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A B S T R A C T

It is well-established that oxide defects adversely affect functionality and reliability of a wide range of micro-
electronic devices. In semiconductor-insulator systems, insulator defects can capture or emit charge carriers
from/to the semiconductor. These defects feature several stable configurations, which may have profound im-
plications for the rates of the charge capture and emission processes. Recently, these complex capture/emission
events have been investigated experimentally in considerable detail in Si/SiO2 devices, but their theoretical
understanding still remains vague. In this paper we discuss in detail how the capture/emission processes can be
simulated using the theoretical methods developed for calculating rates of charge transfer reactions between
molecules and in electro-chemistry. By employing this theoretical framework we link the atomistic defect
configurations to known trapping model parameters (e.g. trap levels) as well as measured capture/emission
times in Si/SiO2 devices. Using density functional theory (DFT) calculations, we investigate possible atomistic
configurations for various defects in amorphous (a)-SiO2 implicated in being involved in the degradation of
microelectronic devices. These include the oxygen vacancy and hydrogen bridge as well as the recently proposed
hydroxyl ′E center. In order to capture the effects of statistical defect-to-defect variations that are inevitably
present in amorphous insulators, we analyze a large ensemble of defects both experimentally and theoretically.
This large-scale investigation allows us to prioritize the candidates from our defect list based on their trap
parameter distributions. For example, we can rule out the ′E center as a possible candidate. In addition, we
establish realistic ranges for the trap parameters, which are useful for model calibration and increase the
credibility of simulation results by avoiding artificial solutions. Furthermore, we address the effect of nuclear
tunneling, which is involved according to the theory of charge transfer reactions. Based on our DFT results, we
demonstrate the impact of nuclear tunneling on the capture/emission process, including their temperature and
field dependence, and also give estimates for this effect in Si/SiO2 devices.

1. Introduction

Metal-oxide-semiconductor transistors are used in a wide range of
electronic devices underpinning ‘internet of things’ and most technol-
ogies and therefore have become an indispensable part of our daily
lives. Their technological success has been the result of intensive R&D
efforts, which have continued over decades and led to substantial
changes in technologies used for producing these devices. Nevertheless,
the technologically most relevant field-effect transistors (FETs) are still
based on semiconductor-insulator interface systems which are required
for the field-effect and thus the functionality of the transistors. While
idealized materials can be assumed for the basic understanding of their
functional principles, real devices contain defects, particularly in the

amorphous insulator and its interface to the semiconducting channel.
For instance, Pb centers, three-coordinated Si atoms with a dangling
bond, have been detected at Si/SiO2 interfaces by electron spin re-
sonance (ESR) spectroscopy [1,2]. In SiO2, this measurement method
revealed the existence of several types of so called ′E centers [1,2],
which originate from Si dangling bonds. Among them, the most pro-
minent are variants of the ′Eγ center usually associated with oxygen
deficiency. In addition, the 74 and 10.4 G doublet center, hydrogenated
variants of the ′E center, have been discovered in SiO2[3]. The ex-
istence of these ESR-active centers has also been confirmed by spin-
dependent recombination experiments (SDR) [4]. Furthermore, in-
vestigations based on spin dependent tunneling (SDT) have revealed the
existence of Kn centers in nitrided oxides [5].
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In numerous electrical measurements, defects have been demon-
strated to be electrically active, meaning that they can capture and emit
charge carriers from the substrate as well as the gate. These defects,
commonly referred to as charge traps, can strongly affect the device
characteristics or even impair the functionality of the transistors. For
instance, they were suggested to be involved in time-dependent di-
electric breakdown, causing device failure [6]. There are other promi-
nent and serious issues, such as stress-induced leakage currents (SILC)
[7–9], random-telegraph noise (RTN) in the drain current [10], bias
temperature instability (BTI) [11]. These phenomena have not only
been observed in conventional Si-based transistors but also in other
important technologies: In SiC and GaN power devices, charge capture
and emission were found to occur in such large concentrations that they
dominate the device functionality [12,13]. Furthermore, the introduc-
tion of novel two-dimensional materials is expected to provide high
device performance in terms of switching speed and power consump-
tion but has already been shown to suffer from charge trapping too. As
such, charge trapping appears to be a widespread issue among all
transistor technologies [14,15].

For decades, these charge trapping phenomena have been in-
vestigated by different experimental techniques: For instance, RTN
measurements and time-dependent defect spectroscopy (TDDS) can be
used to detect single charge trapping events of selected defects and
provide insight into the mechanisms behind charge trapping. Other
measurement techniques are Id(Vg) measurements [16–19], charge
pumping [20,21], measure-stress-measure [22–25], and on-the-fly
measurements [26,27] among others. However, all of them have in-
itially been designed for large-area devices, in which a multitude of
charge trapping events superimpose and thus single defects cannot be
assessed experimentally.

In all these measurement techniques, charge trapping essentially
occurs for two distinct operation modes of the transistors: In one mode,
the gate bias is kept at a constant level and the charge capture and
emission events occur stochastically distributed in time and give rise to
drain current noise for instance. As such, an RTN signal corresponds to
the equilibrium response for this operation mode with regard to charge
trapping. In the other mode, the transistor is alternatingly operated at a
high and a low gate bias level, where the former typically accelerates
capture events while the latter accelerates emission. The acceleration
due to the applied bias has motivated the term ‘stimulated
charge trapping’ for this operation mode and will be used throughout
this paper.

