
Evaluation of Serial and Parallel
Shared-Memory Distance-1 Graph

Coloring Algorithms

Lukas Gnam1(B), Siegfried Selberherr2, and Josef Weinbub1

1 Christian Doppler Laboratory for High Performance TCAD,
Institute for Microelectronics, TU Wien, Vienna, Austria

{gnam,weinbub}@iue.tuwien.ac.at
2 Institute for Microelectronics, TU Wien, Vienna, Austria

selberherr@iue.tuwien.ac.at

Abstract. Within the scope of computational science and engineering,
the standard graph coloring problem, the distance-1 coloring, is typically
used to select independent sets on which subsequent parallel computa-
tions can be guaranteed. As graph coloring is an active field of research,
various algorithms are available, each offering advantages and disadvan-
tages. We compare several serial as well as parallel shared-memory graph
coloring algorithms for the standard graph coloring problem based on ref-
erence graphs. Our investigation covers well established as well as recent
algorithms and their support for balanced and unbalanced approaches.
An overview on speedup, used number of colors, and their respective
population for different test graphs is provided. It is shown that the
parallel approaches produce similar results as the serial methods, but
for specific cases the serial algorithms still remain a good option, when
certain properties (e.g., balancing) are of major importance.

Keywords: Graph coloring · Shared-memory · Distance-1 coloring
Parallel algorithm

1 Introduction

The decomposition of computational tasks into independent sets, which pave the
way for a subsequent parallelization step, is a widely used approach to exploit
parallel computing resources. Examples of such use cases are community detec-
tion [9], mesh adaptation [7], and linear algebra [10] algorithms.

In this work, we consider the standard graph coloring problem, the distance-1
coloring. For a general graph G(V,E) a distance-1 coloring is a coloring, where
any two adjacent vertices receive different colors. Hence, each color represents
an independent set for possible subsequent parallel processing. Usually, the goal
of a distance-1 graph coloring problem is to use as few colors as possible: One
fact which is often neglected is the population of the resulting sets. Consider-
ing the standard formulations of such algorithms, they mostly result in highly
c© Springer Nature Switzerland AG 2019
G. Nikolov et al. (Eds.): NMA 2018, LNCS 11189, pp. 106–114, 2019.
https://doi.org/10.1007/978-3-030-10692-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10692-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-10692-8_12


Evaluation of Serial and Parallel Distance-1 Graph Coloring Algorithms 107

unbalanced populations. A heavily unbalanced coloring can lead to colors which
contain insufficient workload to achieve acceptable parallel efficiency, thus lead-
ing to an undesired bottleneck in a parallel workflow. Therefore, graph coloring
algorithms typically aim to use as few colors as possible to enable the subsequent
workflow to achieve proper scalability.

Although there have been several efforts to compare different graph coloring
algorithms in the past [1,6,9], we pick up on recent developments in this field and
provide an overview on some of the newest distance-1 graph coloring algorithms.
We show their difference in the number of colors used for different graphs, as well
as a comparison of the resulting color populations. Additionally, we investigate
the overhead in execution time experienced for different balancing approaches.
For the parallel algorithms we also provide speedup and strong scalability data.

In Sect. 2, we briefly discuss the related work and present the coloring algo-
rithms we used in our evaluation, followed by the actual evaluation of the algo-
rithms in Sect. 3.

2 Coloring Algorithms

The most widely used approach to achieve a coloring of a graph is the Greedy
coloring algorithm [5]. It iterates the graph and assigns the smallest color permis-
sible to the active graph vertex, by checking the color assigned to its neighbors
(usually colors are denoted using integers). Thus, for any graph with maximum
degree d1 this algorithm uses at most d + 1 colors. One major drawback of this
algorithm is, that the highest colors are the ones assigned the least, leading to
a skewness in the population of the colors. The Greedy algorithm is part of our
study.

