Electronic transport simulations for nanostructured TE materials S Foster^{1*}, M Thesberg², C Kumarasinghe¹, V Vargiamidis¹, N Neophytou¹ ¹ School of Engineering, University of Warwick, Coventry, CV4 7AL, UK. ² Institute for Microelectronics, TU Wien, A-1040, Austria Motivation Nanostructures have shown large improvements in power factor^{[1][2]} Very high PF: 2-phase materials: 15 mW/K²m⁻¹ 3-phase materials: 22 mW/K²m⁻¹ (~7x compared to bulk Si) ### Methods – bands DFT - Ab-initio, many-body quantum approach - Barrier shape and dimensions depend on lattice growth direction, strain etc. - Calculated band structure then used extracted parameters in continuum codes ## Methods – transport NEGF - Fully quantum mechanical approach^[4] - Can include scattering - Captures exact geometry and disorder - But, computationally expensive - Monte Carlo - Semi-classical method^[5] - Electrons distributed in the channel and allowed to disperse - Scattering mechanisms and potential in the channel considered ### Results - **NEGF** simulations of 2D channels with nanoinclusions - Only small improvements in PF possible (unlike in superlattices) - With correct band offset, PF is independent of NI density V_B [eV] - **NEGF** simulations of 2D channels with voids - void density PF independent of geometry Limited impact from random variations Dependent only on ### Further work - Self-consistent Poisson 2D Monte Carlo - **ELECTROSTATICS** Obtain the given $n \rightarrow U_{scf}$ actual potential Iterate until profile from convergence specific given $U_{scf} \rightarrow n$ doping distributions - Quantum tunnelling - Provide a probability for electrons seeing the barrier in MC^[6] #### Conclusion - Nanostructures have the potential to improve thermoelectric performance. - Such materials can be modelled using a variety of simulation methods. - We aim to provide guidance on the design of future nanoscale thermoelectric devices. #### **References:** - 1) Neophytou *et* al., Nanotechnology, **24**, 205402, 2013 - 2) Lorenzi et al., J. Electronic Materials, 43, 3812-16, 2014 - 3) Biswas *et* al., Nature, **489**, 414-8, 2012 - 4) Datta, Superlattices and Microstructures, 2000 - 5) Jacoboni et al., Reviews of Modern Physics 1, 55, 645 1983 - 6) Kim et al., Journal of Applied Physics, **110**, 034511, 2011