Electronic transport simulations for TE power factor in nanostructures

S. Foster¹
D. Chakraborty¹, M. Thesberg², H. Kosina², N. Neophytou¹

¹School of Engineering, University of Warwick, Coventry, U.K.
²Institute for Microelectronics, TU Vienna, Austria
General description of our group’s work

Theoretical investigations of:
- electronic
- thermal
- thermoelectric properties

in nanoscale materials and devices
Approach - Tools

Electronic structure (atomistic to continuum)
1) Tight-binding (sp3d5s*)
2) Valence Force Fields
3) Force Constants
4) Effective mass approx.
5) Etc…

Transport (ballistic to diffusive)
1) Quantum mechanical (NEGF)
2) Semiclassical – L. Boltzmann
3) Monte Carlo
4) Landauer formalism

Geometries (1D-3D, non-uniform)
1) 3D geometry solvers
2) Nanocrystallines
3) Nanomeshes
4) Low-dimensional

- Graphene nanoribbon
- 3D geometry solvers
- Nanocrystallines
- Nanomeshes
- Low-dimensional geometries (1D-3D, non-uniform)
Motivation - Very high thermoelectric power factors

Very high PF:
2-phase materials: 15 mW/K²m⁻¹
3-phase materials: 22 mW/K²m⁻¹
(~7x compared to bulk Si)

Neophytou et al., Nanotechnology 2013,
Lorenzi et al, J. Electronic Materials 2014

Superlattices
Nanocrystalline materials
Multi-phase nanocomposites

Simultaneous improvement in σ and S
Outline

- Non-Equilibrium Green’s Function (NEGF):
 - Method
 - Example 1: Influence of variations in SLs
 - Example 2: Filtering in 1D vs 2D
 - Example 3: Nanocomposites

- Monte Carlo semiclassical simulator development:
 - Method
 - Self-consistency
 - Scaling to large geometries
 - Inclusion of quantum effects

- Conclusions
Non-Equilibrium Green’s Function (NEGF)

- Device Green’s function:
 \[G(E) = [(E + i0^+)I - H - \Sigma_1 - \Sigma_2]^{-1} \]

- Transmission:
 \[T(E) = Trace(\Gamma_1 G \Gamma_2 G^+) \]

- TE coefficients:
 \[I^{(j)} = \int_{-\infty}^{+\infty} \left(\frac{E - E_F}{k_B T} \right)^j T(E) \left(-\frac{\partial f}{\partial E} \right) dE \]

 \[G = \left(\frac{2q^2}{h} \right) I^{(0)} \quad [1 / \Omega] \]

 \[S = \left(-\frac{k_B}{q} \right) \frac{I^{(1)}}{I^{(0)}} \quad [V / K] \]

- Very powerful approach
- Can include scattering (decoherence)
- Can be computationally very expensive
- Captures the exact geometry and disorder
Example 1a: Variation study in superlattices

1. Variation in V_B reduces PF
2. Variations in wells size, barrier width do not affect the PF
Example 1: Detrimental effect of tunneling

Quantum tunneling is detrimental to S and to the PF
Example 2: Filtering in 1D vs 2D

1D Superlattice

2D Superlattice

(1) Variation in energy of current is larger in 1D
(2) 1D Utilizes S of barriers and σ of wells better
(3) 1D Utilizes energy filtering more effectively
Example 3: Nanocomposites – increase in S

Red spots: nano-inclusions (here they are barriers of $V_b=0.3\text{eV}$)
Blue region: channel

(1) Nano-inclusions improve S
(2) As the domain size decreases, the increase in S is larger
Outline

- Non-Equilibrium Green’s Function (NEGF):
 - Method
 - Example 1: Influence of variations in SLs
 - Example 2: Filtering in 1D vs 2D
 - Example 3: Nanocomposites

- Monte Carlo semiclassical simulator development:
 - Method
 - Self-consistency
 - Scaling to large geometries
 - Inclusion of quantum effects

- Conclusions
Monte Carlo method

- Electrons distributed in the channel according to the Fermi distribution and the Density of States
- Allowed to disperse under the influence of the potential
- Scattering by acoustic and optical phonons, ionized impurities, etc.
Thermoelectric coefficients from MC

1. Calculate the average energy of the current

 \[S = \frac{-I_{\Delta T} \cdot \Delta V}{I_{\Delta V} \cdot \Delta T} \] for arbitrary \(\Delta V \) and \(\Delta T \)

2. \(S = \frac{\Delta V}{\Delta T} \) for \(I_{\Delta T} = I_{\Delta V} \)
Simulations of superlattices in MC

- Include all relevant scattering parameters (next Ionised Impurities)
Include self-consistent electrostatics

ELECTROSTATICS

- given $n \rightarrow U_{scf}$
- Poisson
- Iterate until convergence
- given $U_{scf} \rightarrow n$

TRANSPORT

- Obtain the actual potential profile for specific doping distributions
Extension to 2D

- Extend to larger geometries, where NEGF cannot reach
- Envision 100nm x 1000nm domains
- Nano-inclusions of various sizes
- Extend to nano-inclusions, grain boundaries dislocations, etc.

Electron AND phonon transport
Incorporate quantum tunneling

- Basic idea:
 - Solve 1D NEGF for simplified cases
 - Provide a probability of going through the barrier when an electron reaches a barrier in MC

Effect of tunneling through a barrier
Non-Equilibrium Green’s Function (NEGF):
- Method
- Example 1: Influence of variations in SLs
- Example 2: Filtering in 1D vs 2D
- Example 3: Nanocomposites

Monte Carlo semiclassical simulator development:
- Method
- Self-consistency
- Scaling to large geometries
- Inclusion of quantum effects

Conclusions
Conclusions

- Techniques for electronic transport in nanocomposites
 - Quantum mechanical (NEGF)
 - Semiclassical Monte Carlo

- Extend to large geometries
- Perform realistic simulations
- Incorporate all important transport effects

Acknowledgements:

Mischa Thesberg, Hans Kosina (TU Vienna group), Dario Narducci (Univ. Milan-Bicocca)