To alleviate this skewness, the Greedy algorithm can be adapted such that it
assigns the least used color permissible, leading to a more balanced coloring of
the graph [9,11]. This algorithm is also part of our study and henceforth denoted
as Greedy-LU.

Based on an approach from Gebremedhin and Manne [4], a parallel algo-
rithm for speculative graph coloring was introduced by Çatalyürek et al. [1],
which follows a two-step strategy. The first step is to color the graph vertices in
parallel without checking for any possible conflicts. In a second step the previ-
ously colored graph vertices are checked and, if conflicts occur, the corresponding
graph vertices are marked for recoloring in the next iteration. Hence, the num-
ber of occurring conflicts defines the number of total iterations, which could lead
to performance drawbacks. Catalyürek’s algorithm, from now on referred to as
Parallel, acts as our baseline for the shared-memory parallel coloring approach.

Recently, Lu et al. presented several serial shared-memory parallel algorithms
for distance-1 graph coloring [9]. Following their results, we selected the Sched-
uled Reverse algorithm to be included in our study. This particular approach
uses the Greedy algorithm to obtain an initial coloring and improves the bal-
ancing by moving vertices from colors with high population to colors with low
1 The degree of a vertex of a graph is the number of incident edges [3].



108 L. Gnam et al.

population, without introducing new colors. We chose to limit the algorithm to
three iterations, following the results and suggestions presented in [9], which is
a reasonable compromise between color balancing and computational overhead.
Within the remainder of this work, we will refer to this algorithm as Parallel
Recolor.

3 Evaluation

3.1 Benchmark Platform

We used a single compute node of the Vienna Scientific Cluster 3 (VSC-3). A
node offers two Intel Xeon E5-2650v2 Ivy Bridge EP processors running with
2.6 GHz and a total of 64 GB of main memory. Hence, 16 physical and 32 logi-
cal cores are available. The benchmarks were compiled using Intel’s C++ com-
piler, version 17.0.4, with -O3 optimization. Additionally, we made use of Intel’s
thread-core affinity capabilities using the KMP AFFINITY environment vari-
able to ensure proper thread pinning to avoid thread migration. We used a
static OpenMP loop scheduling, as the problems do not pose a load-balancing
issue.

3.2 Test Graphs

For our investigations we used four different graphs, where three of them were
created with the parallel graph generation software PaRMAT [8] following the
approach from Catalyürek [1]. We varied the graph parameters a, b, and c (see
Table 1) while keeping a constant total number of vertices of 16 777 216. The first
graph, RMAT-ER, is a graph belonging to the so-called Erdös-Rényi class with
a normal degree distribution, whereas the other two, RMAT-G and RMAT-B,
have multiple local maxima of the degree distribution (for more details see
[1]). The highest number of neighbors for a vertex (maximum vertex degree)
is observed in the RMAT-B graph with 49 212. The fourth test graph is taken
from the University of Florida Sparse Matrix Collection [2] and is a mesh mod-
eling a BMW 3 series car. An overview on the graph properties is shown in
Table 1.

Table 1. Properties of the four graphs used in this evaluation study as well as the
graph parameters for the RMAT graphs used within PaRMAT.

