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I. INTRODUCTION

It is commonly accepted that electron-electron scattering
(EES) alters the high-energy tail of the energy distribu-
tion function [1] [2], and thus plays an important role
in the physically-based modeling of hot carrier degra-
dation [3]. One can distinguish between selfconsistent
models which assume the actual or an approximate non-
equilibrium distribution for the partner electrons, and
non-selfconsistent models which assume an equilibrium
distribution for the partner electrons. The latter approach
is suitable to describe the interaction of channel hot
electrons with a reservoir of cold electrons in the drain
region. This case is studied in the present work. We
briefly discuss the details about the derivation of the
single-particle scattering rate and the implementation in
a Monte Carlo simulator for both parabolic bands and
full-band structures.

II. THEORY

The two-particle transition rate for binary collisions of
two electrons is given by Fermi’s Golden rule.

P2(k1,k2;k′1,k
′
2) =

2π

~
∣∣〈k′1,k′2|V |k1,k2〉

∣∣2
× δ
[
ε(k′1) + ε(k′2)− ε(k1)− ε(k2)

]
(1)

Assuming screened Coulomb interaction and plane waves
for the electronic states gives the following matrix ele-
ment [4], [5]:

〈k′1,k
′
2|V |k1,k2〉 =

(
e2

εsΩ

)
δk1+k2,k′

1+k′
2∣∣k1 − k′1

∣∣2 + β2
s

(2)

The transition rate (1) is symmetric.

P2(k1,k2;k′1,k
′
2) = P2(k′1,k

′
2;k1,k2) (3)

This property is in accordance with the principle of
detailed balance for energy-conserving transitions.

In order to include EES in the single-particle frame-
work of the Boltzmann equation, one has to reduce the
two-particle scattering rate to a single-particle scattering
rate. This, of course, cannot go without approximations.
To describe the mixing of hot electrons from the channel
with cold electrons in the drain, it is reasonable to assume
a Fermi-Dirac distribution for the drain electrons. The
single-particle transition rate for the sample electron is
obtained by summing over all initial states k2 and final

states k′2 of the partner electrons. The factor 2 accounts
for spin-degeneracy of the k2 states.

P1(k1,k
′
1) =

∑
k2,k′

2

P2(k1,k2;k′1,k
′
2)

× 2f0(k2)
[
1− f0(k′2)

]
(4)

Using this definition of P1, the symmetry property (3),
and the Fermi-Dirac distribution f0, the following rela-
tion can be proved.

P1(k′1,k1) = P1(k1,k
′
1) e[ε(k

′
1)−ε(k1)]/kBT (5)

In the single-particle picture the transitions are inelastic
and the transition rate satisfies the principle of detailed
balance. In the context of device simulation, this means
that EES will establish a Maxwellian high-energy tail,
provided that interaction with an equilibrium electron
system is considered. Note that (5) holds true for ar-
bitrary dispersion relations ε(k).

III. IMPLEMENTATION

One out of the two sums in (4) can be readily evaluated
by means of the Kronecker-delta in (2), which imposes
momentum conservation. The second sum is converted to
an integral. The latter can be solved analytically under
the following assumptions regarding the partner elec-
trons: i) f0(k2) is a Maxwell-Boltzmann (MB) or Fermi-
Dirac (FD) distribution, and ii) the energy dispersion
ε(k2) is parabolic. For the sake of brevity we only show
the result for a MB distribution:

S1(k1,k
′
1) =

Ω

(2π)3
P1(k1,k

′
1)

=
ne4

(2π)3/2~2ε2s

√
m

kBT

1

q (q2 + β2
s )

2

× exp

(
− (ε(k′1)− ε(k1) + Eq)

2

4kBTEq

)
(6)

with

q =
∣∣k′1 − k1

∣∣ , Eq =
~2
∣∣k′1 − k1

∣∣2
2m

The total scattering rate Γ1 is obtained from (6) by
integration over the final states of the sample electron:

Γ1(k1) =

∫
S(k1,k

′
1) d3k′1 (7)
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Up to this point, no assumption about ε(k1), the dis-
persion relation of the sample electron, has been made.
This fact allows us to construct a model in which the a
(high-energetic) sample electron in a fullband structure
is interacting with a (low-energetic) partner electron
in a parabolic valley. This model is applicable if the
distribution of the partner electrons remains close to
equilibrium. The integral in (7) is approximated by a
discrete sum in k-space. To facilitate the selection of the
after-scattering state, all partial sums of the form

Γ1(kn, N) ≈
N∑
km

S(kn,km; b, EF )Vm,

N = 1, 2, . . . Nn (8)

are pre-computed and stored in a table. Here, kn and Vn
denote the center and the volume of the n-th tetrahedron,
respectively. The sum includes all tetrahedra m in the
neighborhood of tetrahedron n whose contributions to the
sum are greater than a predefined tolerance. If the number
of tetrahedra satisfying this criterion is denoted by Nn,
the total scattering rate equals Γ1(kn, Nn). A table of
partial sums (8) is stored for each discrete initial state kn
in the irreducible wedge of the Brillouin zone, for each
band b, and for a set of discrete Fermi levels EF in the
case of Fermi-Dirac statistics. The final state is obtained
by randomly selecting a tetrahedron m ∈ [1, Nn] using
the pre-computed table of partial sums.

The next model we want to discuss assumes a
parabolic dispersion for both the sample and the partner
electron, which, of course, is the standard model often
used in literature. From (6) a scattering rate of the
following form can be derived:

Γ1(ε) =
e2
√
mkBT

(2π)3/2~2εs
F
(√

ε/kBT , ~βs/
√

2mkBT
)

(9)

The function F defined in the following is evaluated by
means of numerical integration.

F (p, x) =

∞∫
0

s2

s2 + x2
e−(s−p)

2 − e−(s+p)
2

2p
ds . (10)

Since ionized-impurity scattering (IIS) and e-e scattering
(EES) are caused by the very same screened Coulomb
interaction, we compare the rates of these two scattering
mechanisms in Fig. 1 and Fig. 2. In both cases, the
scattering rate becomes smaller with increasing con-
centration. However, since the scattering potential gets
more localized with stronger screening, its distribution
in momentum space gets wider, and hence the momen-
tum transferred per scattering event gets larger. At high
energies, the rates become concentration-independent in
both cases. The main differences can be observed at low
energies. While an electron at rest is strongly affected
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Fig. 1. Electron-electron scattering rate calculated from (9) assuming
m = 0.3m0, εs = 11.68ε0 and T = 300K. The dashed line
represents the unscreened limit of the scattering rate.
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Fig. 2. Ionized-impurity scattering rate obtained from the Brooks-
Herring model [6] for the same parameters as in Fig. 1.

by the moving partner electrons, it will not be affected
by the static impurities. At low energies, the EES rate
assumes a constant value determined by F (0, x), whereas
the IIS rate vanishes for a non-zero screening parameter
βs. For weak screening (βs → 0) the EES rate converges
to a finite value determined by F (0, 0) = 1, whereas the
maximum of the IIS rate grows indefinitely, see Fig. 2.

IV. RESULTS FOR BULK SILICON

In a first test, the equilibrium distribution function is
simulated. Assuming a parabolic dispersion in the simu-
lation, consistent with the integration of the transition
rate (6), gives an equilibrium Maxwellian also in the
presence of EES. This is expected since EES satisfies
the principle of detailed balance. The numbers of energy
gain and loss processes are perfectly balanced for each
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scattering mechanism. Using the transition rate (6) in
a MC simulation with a non-parabolic dispersion (α =
0.5 eV−1), however, results in an imbalance of energy
gain and loss processes. An excess of phonon emissions
over absorptions indicates that the inconsistently used
EES model provides net energy to the electron system.

This example indicates that analytical formulae de-
rived for a parabolic dispersion should not be used in
a transport model with any other band-structure.

