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Abstract. We focus on a surface evolution problem where the local sur-
face speed depends on a computationally expensive scalar function with
non-local properties. The local surface speed must be re-evaluated in
each time step, even for non-moving parts of the surface, due to possi-
bly changed properties in remote regions of the simulation domain. We
present a method to evaluate the surface speed only on a sparse set of
points to reduce the computational effort. This sparse set of points is gen-
erated according to application-specific requirements using an iterative
partitioning scheme. We diffuse the result of a constant extrapolation in
the neighborhood of the sparse points to obtain an approximation to a
linear interpolation between the sparse points.

We demonstrate the method for a surface evolving with a local surface
speed depending on the incident flux from a source plane above the sur-
face. The obtained speedups range from 2 to 8 and the surface deviation
is less than 3 grid-cells for all evaluated test cases.

Keywords: Surface mesh - Surface evolution - Interpolation
Robust - Scalar - Sparse evaluation

1 Introduction

The simulation of dynamic surfaces is an integral part of a large number of areas
including fluid simulations [5], computer graphics [4], and semiconductor fabri-
cation [9]. The maximum time step for the simulation of the dynamic surface
is limited by the underlying discretization, the advection scheme, and the max-
imum surface speed. If the surface speed depends on global properties of the
domain, it must be re-evaluated in each time step, even for non-moving parts
of the surface. This full re-evaluation — especially for high resolution simula-
tions — potentially leads to situations where the surface speed model evaluation
dominates the overall simulation run time.
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The approach presented in the following provides a robust method to reduce
the number of necessary evaluations of the surface model. From a dense set of
evaluation points given by the resolution of the surface mesh, a subset of points
is selected using an iterative partitioning scheme. The scheme is controlled by a
freely definable refinement condition, allowing to adopt the method for different
application-specific requirements. After evaluating the surface model for this
subset of points, the solution for the remaining points in the dense set is obtained
by diffusing the result of a constant extrapolation in the neighborhood of the
sparse points using the error smoothing properties of the Jacobi method [1,
p. 895].

We evaluate our method based on an etching simulation problem, taken from
the area of semiconductor fabrication. We use a generic etching simulation test
case with a single material region to investigate our method. The refinement
condition for the iterative partitioning scheme is modeled using fixed thresholds
for local flux differences and surface normal deviations. As illustrating example,
a study of an etching process involving high aspect ratio holes can be found in
[2]. The etching process selectively removes material from a substrate, repre-
senting a surface evolution problem. When modeling etching processes, typically
the surface speed evaluation is the dominating part of the overall simulation
run time. This, together with the fact that simulations become more and more
intricate (i.e., both with respect to geometry and involved physics), leads to
unacceptable long simulation run times. The central motivation for this work is
to reduce the simulation run time in such scenarios as much as possible to enable
more intricate simulation problems.

2 TIterative Partitioning Scheme

We require a triangulated surface mesh — representing the evolving surface —
and define the dense set of evaluation points as the set of all triangle centroids.
Algorithm 1 is used to iteratively select a sparse subset of evaluation points
depending on (a) the maximal globally allowed edge distance (dinaz,) between
two points in the subset, (b) an array of maximal allowed edge distances for
each point in the dense set where each entry is between 0 and dye4,, and (c) a
refinement condition. The refinement condition defines in each iteration and for
each point in the sparse set, if additional points in the surrounding should be
added to the sparse set. Additionally to the sparse set, Algorithm 1 assigns one of
the sparse points to each of the points in the dense set. All points with the same
sparse “parent” are referred to as patch in the following. The patches are the
“spacers” between the points in the sparse set and are used to efficiently identify
neighbors in the sparse set and to generate the initial guess for the Jacobi solver
discussed in Sect. 3. The refinement condition used in Sect. 4 is based on a fixed
threshold for the angular deviation of the surface normal and the deviation of
the surface speed between a sparse point and its sparse neighbors (cf. Eq. 2).

Details for the subroutines in Algorithm 1 can be found in Appendix A.
Figure 1 illustrates the individual stages of the algorithm using a small, regular
triangulated mesh:
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(a) In the initial iteration, a triangle is selected as active and a patch (red) is
formed out of the surrounding triangles until the maximum allowed distance
dymaz, 18 reached. In this example, we use diqz, = 8. The first triangle is
selected arbitrarily; the simplest choice is the first triangle in the list of
triangles of the mesh.