Graph Vertices Avg. degree Max. degree a b c

RMAT-ER 16 777 216 16 42 0.25 0.25 0.25

RMAT-G 16 777 216 16 41 938 0.45 0.15 0.25

RMAT-B 16 777 216 16 49 212 0.55 0.15 0.15

BMW 227 362 48.65 335 - - -



Evaluation of Serial and Parallel Distance-1 Graph Coloring Algorithms 109

3.3 Coloring Quality

In Fig. 1 we show the maximum number of colors used by each of the individual
algorithms for the four input graphs. For the RMAT-ER graph the Greedy-LU
algorithm uses the most colors, i.e., 23, compared to 12 for all others, includ-
ing the Parallel algorithm with 32 threads. Due to its recoloring approach the
Parallel Recolor algorithm uses always the same number of colors as the Greedy
algorithm, because the latter acts as the initial input coloring and no colors are
added while balancing. This is independent of the number of threads being used.
Additionally, it can be observed that the actual number of colors is always way
below the maximum vertex degree, and often also in the range of the nearly opti-
mal Greedy coloring algorithm. In the case of the RMAT-G graph, Greedy-LU
produces an output using 70 colors, whereas the other algorithms use only 26.
The resulting colorings require about 1600 times less colors than the maximum
vertex degree occurring in this graph, except of the Greedy-LU algorithm which
uses nearly 600 times less colors. The difference results from the Greedy coloring
approach applied in the two parallel algorithms, which is unbalanced in contrast
to the Greedy-LU algorithm. Considering the RMAT-B graph, the Greedy-LU
algorithm requires the most colors, i.e., 395, which is about four times more
than the demand from the Parallel algorithm using 32 threads. The results for
the three-dimensional BMW mesh show that Parallel with 32 threads uses the
least number of colors. This is a result of the parallel execution of the Greedy
coloring approach in its tentative coloring phase, yielding a better outcome in
the number of used colors and their population for this specific graph.

Fig. 1. Maximum number of colors (left) and relative standard deviation of the color
population (right) resulting from the investigated algorithms for each of the input
graphs. For the Parallel algorithm the results obtained with 1 (1T) and 32 threads
(32T) are depicted. Note that the single-threaded version produces the same results
as the Greedy algorithm. Since the maximum number of colors used by the Parallel
Recolor algorithm does not depend on the number of threads only one result bar is
shown in each figure. (Color figure online)

To compare the population of the colors produced by the implemented algo-
rithms we use the relative standard deviation of the coloring results (see Fig. 1).
The different distributions of vertex degrees in each graph (see Table 1) strongly



110 L. Gnam et al.

influence the resulting color populations: Vertices with a high degree compared
to the graph’s average degree lead to a higher number of colors with very low
population. This is especially observable for the RMAT graphs, where for RMAT-
ER the deviations range between 11–75%, for RMAT-G between 0–270%, and
for RMAT-B between 0–565%. For the BMW graph the deviations are between
26–74%. As can be seen, the best results (i.e., the least deviation) are obtained
using the Greedy-LU algorithm, since it initially tries to balance the colors. In
case of the three RMAT graphs the Parallel Recolor algorithm returns the second
best deviation results, followed by the Greedy and the Parallel algorithm. The
Parallel algorithm using 32 threads produces similar results as Greedy, except
for the RMAT-B graph, where its deviation is larger than the deviation resulting
from the Greedy algorithm. For the BMW graph the Parallel algorithm using
32 threads produces the best deviation results after the Greedy-LU algorithm,
followed by the Parallel Recolor algorithm. Because it assigns the smallest color
permissible, the Greedy algorithm produces the highest skewness. Regarding the
color population for the BMW graph, Parallel also performs better than Parallel
Recolor. Nevertheless, the relative standard deviation must not be viewed as a
single quality metric for the population deviation of the used colors, because
there can still be very large differences between specific colors. Figure 2 shows
these differences in the color populations occurring for the different graphs. Since
the Greedy algorithm uses the smallest color permissible for coloring a vertex,
the color population decreases for increasing color indices when applying the
Greedy as well as the Parallel algorithm. Therefore, we observe a high skew-
ness in the results produced by the Greedy and the Parallel algorithm. Since
the Parallel Recolor algorithm does not add new colors, strong jumps of color
populations can be observed, especially for high color indices, but it alleviates
the high skewness produced initially with the Greedy algorithm. This effect is
shown in Fig. 2, where Parallel Recolor produces well balanced colorings for the
RMAT-ER and RMAT-G graphs, whereas for the other two cases it results in
significant population differences for higher colors (e.g., 264 times higher for color
54 than for color 53 in the RMAT-B graph). Regarding the results obtained with
the Parallel algorithm, our investigations show that it produces similar results
as the Greedy algorithm, since the Parallel algorithm uses a Greedy approach in
its parallel coloring step. As expected, the Greedy-LU algorithm produces the
best balanced colorings for all test graphs but at the price of using 1.5 to almost
5 times more colors than the unbalanced Greedy algorithm.