V. RESULTS FOR SILICON DEVICES

The EES model has been implemented in the Monte
Carlo device simulator VMC [7] for both analytical and
numerical band structures. The first device investigated
is an n+n−n+ diode with abrupt junctions. The doping
levels are 1019cm−3 and 1015cm−3, respectively. Fig. 3
shows the conduction band edge for an applied voltage
of 2 V and the electron densities. The plot distinguishes
between the total electron density and the density of elec-
trons originating from the source contact only. Cooling
of the hot carriers in the drain region is discussed in
Fig. 4.

The second device we consider is a planar n-channel
MOSFET with LG = 65 nm, tox =2.5 nm, and a channel
width of W = 1µm. Device geometry and doping
profiles have been obtained by process simulation [8].
The first simulation assumes a parabolic band. Fig. 5
shows the EDF at three surface points in the channel at
VGS = 2.2 V and VDS = 2.2 V. Fig. 5 indicates that EES
has virtually no influence on the non-equilibrium EDF.
The reason is that the EES transition rate (6) satisfies the
principle of detailed balance and thus does not alter the
Maxwellian high energy tail.

The full-band implementation of the EES model in
the MC code requires a numerical integration over the
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Fig. 3. Conduction band edge in an n+n−n+ diode with abrupt
junctions. The total electron density (S+D) and the partial density due
to electrons injected from the source contact (S) are shown.
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Fig. 4. Average electron energy in the n+n−n+ diode. The upper
curves (S) consider only the (hot) electrons originating from the source
region and clearly show the additional energy relaxation due to EES.
The lower curves (S+D) consider all electrons and show a stronger
carrier cooling because in addition to energy relaxation there occurs
also a mixing of the hot carriers with the cold carriers in the drain.

Brillouin zone. Fermi-Dirac statistics for the initial state
and the Pauli blocking factor for the final state of the part-
ner electron are taken into account. The after-scattering
state is selected randomly using pre-calculated lists of
tetrahedra. To resolve the high energy tail accurately, we
employ the recently developed backward MC method [9]
[10].

In Fig. 6 results from full-band transport calculations
are compared to the results of ViennaSHE, a determin-
istic solver for the BE based on a spherical harmonics
expansion of the distribution function [11]. That simula-
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Fig. 5. EDF at three surface points in the channel of a MOSFET with
and without EES. A parabolic dispersion is assumed in the transport
model to be consistent with the EES-rate (9).
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Fig. 6. EDF at three surface points in the channel with EES and
fullband effects included. The backward MC simulation accounts for
interaction with cold drain electrons and predicts a Maxwellian tail
(dashed line). ViennaSHE considers interaction with non-equilibrium
electrons at a fixed energy and severely overestimates the high-energy
tail.

tor accounts for an isotropic, multi-valley band-structure
that captures some features of the full-band density
of states. In the EES model, additional approximations
are introduced. For instance, the energy of the partner
electron before scattering is treated as a constant (ε∗)
which is set equal to the average energy. As shown
in Fig. 6, the MC model predicts a Maxwellian tail at
high energies in accordance with the assumption that the
hot carriers interact with an equilibrium system of cold
carriers, whereas the EES model of ViennaSHE predicts
a significant deviation from the Maxwellian tail. We
believe that an EES model that properly fulfills energy
and momentum conservation simultaneously would not
be able to yield such strong enhancements of the high
energy tail as reported in [1] [8] and [12].

VI. SUMMARY

Theoretical properties of the EES scattering rate and the
reduction to a one-particle model are briefly discussed.
In contrast to the divergence of the ionized-impurity
scattering rate in the unscreened limit, the EES rate is
convergent.

A model for electron-electron scattering is proposed,
which consistently combines a full-band structure for the
sample electron with a parabolic dispersion for the part-
ner electrons. By assuming an equilibrium distribution
for the latter, the model is able to describe the mixing
of hot carriers with a reservoir of cold carriers. This
model gives an upper estimate for the effect of EES since
heating of the partner electrons is neglected and thus
the difference of the mean energies of the hot and cold
ensembles is bigger than it would be in a self-consistent
model.
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