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Abstract. The description of the electron evolution, provided by the
Wigner equation, involves a force-less Liouville operator, which is asso-
ciated with particles moving over Newtonian trajectories, and a Wigner
potential operator associated with generation of positive and negative
particles. These concepts can be combined to develop stochastic algo-
rithms for solving the Wigner equation, consolidated by the so-called
signed particle approach. We investigate the option to split the Wigner
potential into two parts and to approximate one of them by a classical
force term. The purpose is two-fold: First, we search for ways to sim-
plify the numerical complexity involved in the simulation of the Wigner
equation. Second, such a term offers a way to a self-consistent coupling
of the Wigner and the Poisson equations. The particles in the signed-
particle approach experience a force through the classical component of
the potential. A cellular automaton algorithm is used to update the dis-
crete momentum of the accelerated particles, which is then utilized along
with the Wigner-based generation/annihilation processes. The effect of
the approximation on generic physical quantities such as current and
density are investigated for different cut-off wavenumbers (wavelengths),
and the results are promising for a self-consistent solution of the Wigner
and Poisson equations.
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1 Introduction

The Wigner function is defined with the Fourier transform of the density matrix
expressed in the mean and difference of coordinates in two dimensions:

fw(r,k, t) =
1

(2π)2

∫ +∞

−∞
dse−ik.sρ

(
r +

s
2
, r − s

2
, t).

Furthermore, the finite dimensions of the simulation domain allow the Wigner
function to be calculated over finite dimensions and discretized k values. The
physical domain in the simulations analyzed in this paper is a two-dimensional
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area of size (Lx, Ly) = (20 nm, 30 nm). We choose the center of the domain to be
the origin, and therefore, the position and momentum vectors are discretized as:

r ≡(xΔr, yΔr) −M
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Δr and Δs represent the spatial spacing between nodes and are assumed to be
equal. s and q′ are used for performing summations over position and momentum
variables. We use the short notation:

f(x, y, p, q) ≡ f(xΔr, yΔr, p
π

MΔs
, q

π

NΔs
).

The Wigner equation, which follows from the von Neumann equation for the
density matrix [6], is written in the semi-discrete form as:

(
∂

∂t
+

�qΔk

m∗ ∇r

)
fw(r,q, t) =

∑
q

VW (r,q − q′)fw(r,q′, t). (1)

The semi-discrete Wigner potential (WP), which is of central importance in the
signed-particle approach, is defined as [4]:

VW (r,q) ≡ 1
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2
)
]
. (2)

2 Wigner Potential Decomposition

Here, we focus on a full discretization, and thus use the fully discretized WP
which must be computed at each node [1] becomes:

VW (x, y, p, q) =
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i�MN
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. (3)

The two-dimensional discrete Fourier transform of a potential V (x, y) in a region
of size M × N is a function V̂ (p, q). The pair is given by the equations [5]:

V̂ (p, q) =

M
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x=− M
2

N
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y=− N
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V (x, y)e−i2π( px
M + qy

N ),
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V (x, y) =
1
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M
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N
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V̂ (p, q)ei2π( px
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V̂ (p, q) can be expressed in polar form, V̂ (p, q) = A(p, q)eiφ(q,p). Since the two-
dimensional discrete Fourier transform pair is periodic (k and l being integers),

V̂ (p, q) = V̂ (p + kM, q + lN), V (x, y) = V (x + kM, y + lN),

we also assume the physical potential V (x, y) to be periodic so that a shift equal
to a multiple of the physical region lengths in the corresponding argument of
the potential does not change the value of the potential. It holds:
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We have used the properties of the discrete Fourier transform, namely periodicity
and scaling. Thus, the Wigner potential given in Eq. 3 becomes:

Vw(x, y, p, q) =
1

i�MN

{
ei2(πxp

M +πyq
N )V̂ (2p, 2q)−[

ei2(πxp
M +πyq

N )V̂ (2p, 2q)
]∗

}
. (4)

Using Euler’s formula, Eq. 4 can be rewritten in a polar form as:

Vw(x, y, p, q) =
2

�MN
A(2p, 2q)sin

[
φ(2p, 2q) + 2

πxp

M
+ 2

πyq

N

]
. (5)

In the following, we show that treating the summation in the right-hand side
of Eq. 1 in two separate regions results in the spectral decomposition of the
potential profile into a slowly varying classical component and a rapidly vary-
ing quantum mechanical component [2]. For each direction we specify a cut-
off wavenumber determining the sharpness of the corresponding low-pass filter
which is discussed later in more details. The cut-off wavenumber is specified by a
cut-off wavelength, λcx