(b) One of the remaining triangles (the simplest choice is again the first unpro-
cessed triangle in the list of triangles) in the unprocessed region of the mesh
is selected and a new patch (blue) is formed, which overwrites the red patch
where the edge distance is smaller to the blue origin. In the initial iteration,
this procedure is repeated until all triangles of the mesh have been processed.
The result of (b) is a list of patches covering the whole surface.

(¢) The connection between the two points of the sparse set (black line) is
detected, when the two corresponding patches share one or more edges of
the mesh. The result of step (c) is a set of connections between neighboring
sparse points (triangles with label “07).

(d) In the next iteration (first refining iteration), if the refinement condition is
evaluated to true for a sparse point, the sub region of the associated patch,
where the edge distance to the origin is above dpaz,/4, is withdrawn from
the patch; the threshold for the withdrawal (dimaq,/4) results in a core patch
of “diameter” dpmaz,/2, surrounded by a withdrawn region with a minimum
“thickness” of dpaz,/4-

(e) In the withdrawn region, patches are created (analog to the initial iteration)
until all triangles have been processed, but now using dmaz, = dmaze/2;
the division by 2 leads to a bisection of the maximal edge distance between
sparse points on the patch. Like before, which of the triangles is selected as
origin of a patch is arbitrary as long as it is unprocessed; typically the first
triangle in the list of withdrawn triangles is chosen.

(f) The connections between the 6 sparse points, as a result of the refinement
of the red patch, are illustrated (black lines).

After the refinement is completed for all patches where the refinement condition
evaluates to true, the refinement condition is re-evaluated for all sparse points.
Subsequently, the refinement is repeated with diaz, = dmaz, /2, continuously
leading to a bisection of the maximal edge distance between sparse points on
the patch. The algorithm is terminated either because the refinement condition
evaluates to false for all sparse points or dpqe., = 1, corresponding to a patch
consisting of only one triangle. If the refinement condition depends on the surface
velocity at the sparse points, the surface model must be evaluated for the newly
added sparse points in each iteration.
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Fig. 1. Schematic depiction of the stages of the iterative partitioning scheme for an
exemplary mesh. Yellow lines denote patch boundaries. (a) Initial creation of a patch
where the numbers refer to edge distances to the origin; for visualization purposes only,
the triangles which will be removed from the patch in the next step use a smaller font
size. (b) Creation of a second patch (blue) starting at one of the unprocessed triangles.
(c) Sparse neighbor connection between the two origins of the patches. (d) Withdrawal
of subregion in red patch. (e) Refinement of the withdrawn region in the red patch
with dmaz; = dmazo/2. (f) Updated sparse neighbor connections after the red patch
was refined. (Color figure online)

How well the edge distances between the centroids map to arc length dis-
tances on the triangular mesh depends on the uniformity of the mesh with
respect to triangle shape and size. Only with a mesh consisting of triangles
with comparable size and quality the algorithm will produce “convex” patches
(convex with respect to the polygon constructed out of the outermost centroids).
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After completion, Algorithm 1 provides a sparse set of points with corre-
sponding sparse neighbors and patch information.

Algorithm 1. Adaptive decimation of evaluation locations
on a triangular surface mesh.

Input: d,qz0, distTarget[i], RefinementCondition(s)
Output: active[], sparseNeighbors|], patches]]
Algorithm
withdrawn[Ny,;] = true; reflagged[Ny,.;] = false; active[Ny,;] = false;
distance[Nyri] = dimazo; parent[Ny;] = -1;
patches[] = empty map(activeIndex,patchIndices);
sparseNeighbors[] = empty map(activeIndex,activeNeighbors);
indices[Ny;] = iota(0,Ny);
FlagTriangles (indices, dmaz)
RebuildPatches();
EvaluateSurfaceModel(for all active indices)
for n=1...log 2(dmaz, ) do
reflagged[Ny,;| = false;
withdrawn[Ny,;] = false;
numNewPatches = 0;
foreach patch in patches do
lactive = patch.activelndex;
if RefinementCondition(igctive) == true AND
reflaggedfiqetive] == false then
| numNewPatches += RefinePatch (igctives dmazy/2");

if numNewPatches == 0 then
| break;

RebuildPatches();
EvaluateSurfaceModel(for all newly active indices)