3.4 Strong Scaling Analysis

Since not only the resulting number of colors and their respective population
can have a strong impact on the overall application performance, but also the
execution time of the coloring algorithm itself, we additionally investigated the
strong scaling capabilities of the Parallel and the Parallel Recolor algorithm
based on the reference graphs. For the latter there is, in addition to the initial
use of the Greedy coloring algorithm, also some serial part in the algorithm
which prepares the data for parallel execution. Therefore, it can be expected



Evaluation of Serial and Parallel Distance-1 Graph Coloring Algorithms 111

RMAT-ER RMAT-G

RMAT-B BMW

Fig. 2. Resulting color populations for the four test graphs evaluated in our study.
For the Parallel algorithm we show the results obtained using 32 threads (32T), since
the single threaded version produces the same output as the Greedy algorithm. The
coloring results for the Parallel Recolor algorithm are independent from the number of
threads. (Color figure online)

that the recoloring approach of the Parallel Recolor algorithm is most likely
to experience parallel performance limitations. Figure 3 and Table 2 show this
expected behavior. All timings are averaged based on three iterations.

The execution times for the single-threaded versions show major differences
for the three RMAT test graphs. The Parallel Recolor algorithm is nearly two
times faster than the Parallel algorithm for the RMAT-ER graph, and 1.3 times
faster for the other two RMAT graphs, because the Parallel algorithm iterates
at least twice over the graph (coloring and checking), whereas Parallel Recolor
retains the nearly optimal initial Greedy coloring. As shown in Table 2, the single-
threaded execution times for the BMW graph are similar, due to the smaller
number of vertices: 0.132 s for the Parallel algorithm and 0.137 s for the Parallel
Recolor algorithm. As expected, when increasing the number of threads Parallel
outperforms Parallel Recolor for more than 2 threads for the RMAT-ER and the
RMAT-G graph and for more than 4 threads for the RMAT-B graph. However,
for the BMW graph the Parallel Recolor algorithm scales best for up to 16
threads, albeit breaking down for 32 threads, because of the increased number
of recoloring conflicts occurring with a higher number of threads for this graph.



112 L. Gnam et al.

RMAT-ER RMAT-G

RMAT-B BMW

Fig. 3. Speedups of the parallel algorithms for the different test graphs.

Table 2. Execution times in seconds of the algorithms for the test graphs, with the
fastest time for each graph in bold. For the Parallel and Parallel Recolor (Par.Rec.)
algorithms the results obtained with 1 (1T) and 32 threads (32T) are shown.

Graph Greedy Greedy-LU Parallel 1T Parallel 32T Par.Rec.1T Par.Rec.32T

RMAT-ER 7.213 12.32 26.71 2.21 13.97 10.03

RMAT-G 5.765 140.21 19.55 2.10 15.11 9.53

RMAT-B 6.372 29.02 19.50 2.17 15.43 10.21

BMW 0.036 0.378 0.132 0.075 0.137 0.242

4 Conclusions

As shown in this work, the resulting colorings depend heavily on the type and
properties of the respective input graph (e.g., see Figs. 1 and 2). In order to
make an adequate choice it is therefore necessary to determine the requirements
of the specific task for which the coloring should be used. If a balanced color
distribution is the primary metric of interest, then the Greedy-LU algorithm is
the best choice. However, if the application in mind has to repeatedly execute
the coloring algorithm, it is likely that the execution time spent in coloring
becomes more and more dominant: As the timings in Table 2 indicate, there



Evaluation of Serial and Parallel Distance-1 Graph Coloring Algorithms 113

are cases where the Greedy-LU algorithm takes about 24 times longer than the
unbalanced serial Greedy algorithm. This results from the fact, that the Greedy-
LU algorithm has to maintain a list of how often each color has already been
assigned, such that the least used color permissible is picked.