= 2π
qcx Δkx

and λcy
= 2π

qcy Δky
. We assume qcx

and qcy
to be
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equal and use qc for both directions. Applying the decomposition, the potential
operator on the right-hand side of Eq. 1 can be rewritten as [3]:

Qfw(x, y, p, q)=
∑

p′,q′
Vw(x, y, p

′
, q

′
)fw(x, y, p − p

′
, q − q

′
) =

∑

|q′|,|p′|≤ qc
2

+
∑

|q′|,|p′|> qc
2

=Qclfw + Qqmfw

Qcl and Qqm represent the classical and potential parts of the potential operator,
respectively. We recall that Lagrange’s mean value theorem allows to express
the increment of a continuous function on an interval through the value of the
derivative at an intermediate point of the segment (for small (m − n)Δx)

f(mΔx) − f(nΔx) � f ′(kΔx)(m − n)Δx � Δf(m − n), n ≤ k ≤ m.

Using the notations Δp and Δq, we calculate the classical potential operator as:
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∑
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]
.

In the second line, the summation over fw vanishes as Vw is an odd function in
both p and q. Using the polar form of the Wigner potential (Eq. 5), we obtain:
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With a similar approach, we can show that:
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Here, we have introduced the classical potential component:
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This function is real, as can be easily shown by substituting V̂ (p, q):

Vcl(x, y) =
1
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In order to calculate Vcl, we have a convolution of real functions, the potential
V (x, y) and the sinc functions in both x and y directions acting as low-pass fil-
ters. The convolution involves an infinite summation for an ideal filter. However,
we choose our low-pass filter to be bounded to the physical region. Vcl at each
node in the spatial domain is then calculated as:

Vcl(x, y) =

+∞∑

m,n=−∞
Vlp(x − m, y − n).V (m, n) � 1
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M
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M
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2
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2
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Therefore, through the introduction of qc, the input potential V (x, y) is split
into a classical and a quantum-mechanical part.

V (x, y) = Vcl(x, y) + Vqm(x, y). (6)

Vcl(x, y) is the slowly varying part of the potential calculated above by filtering
out the high frequency components. Vqm(x, y) contains only the high-frequency
components and represents the rapidly varying part of V (x, y). It is easily calcu-
lated from Eq. 6 after knowing Vcl(x, y). Using Eqs. 2 and 3, the fully discretized
WP can then be computed at each node using our new approach:

Vqm,W (x, y, p, q) =
1

i�MN

M
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N
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e
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2
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2
)
]
.

The Wigner equation in the light of the spectral decomposition will be:
(

∂

∂t
+

�qΔk

m∗ Δr − 1

�

[
ΔrVcl(r)

]
Δq

)
fw(r,q, t) =

∑

q

Vqm,W (r,q − q′)fw(r,q′, t).

As shown in the left-hand side of the modified Wigner equation, Vcl gives rise
to a local force term which is calculated using the finite difference method.
Furthermore, the new Wigner potential (Vqm,W ) on the right-hand side of the
equation is calculated from the non-local component of the potential (Vqm).
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3 Calculating Local Force and Evolving the Particles

The finite difference method suggests to use the two classical potential values
from two adjacent nodes to approximate the force:

Fx(x, y) =
Vcl(x + 1, y) − Vcl(x − 1, y)

2Δr
, Fy(x, y) =

Vcl(x, y + 1) − Vcl(x, y − 1)

2Δr
.

Here, we focus on the force due to the presence of a dopant in the center; as
it is exerted on each particle, the value of the momentum in each direction is
updated and lies somewhere between two momentum grid points in the corre-
sponding direction. In the following, a probabilistic approach is discussed and
the above-mentioned grid points in the x-direction are named A and B. When
the particles change their momenta, they might jump to points on the momen-
tum grid which are several Δk farther afield. To explain our algorithm, two
variables are introduced. The first variable, krnd, is a random number between
0 and 1. The second one, kjump, is the remaining fractional part of momentum
after it is rounded to the smaller point on the momentum grid (A), and divided
by Δk, therefore, kjump is also always a real number between 0 and 1. Figure 1
illustrates these variables in more details.

