum distance
shows a constant value of 10719 for r < 1072 (single precision) and 7 < 10° (double precision).
The angular resolution of the subdivided icosahedrons are indicated with dotted lines. The
pbrt-v3 library [6] is used for single and double precision ray tracing. The results reveals that
for radii of the reference sphere r > 1073, the achieved angular resolution is more than two
decades smaller than the angular resolution of a 12 times subdivided icosahedron for both, sin-
gle precision and double precision ray tracing. Assuming a minimum resolution ratio of 100/1
as sufficient, this justifies the use of single precision ray tracing in the numerical integration
method described above as long as the number of subdivisions of the icosahedron does not
exceed 12.
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4 Performance Comparison

In the following performance comparison, we concentrate on the performance of the actual
intersection test, i.e., the calculation of the intersection point with the mesh in the direction
of the ray. The rays are traced against a narrow-band level-set representation of a sphere
with radius 7,,esn = 1 using OpenVDB’s LevelSetRayTracer and against a triangulated mesh
(extracted from the level-set) using Embree. The implicit mesh is represented with OpenVDB’s
default tree configuration Tree4<float,5,4,3> and a narrow-band half-width of 3 times the
voxel size dyoy.-

The origins of the rays are equally distributed on a sphere with radius 7org = Tmesn +
d, leading to rays which start inside the mesh for d < 0 and rays which start outside the
mesh for d > 0. At each origin, rays are traced towards the centroids of the triangles of
a subdivided icosahedron (cf. Section 2.1). The for loop which iterates over the origins is
OpenMP-parallelized. Table 2 summarizes the parameter range of the performance analysis.
All performance measurements were performed on an Intel Core-i7-4790K system with 32GB
of RAM. The CPU has 4 physical cores (8 threads with hyper-threading) with 8MB of shared
L3 cache. The benchmarks were performed using Embree 2.12, OpenVDB 4.0, and compiled
using gcc 6.1.1.

Fig 4 compares implicit and explicit ray tracing performance for different ray origins 74,4
and different surface resolutions. The resulting performance gain is between 3 and 6 for all
possible combinations of the parameters in Table 2. For small meshes with less than 0.1 million
triangles the performance gain is increasing. The limits of the achieved performance with 8
threads on the explicit mesh are about 100 MRays/s (7, = 1.5, 15k triangles) and about 10
MRays/s (rorg = 0.85, 6.0m triangles).

Parameter Values
Number of threads 1,2,4,5,6,8
Subdivisions for search directions n,qce 1,2,3,4,5
Radius of origins 7org 1.5, 1.15, 0.85, 0.5
Voxel size dyoq 0.05, 0.01, 0.005, 0.0025
Dependent Parameter

Number of active voxels f(dyor) 30k, 0.8m, 3.0m, 12.1m
Number of triangles f(dyox) 15k, 0.4m, 1.5m, 6.0m

Number of search directions f(ngrqce) 80, 320, 1280, 5120, 20480

Table 2: Parameter variations used in the performance comparison (k = kilo, m = million).

Fig 5 plots the achieved speedup for the parallelized for loop (which iterates over the origins)
for explicit and implicit ray tracing. Both parallelizations show nearly an ideal speedup for 2
threads. The speedup spreads for 4 threads with a minimum speedup of 2.7 (Embree) and 2.0
(OpenVDB). The speedup for 8 threads is up to 6 for Embree and up to 5 for OpenVDB. The
parameter combinations which show nearly no speedup between 2 to 4 threads (cf. Fig. 5b)
were identified to have a low hit ratio (number of hits/number of traced rays < 0.13) and a
large voxel size (dyor >= 0.01). For 5 and more threads (entering the hyper-threading regime)
this influence is compensated leading to an overall speedup between 3 and 4 for 6 threads.