3 Interpolation Between Sparse Points

Inherent to its construction method, the sparse set of points and the connections
between sparse neighbors do not necessarily allow to construct a sparse mesh
covering the complete original surface, which could be used for interpolation.
To provide a robust, non-supervised, and computationally efficient interpolation
between the sparse points, we start with a constant extrapolation inside the
patches using the corresponding values at the origins. We use the properties
of Laplace’s equation (Eq.1) and the error diffusion properties of the Jacobi
method to smooth the jumps in the constant extrapolation and to approximate
a linear interpolation between the sparse points:

(a) In one dimension, the solution of Laplace’s equation (Eq. 1) is equivalent to
a linear interpolation between a sparse set of points when using the sparse set as
Dirichlet boundary conditions and model the boundaries of the domain as zero
gradient Neumann boundary conditions.
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(b) In one iteration of Jacobi’s method, local information travels only across one
edge; using this property we can restrict the radius of influence to not exceed the
maximal patch radius of dyas,/2 by only performing dy,q4,/2 or less iterations.

We approximate a linear interpolation between the sparse points on the sur-
face by using the same boundary conditions (cf. (a)) and starting with the con-
stant extrapolation as an initial guess. We do not solve Eq. 1 until convergence
but only perform a fixed number of iterations of Jacobi’s method.

~Viu=0 (1)

We use a finite volume approximation to discretize Eq. 1 on the triangulated
mesh by

integrating over the volume —/ VZudV =0,
v
applying Green’s Theorem 7/ Vu-n;dS =0,
8V
3
summing over the triangle edges — Z/ Vu - ny; =0,
j=1"9Vis
3
using the midpoint rule — Z Lg,;Vu - nj dS =0, and
j=1

u(zmj) —u(x;)

using a central difference between centroids Vu - nj ~ l T
Tn,;; — T4
ij

where u is the scalar function (in this case the local surface velocity), L, is the
length of the edge shared by triangle ¢ and j, and x; is the centroid of triangle ¢,
and z,,, is the centroid of the triangle connected to triangle i across edge j.
Using this discretization and the boundary conditions described above results
in a system of linear equations. The number of unknowns is the number of all
centroids minus the size of the sparse set.

4 Results

We evaluate our method using a generic etching simulation test case with a
single material region. The model for the surface speed is a linear relation to the
direct incident flux from a remote source plane above the surface. All results were
produced using a vertically focused (n = 100) power cosine source distribution
I'(®) = cos(©)"™. We use an integration method based on a 5 times subdivided
icosahedron as presented in [6] to calculate the direct flux rates on the surface.
The direct flux rates are normalized to the flux rate on a fully exposed horizontal
plane. As in [6], we used Embree [3,10] as ray tracing engine and Open VDB [7,8]
for level-set based surface advection and extraction.

The initial geometry (Fig. 2a) is a cylindrical hole with diameter 1 and depth
6 in a bulk region of thickness 8. Figure2b—e show the intermediate surface
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positions using the dense centroid-set for surface model evaluation (dense flux
evaluation) from time T = 0 up to T = 8, where the bulk region is completely
etched.

(a) T =0 (b) T =2 (c) T=4 (d) T=6 (e) T=38

./"“'\

Fig. 2. Cylindrical hole with diameter 1 and depth 6in a bulk region of thickness
8. Surface evolution during the simulation at times T = [0, 2, 4, 6, 8] (all units are
arbitrary). The level-set resolution is 64 cells per unit length.

To model the refinement condition we define for each sparse point 1,

the maximal normal deviation Vmag; = max Z(n;,ng),
VkEN,
. 1 U; — Uk
the average flux difference dugvg, = [wi |

n( k) VEEN, |uma:v - umin|,

and the maximal flux difference  du,,q0, = max M,
' VEENL |Umaz — Umin

where Ny, is the set of neighboring sparse point indices, and ,q, and Uy, are

the global maximum and minimum flux value, respectively. We use a combination

of fixed thresholds in all of the following results to model the refinement condition

in Algorithm 1:

true,  if Ve, > w/10
RefinementCondition(i) = { true, if w > 0.2 (2)

false, otherwise

Furthermore, we use dy,q0, = 32 in all simulations, which gives a total of 6
iterations (1 initial iteration, and [092(dmaez,) = 5 refinements), whereas the
number of Jacobi iterations is fixed to dimaz,/4 = 8. Figure3 illustrates the
resulting sparse centroid-set at time T = 4.5 for different level-set resolutions.
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(a) 15412/3264 ~ 5 (b) 56680/5802 ~ 10 (c) 220580/12611 ~
17

Fig. 3. Sparse set of triangles (cf. triangles with labeled with “0” in Fig. 1) for level-set
resolutions 16 (a), 32 (b), and 64 (c) at time T = 4.5. The ratios between the total
number of triangles and the sparse set of triangles (black) are denoted.