Fig. 1. Left : Two possible jumps on the momentum grid. Right : A schematic of a
possible set of variables (Color figure online)

Without the probabilistic approach, for small momentum changes (compared
to Δk), the new momentum is always rounded back to the same point on the
momentum grid. In our approach, however, the decision whether to jump to the
nearby point on the grid or not is based on a comparison. krnd is compared
to kjump; if kjump is larger than krnd (the green case in Fig. 1) the momentum
of the particle will jump to the nearby grid point (B). Otherwise (the red case
in Fig. 1), it remains on the initial grid point A. Higher kjump means higher
probability of jumping to the nearby grid. The same approach is used in the
y-direction.

4 Results

For comparison purposes, we introduced ( λc

Δx ) as a dimensionless input parame-
ter in the ViennaWD simulator [7]. For λc

Δx = 2, Vqm vanishes as all the possible
contributions of the adjacent nodes are canceled out due to the nature of the
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sinc function; however, as we increase λc

Δx , Vcl becomes smoother and Vqm gets
closer to V (x, y). Potential values at each node in the physical region contribute
to Vcl (and hence Vqm) at all the other nodes through a weighted-average pro-
cess. The contribution of each node depends on two factors: (1) How far is the
node from the target node, (2) How big is qc (i.e. how small is λc). The results
for the potential decomposition in the case of a single charge in the center of a
20 nm × 30 nm region for three different values of λc are shown in Fig. 2:

Fig. 2. The potential input (left) and its classical (middle) and quantum (right) com-
ponents for a single charge in the center of a 20 nm × 30 nm region for λc

Δx
= 5 (top

row), λc
Δx

= 10 (middle row), and λc
Δx

= 30 (bottom row).

Increasing λc

Δx results in a smoother Vcl as can be seen in Fig. 2. The right-most
graphs show the rapidly varying quantum component of the potential (Vqm),
which tends to V (x, y) at higher values of λc. Vqm contains only the rapidly
varying part of the potential and dictates the generation rate of particles (γ)
at each node. Since the process of particle generation is exponentially related
to γ, Ntn+1 = Ntn

e2γ(tn+1−tn), the increase in the number of particles becomes
slower which results in fewer annihilation processes and hence improvements
in the simulation time. It also reduces the undesirable effects of approximations
inherent in the annihilation process [6]. In Fig. 3, the results for different λc values
and the pure quantum case for t = 95fs are shown. The tendency towards pure
quantum behaviour is noticed as we increase λc.
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Fig. 3. The density of particles for different values of λc
Δx

. From left to right: λc
Δx

= 2

(classical case), λc
Δx

= 10, λc
Δx

= 30, and pure quantum (given for reference)

The density values at each point in the physical region are compared to the
density values of the pure quantum case by introducing the error ratio:

ErrD(xi, yj) =
Dλc

(xi, yj) − Dqm(xi, yj)
Dqm(xi, yj)

.

Figure 4 shows the results of the averaged value of this error for different λc

values. Comparing Figs. 3 and 4, it can be noticed that even for low values
of λc (high values of qc), the error remains close to zero for the points in the
physical region where the density values are significant. Therefore, we can claim
that a spectral decomposition provides a promising step towards coupling the
Poisson and Wigner equations. For the regions with lower density values, the
improvement in ErrD is evident as we increase λc. If quantum effects such as
tunneling are to be analyzed, higher values of λc are preferred and more reliable.

Fig. 4. The error ratio of particle density for different values of λc
Δx

. From left to right:
λc
Δx

= 2 (classical case), λc
Δx

= 5, λc
Δx

= 20, and λc
Δx

= 30.

As can be seen in Fig. 5, the current values come to a saturated value after around
50fs, and for different cut-off wavelengths, this saturated value lies within the
10% range of the quantum case.
It is important to note that the accuracy of the decomposition is not linearly
related to the value of λc as depicted in Fig. 5.
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Fig. 5. Current curves for different values of λc and the pure quantum case (reference).

5 Discussion and Conclusion

The advantage of utilizing a potential splitting approximation is two-fold. On
one hand, the statistics governing the generation of particles are modified so
that the ensemble of particles experiences fewer annihilation processes. On the
other hand, using this approach, the momentum values are updated according to
Vcl and the local force term. Particles are accelerated in each time step and the
value of the momentum, while remaining on the momentum grid, is no longer
constant through the simulation time. Averaged physical quantities such as cur-
rent and density show a decent similarity to the pure quantum case, especially
for λc � Δr. Coupling the quantum character of carrier transport with the
classical evolution of particles seems to be a promising step towards an efficient
self-consistent coupling of the Wigner and Poisson equations.
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