251



252

Paul Manstetten et al. / Procedia Computer Science 108C (2017) 245-254

(a) 1 thread (b) 8 threads
Active Voxels in Narrow-Band (million) Active Voxels in Narrow-Band (million)
0.8 3.0 12.1 0.8 3.0 121
20 - - — 6 120 - - — 6
Performance Ratio Performance Ratio
Embree/OpenVDB Embree/OpenVDB
MRays/s MRays/s
&4 Embreer,,=0.5 15 100H &8 Embree r,,=0.5 15
&-& OpenVDBr,,=0.5 &-@ OpenVDBr,,=0.5
150 4—4 Embree r,,,=0.85 4 Embree r,,,=0.85
44 OpenVDB r,,=0.85 L4 OpenVDB r,,=0.85
¢—¢ Embreer,,=1.15 la 80 ¢ Embreer,,=1.15 la
¢-¢ OpenVDBr,,=1.15 ° ¢-¢ OpenVDB r,,=1.15 °
¢4 Embreer,,=1.5 ‘% ¢ Embreer,, =15 'g
¢ ¢ OpenVDB r,,=1.5 o ¢ ¢ OpenVDB r,,=1.5 o
2 ) 2 )
2 22 2
= 10 5 o 60f; 5
x € x €
z — E —_
L L
j - j -
9] o]
[N o
2 40
{11
o
.
e 0
Triangles (million) Triangles (million)
Figure 4: Performance comparison between ray tracing on the implicit surface (using

OpenVDB) and on the explicit surface (using Embree). The ray tracing performance for dif-
ferent ray origins r,4 is plotted over the surface resolution for 1 thread (a) and 8 threads (b).
The top axis plots the number of active voxels in the narrow-band representation of the surface
while the bottom axis labels the corresponding number of triangles in the extracted mesh. The
error bars show the spread in performance when varying the number of search directions for
each origin according to Table 2. The filled gray area is the range of the performance ratio of
the explicit approach over the implicit approach.

The acceleration structure build-up of Embree is parallelized (internally) with 8 threads. Fig.
6a illustrates the explicit mesh extracted from the narrow-band level-set of a sphere for voxelsize
dyor = 0.1 and Fig. 6b plots the overhead introduced by the generation of the temporary explicit
mesh and the construction of the acceleration structure. The maximum overhead is identified
with a total of less than 1.4 seconds for a mesh with about 6 million triangles. The overhead
per million triangles is about 0.2 seconds for meshes with more than 0.4 million triangles. An
example configuration illustrates that the overhead is easily compensated by the ray tracing
time: Assuming a ray tracing performance of 12 MRays/s on the implicit mesh (best case in
our benchmarks) and 1280 traced rays per triangle (n = 3), the explicit ray tracing decreases
the total simulation time at least by 35 seconds per million triangles.
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Figure 5: Speedup for the OpenMP-parallelized ray tracing with Embree (a) and OpenVDB

(b). The speedup range represents limits resulting of the full parameter range (cf. Table 2).
The dashed line indicates an ideal speedup and the dotted line marks the number of physical
cores in the system. The circle in (b) marks a group of combinations with nearly no speedup
between 2 and 4 threads.
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Figure 6: Implicit/explicit mesh of a sphere for voxel size d,o = 0.1 (a); the red and blue iso-

surfaces visualize the extends of the narrow-band. Overhead introduced by the mesh extraction
and the setup of Embree for different surface resolutions (b).
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5 Summary and Outlook

We investigated an approach to transfer the visibility calculation from a level-set based implicit
representation of a surface to a temporary explicit mesh. The numerical integration of the
direct flux originating from a planar source is performed by tracing rays against the explicit
mesh. The obtained flux is then used to advect the implicit representation of the surface.

We show that single precision ray tracing has sufficient accuracy, when using the proposed
integration method based on up to twelve times subdivided icosahedrons. The performance
gain of explicit ray tracing (using Embree) over implicit ray tracing (using OpenVDB) is at
minimum a factor of three for a wide range of scenarios. The overhead introduced by the mesh
extraction and preparation is easily compensated for practical surface resolutions.

The proposed numerical integration method is ideally suited for additional optimizations: (a)
adaptive sampling of the hemisphere using different levels of subdivisions, (b) reuse of adaptive
sampling masks of neighboring surface points, and (c) parallelization based on coherent rays
from a local group of surface points.
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