This introduces the execution performance - and by extension parallel scala-
bility - as a potential core metric. As shown in Figs. 2 and 3, as well as in Table 2,
in most cases the use of a parallel coloring strategy, like the Parallel algorithm
using 32 threads, can save up to 70% of time spent in coloring compared to the
Greedy algorithm while producing similar results. In our test cases the speed
of the Parallel Recolor algorithm suffers from its serial preparation step, yield-
ing inferior execution performance than the Parallel algorithm. Nevertheless,
if balancing of the colors and execution time are of importance, the recoloring
approach remains still a reasonable choice, because in some cases it is more than
14 times faster than the Greedy-LU algorithm and guarantees that the number
of colors used is the same as with the Greedy algorithm.

In all cases, the Greedy-LU algorithm proves to give the best balanced col-
orings, while in most cases the Parallel algorithm guarantees a proper tradeoff
between execution time and the number of colors. For the BMW graph, the
serial Greedy algorithm provides a well-balanced tradeoff between all three per-
formance parameters.

Acknowledgements. The financial support by the Austrian Federal Ministry for Dig-
ital and Economic Affairs and the National Foundation for Research, Technology and
Development is gratefully acknowledged. The computational results presented have
been achieved using the Vienna Scientific Cluster (VSC).

References

1. Çatalyürek, Ü.V., Feo, J., Gebremedhin, A.H., Halappanavar, M., Pothen, A.:
Graph coloring algorithms for multi-core and massively multithreaded architec-
tures. Parallel Comput. 38(10), 576–594 (2012)

2. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 1:1–1:25 (2011)

3. Diestel, R.: Graph Theory, 5th edn. Springer, Heidelberg (2017)
4. Gebremedhin, A.H., Manne, F.: Scalable parallel graph coloring algorithms. Con-

curr. Pract. Exp. 12(12), 1131–1146 (2000)
5. Gyárfás, A., Lehel, J.: On-line and first fit colorings of graphs. J. Graph Theory

12(2), 217–227 (1988)
6. Hawick, K., Leist, A., Playne, D.: Parallel graph component labelling with GPUs

and CUDA. Parallel Comput. 36(12), 655–678 (2010)
7. Ibanez, D., Shephard, M.: Mesh adaptation for moving objects on shared memory

hardware. In: Proceedings of the International Meshing Roundtable (2016)
8. Khorasani, F., Gupta, R., Bhuyan, L.N.: Scalable SIMD-efficient graph processing

on GPUs. In: Proceedings of the International Conference on Parallel Computing
Technologies, pp. 39–50 (2015)

9. Lu, H., Halappanavar, M., Chavarŕıa-Miranda, D., Gebremedhin, A.H., Panyala,
A., Kalyanaraman, A.: Algorithms for balanced graph colorings with applications
in parallel computing. IEEE Trans. Parallel Distrib. Syst. 28(5), 1240–1256 (2017)



114 L. Gnam et al.

10. Manne, F.: A parallel algorithm for computing the extremal eigenvalues of very
large sparse matrices. In: K̊agström, B., Dongarra, J., Elmroth, E., Waśniewski, J.
(eds.) PARA 1998. LNCS, vol. 1541, pp. 332–336. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0095354

11. Manne, F., Boman, E.: Balanced Greedy colorings of sparse random graphs. In:
Proceedings of the Norwegian Informatics Conference, pp. 113–124 (2005)

https://doi.org/10.1007/BFb0095354

	Evaluation of Serial and Parallel Shared-Memory Distance-1 Graph Coloring Algorithms
	1 Introduction
	2 Coloring Algorithms
	3 Evaluation
	3.1 Benchmark Platform
	3.2 Test Graphs
	3.3 Coloring Quality
	3.4 Strong Scaling Analysis

	4 Conclusions
	References




