Abstracts Home | ICT2014 Website - Nashville, TN, USA | Book of Abstracts

ITS Home

Promoting thermoelectric technology to mitigate global climate change

Google Search

A5: Nanoscale and low dimensional effects

Field Effect Density Modulation in Nanowires for Large Thermoelectric Power Factors: A Self-Consistent Atomistic Simulation Approach

Neophytos Neophytou^{1,2} and Hans Kosina²

¹School of Engineering, University of Warwick, Coventry, CV4 7AL, UK²Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, A-1040 Wien, Austria

Low-dimensional materials such as ultra-narrow nanowires have attracted significant attention as efficient thermoelectric materials because of their low thermal conductivity. Such benefits, however, although large, are reaching their limits, since thermal conductivities are already nearing the amorphous limit. Improving *ZT* through the power factor, on the other hand, is not to-date experimentally verified, despite initial suggestions. Low-dimensional materials, however, provide the possibility to achieve the required high carrier densities using field modulation techniques, such as remote doping and electrostatic gating. This removes the dopants and, thus, eliminates ionized impurity scattering, which is the strongest carrier scattering mechanism. Up to an order of magnitude higher electrical conductivity can, thus, be achieved. This is only possible in low-dimensional materials because of their large surface to volume ratio.

In this work, we employ atomistic calculations using the $sp^3d^5s^*$ tight-binding model and Boltzmann transport theory to investigate the thermoelectric properties of gated Si NWs. We couple the electronic structure calculation self-consistently to the Poisson equation for accurately capturing the effect of electrostatic gating. We simulate NWs of diameter ranging from 3nm up to 20nm, a numerically challenging task that involves several thousands of atoms in the simulation domain. We find that: i) Gated channels show a largely improved power factor, by a factor of $\sim 5x$, compared to doped channels. ii) Although the charge accumulates near the interfaces, the field is

still relatively weak, and surface roughness scattering does not degrade the performance significantly. iii) The electronic bandstructure can be modified upon gating in certain cases and the carrier mobility can be further improved. iv) Importantly, our simulations show that the benefits of gating could be observed for NW diameters even up to 40nm, which suggests that improved power factors can be achieved even for the already realized nanowire thermoelectric materials.

ICT2014 July 6-10 2014, Nashville, TN USA

ICT2014 Website

Sorting Categories

A: Materials

A1: Low temperature materials

A2: Medium temperature materials

A3: High temperature materials

A4: Theory - bulk materials

A5: Nanoscale and low dimensional effects

A6: Characterization

A7: Developments in measurement techniques and preparation methods

B: Elements, modules & systems

B1: Contacting and insulation

B2: Module design

B3: Power management and load balancing

B4: Thermal management and dynamics

B5: Energy system design and optimization

B6: DC/DC inverters

B7: Device and system performance

B8: Modelling

C: End use applications and markets

C1: Waste heat recovery

C2: Automotive

C3: Cooling

C4: Generators

C5: Sensors

C6: Novel applications

C7: Markets

Sponsors

Align Sourcing
Alphabet Energy
Ferrotec Thermal
Gentherm
Hotblock Onboard
KELK Ltd.
Kryotherm
Marlow Industries
Marvel Thermoelectrics
TE Technology
Thermion Company
Watronix/INB Thermoelectric
Xiamen Hicool Electronics

Your Link Here

All content on this site © 2006-14 by each individual author. All Rights Reserved.