In Fig. 4, we compare the results between the dense and sparse flux evaluation
at times T = 3 and T = 6. For a level-set resolution 64, this corresponds to time
step 800 and 1600, respectively. The two surfaces reveal deviations of up to 3
level-set cells, most prominent in the lower vertical region of the hole. In the
upper region of the hole and the top surface, nearly no deviations are present.

Table 1. Level-set resolutions, resulting initial domain resolutions, initial mesh
properties, and resulting number of time steps until T = 8.

Cells per unit length | Cells vertical | Cells horizontal | Triangles | Time steps
16 128 32 x 32 17k 540
32 256 64 x 64 67k 1080
64 512 128 x 128 262k 2160

We evaluate the performance of our method by tracing the run time per time
step from T = 0 to T = 8 for three different level-set resolutions summarized
in Table 1 for the dense and the sparse flux calculation. For each time step, the
run time for the flux evaluation and for the remaining parts (velocity extension,
advection, normalization, and mesh extraction; referred to as other tasks in the
following) is tracked (cf. Figs. 5, 6 and 7 green and red areas, respectively).
The flux integration method, which is used for a single point, is identical for
both cases. The implementation of Algorithm 1 is serial, in contrast to the flux
evaluation, which is OpenMP-parallelized in both cases to form a basis for a
realistic estimation of the speedups. The serial overhead generated by Algorithm
1 is accounted to the run time of the flux evaluation. All performance benchmarks
were conducted on an Intel Devil’s Canyon platform (i7-4970K, four physical,
eight logical cores) with 32 GB of main memory, using a C++ implementation
of the presented algorithm.
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sparse

Fig. 4. Comparison of surface positions at times T = [3, 6] for resolution 64. The
surface mesh for the dense and sparse flux evaluation is displayed on the left and right
half-space, respectively. Two regions are magnified on the right side where the blue
and red line correspond to slices of the dense and the sparse evaluation, respectively.
(Color figure online)

Figure 5 summarizes the performance differences for resolution 16; the upper
plot shows the run time per time step for the dense flux evaluation. The run
time at the beginning of the simulation is &~ 5.5s per time step. As soon as the
hole has reached the bottom of the bulk material, the number of triangles starts
to decrease and consequently the run time per time step drops linearly from T =
3.6 to T = 8. The ratio between flux evaluation (green) and other tasks (red) is
= 20 for the whole simulation, emphasizing the dominance of the computational
cost for the flux evaluation, even for small domain resolutions. The lower plot in
Fig.5 is analog to the upper plot, but for the sparse flux evaluation. A second
y-axis on the right is used to plot two additional properties: the ratio of dense
to sparse points (dashed line) and the speedup of the flux evaluation (solid line)
over the dense flux evaluation. Throughout the simulation, the dense/sparse
ratio is between 2.5 and 6 while the speedup is ~ 2.0.

Figures6 and 7 compare the performance for resolution 32 and 64, respec-
tively. With increasing resolution, the dominance of the flux evaluation in terms
of run time is also increased, leading to a negligible share of run time for the
other tasks in the case of dense flux evaluation. For sparse flux evaluation a
dense/sparse ratio of 3 to 14 and 4 to 35 is achieved for resolution 32 and 64,
respectively. However, different to resolution 16, the obtained speedups (5 and
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Fig. 5. Performance results for resolution 16. (Color figure online)
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Fig. 6. Performance results for resolution 32. (Color figure online)

8, respectively) are only constant up to T = 3.6, where the hole reaches the
bottom of the bulk material. From T = 3.6 to T = 8 the speedups decrease to
approximately 2 (following the dense/sparse ratio) keeping the total run time
per time step approximately constant up to T = 6.5.

