
Registration number (to be completed by the organizers) 

Fully quantum mechanical transport simulations for the calculation 
of the thermoelectric power factor in nanocomposite materials 

Samuel Foster1,a, Mischa Thesberg2,b, and Neophytos Neophytou1,c 
1School of Engineering, University of Warwick, CV7 4AL, Coventry, UK 

2Institute for Microelectronics, Vienna University of Technology, Austria 
aS.Foster@warwick.ac.uk (corresponding author), bthesberg@iue.tuwien.ac.at, cN.Neophytou@warwick.ac.uk 

 

Abstract 
Nanocomposite materials are promising candidates for the new generation of thermoelectrics due to 

the ability of nanoinclusions to scatter phonons and drastically reduce thermal conductivity [1]. In addition, 
nanoinclusions could potentially improve the power factor by introducing energy filtering. The difficulty in 
improving the power factor, however, is the strong reduction in electrical conductivity that these nanoinclusions 
introduce, which can exceed the improvements in the Seebeck coefficient. Thus, in the majority of 
nanocomposite materials, the power factor is reduced compared to the pristine material.  

In this work we employ the fully quantum mechanical Non-Equilibrium Green’s function (NEGF) 
transport method to calculate the electronic and thermoelectric coefficients of two dimensional materials 
embedded with nanoinclusions. This formalism includes electron-phonon interactions, and captures all the 
details of geometry, quantisation, tunnelling, and the ballistic to diffusive nature of transport in a unified way 
[2,3]. It is a very convenient and accurate method of providing understanding of thermoelectric transport in 
nanomaterials, beyond semiclassical approximations, and beyond approximations that are usually assumed in 
order to combine the different geometrical features of the composite structure. 

A typical geometry that we simulate is shown in Fig. 1a below and can be either ordered or disordered. 
We show how these nanocomposites can be optimised to limit degradation in the power factor, and in some 
cases even provide mild improvements (Fig. 1b). We discuss how the key features in the design of 
nanocomposites are as follows: i) somewhat large diameter nanoinclusions (>3nm) are needed for the power 
factor benefit to be realised as they prevent quantum tunnelling, and the Seebeck coefficient can be increased, 
ii) using nanoinclusions of barrier height VB~kBT above the conduction band provides a small filtering effect that 
can also improve the Seebeck coefficient, iii) nanocomposite structures are not severely affected by increasing 
porosity if the channel is degenerately doped, as long as the nanocomposite barriers are lower than the Fermi 
level. This means that a large number of inclusions can be used without reduction in the power factor. These 
guidelines would be useful in the design of nanocomposites for enhanced thermoelectric performance. 

 

 Figure 1: (a) A typical nanoinclusion geometry, showing nanoinclusions of height VB, diameter D, 
average spacing d, and Fermi energy EF (b) Power factor versus barrier height, showing a peak at kBT above the conduction 

band. The Fermi energy is Ef=0.05eV (red dotted line). The error bar shows the variation produced by randomising the 
nanoinclusions in the geometry with VB=0.02. 
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