The “gap factor” between achieved and potential speedup (i.e., dense/sparse
ratio) is higher for large meshes and ranges from = 2 for resolution 16, to ~ 4
for resolution 64 before the hole reaches the bottom. When approaching T = 8,
all three tested resolutions converge to a speedup of = 2.
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Fig. 7. Performance results for resolution 64. (Color figure online)

5 Summary

We presented a method to reduce the number of necessary evaluations of a sur-
face speed model in each time step of the simulation of a dynamic surface. A
sparse point-set and corresponding neighborhoods are constructed using an iter-
ative partitioning scheme. The surface speed model is only evaluated for this
sparse point-set. The variable limits for the allowed distance between sparse
points enables to balance between computational complexity and accuracy in
a robust way. Furthermore, a linear interpolation between the sparse points is
approximated by diffusing the result of a constant extrapolation in the neigh-
borhoods using the error smoothing properties of the Jacobi method.

Using a cylindrical hole with a directed vertical source as a generic etching
simulation test case, inspired by etching processes arising in semiconductor fab-
rication, we compare the results against a dense evaluation of the surface speed.
Deviations in the surface position are below 3 level-set cells for all tested config-
urations. The achieved speedups range from 2 for the lowest resolution up to 8
for the highest resolved surface. The speedups are tracked during all time steps
of the simulations starting from thick initial geometries to very thin geometries
at the end of the simulated physical process.

The method can be adapted to specific application requirements via a freely
definable refinement condition for the iterative partitioning scheme. We used
a refinement condition based on fixed thresholds of local deviations in surface
normal direction and surface speed.

Acknowledgment. The financial support by the Austrian Federal Ministry of Sci-
ence, Research and FEconomy and the National Foundation for Research, Technology
and Development is gratefully acknowledged.
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Algorithm 2. Recursive flagging and refinement of patches.

Function FlagNeighborhood (%, iparent; tprevs Apath; Amae)?
dmaz;y,. = distTarget|i];
if withdrawnfi] AND dpay >= dpath AND dmag,o,n; > dpath AND
distance[i] > dpqi, then
touched[i] = true;
parent[i] = Z.parent;
distance[i] = dpqin;

foreach i,. in edgeNeighborsfi] do

L if ine! = ipres then

| FlagNeighborhood (ine, iparent; %) dpath + 1, dmaz)

else
| SetNeighbors (i, iparent);

Function FlagTriangles (indices, dmqaz):
touched[] = false;
dpath = 05
numNewPatches = 0;
foreach i in indices do
if ltouched[i] and withdrawnfi] then
+-+numNewPatches;
active[i] = touched[i] = reflagged]i] = true;
parentl[i] = i;
distance[i] = dpqin;
foreach i, in edgeNeighborsfi] do
| FlagNeighborhood(ine, i, i, dpath + 1, dmaa)

L return numNewPatches
Function RefinePatch (igctive, dmaz):
count = Withdraw Gigctive, dmaz/2)

if count == 0 then
L return 0

else
UnSetAllNeighbors (igctive)

numNewPatches = FlagTriangles (patchesfiaetive[-patchIndices,
maz)
RebuildNeighbors (igctive)
UnWithdraw (igctive)
L return numNewPatches
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Algorithm 3. Helper functions for sparse neighbor handling.

Function SetNeighbors (i, igctive)

if parentfi] I= —1 and parentfi] != igctive then
sparseNeighbors[parent[i]].insert (iqctive );

L sparseNeighbors|igctive].insert(parent|i]);

Function UnSetAl1lNeighbors (igctive):

foreach i, in sparseNeighborsfigctive - activeNeighbors do
sparseNeighbors[iys].erase(igetive );

| sparseNeighbors[igetive]-erase(ins);

Function RebuildNeighbors (igctive)

foreach i in patchesfizctive /- patchIndices do

if lwithdrawn[i] then

L foreach i, in edgeNeighborsfi] do
| SetNeighbors (ine, tactive);

Algorithm 4. Helper functions for withdrawal and building patch

information.
Function Withdraw (igcive, d):
count = 0;

foreach i in patchesfiactive |- patchindices do
if distance[i] > d then

withdrawnli] = true;
distanceli] = dmaao;
parent[i] = -1;
+--count;

L return count

Function UnWithdraw (¢qciive)

foreach i in patchesfiaetive | -patchindices do
| withdrawnli] = false;

Function RebuildPatches():
patches.clear();
for i =0...Ny; — 1 do
L if parentfi == -1 then
| patches[parent|i]].insert(i);
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