In order to better describe these phenomena theoretically, several
models have been put forward. In those models, the charge trapping
process has often been treated using phenomenological approaches
[28] for calculating the capture and emission rates. More sophisticated
models [29,30] already accounted for the tunneling of charge carriers
through the energy barrier from the substrate into the trap or vice
versa. McWorther et al. [31–33] incorporated the tunneling effect into
the Shockley-Read-Hall (SRH) theory in order to account for the
broadly distributed capture/emission (C/E) times via a different trap
depth. Kirton et al. [10] observed a strong temperature dependence of
the C/E time constants in the measured drain current noise. In order to
explain this, he also gave the capture/emission (C/E) process a first
microscopical interpretation within the framework of the nonradiative
multi-phonon (NMP) theory. This finding implied that the established
SRH model is an oversimplifying description for C/E processes and is
not applicable to charge trapping in oxide defects [34].

Even though some variants of the NMP theory have been applied in
several studies [8,35-38], their physical formulations often rely on
simplifying assumptions. Most of them are based on a model Hamilto-
nian in which the interactions between the electrons and the phonons
are described by a single term. As an approximation, this term is ex-
panded in a series of the atomic coordinates R and assumed to be
dominated by the first or second order term, referred to as ‘linear’ or
‘quadratic’ electron-phonon coupling, respectively. Although this

approach allows for closed-form expressions of the nonradiative multi-
phonon transitions, it does not capture the full complexity of actual
charge capture or emission processes.

Similar processes have been thoroughly investigated under the term
‘charge transfer’ (CT) reactions in the context of chemistry [39]. These
reactions are well described by a variety of theories, which have been
developed at various levels of sophistication. The most popular for-
mulation was proposed by Marcus, who was awarded the Nobel prize in
chemistry for his pioneering work in 1992. Meanwhile, these theories
have become well-established in many fields of chemistry and biology
and are routinely used to describe processes, such as photosynthesis,
corrosion, and chemiluminescence. Even though these theories led to a
significant progress in the understanding of molecular conduction in
nanoelectronics [40,41], they have remained virtually unrecognized in
the microelectronics community. In principle, the theory of CT reac-
tions already lays the foundation for modeling the actual C/E processes
involved in charge trapping. Defect model must still be adapted to the
case of microelectronic transistors where semiconductor-insulator
material systems are encountered. This requires consideration of all
interactions with the band states in the semiconductor substrate and the
gate contact, as it has already been done for molecular conduction
[40,41]. Furthermore, such a model must also account for the
presence of additional defect states as suggested by various
measurements [42,43].

In order to gain an atomistic insight into charge trapping, the de-
fects in the dielectrics were also investigated theoretically in numerous
density functional theory (DFT) studies [44]. For instance, the Pb center
has been intensively examined [45] and its reactions with atomic and
molecular hydrogen considered in [46,47]. Furthermore, the positively
charged oxygen vacancy in SiO2 was found to be stable in two config-
urations where one of them could be related to the ′E center [48–50].
The property of having two stable configurations is also referred to as
‘bistability’ and maybe linked to some unexpected behavior of defects
in microelectronic transistors. As such, it was the subject of intensive
discussions but has been confirmed by several independent groups
[49–55]. From a device perspective, it has been shown that the oxygen
vacancy easily reacts with a hydrogen and forms a defect called hy-
drogen bridge [7,56], which has a defect level within the SiO2 bandgap.
In a number of publications [44,57-59], several other defects have been
found to introduce trap levels within the HfO2 bandgap. Furthermore,
possible bistable defect configurations were proposed by Joeng et al.
[60] for nitrided oxides. In all those studies, however, the results of DFT
calculations were not used to predict the electron capture and emission
rates. In this paper we attempt to provide a link between the
electronic properties of defects in the oxide and electron C/E rates
measured experimentally.

To achieve that, we first present a rigorous derivation of a defect
model to describe the various aspects of charge trapping and to link its
parameters to atomistic simulations. To provide the experimental
foundations, the findings from TDDS studies will be summarized and
their implications for the defect model discussed in Section 2. Next, the
transition rates of C/E processes will be formulated based on the theory
developed for CT reactions (in Section 3). The resulting rate expressions
will then be incorporated in the defect model suggested by TDDS ex-
periments. Section 5 is devoted to defects which have been associated
with charge trapping phenomena and investigated by DFT. In Section 6,
their potential energy surfaces will be studied and related to the
parameters of the defect model.

2. Findings from TDDS studies

Recently a new measurement technique, termed TDDS, has shed
additional light on charge trapping in microelectronic transistors
[61,62]. It makes use of the fact that single charge capture/emission
events in small-area devices can be resolved as discrete steps in the
drain current or the threshold voltage. The step heights in combination
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with the emission times were found to be characteristic for each defect.
As a consequence, they can be used to identify each emission event with
a particular defect. Based on these data, TDDS has provided a con-
siderable amount of information on the defect behavior, suggesting an
improved physical picture of the charge trapping phenomenon. The
relevant observations made using TDDS are listed below:

• Charge capture and emission obey the statistics of first-order pro-
cesses and were tentatively associated with a nonradiative multi-
phonon (NMP) process [61], as proposed by Kirton [10].

• Both charge capture and emission typically show a pronounced
temperature dependence illustrated in Fig. 1. The extracted activa-
tion energies lie between 0.4 eV and 1.5 eV for the experimental
time window used. It is noted that this range might substantially
extend for increased time windows. The pronounced temperature
behavior suggests a strongly thermally activated C/E process, which
is characteristic for an NMP process. However, this behavior is in-
compatible with previously proposed models, such as the elastic
electron tunneling or the Shockley-Read-Hall model [63].

• Charge capture exhibits an exponential gate bias dependence over a
wide voltage range, a fact that is also consistent with NMP processes
but inconsistent with the SRH model (see Fig. 1).

• Charge capture is found to slow down for high-frequency AC gate
bias [64]. Such a behavior indicates the existence of additional
metastable states, which are involved in the charge capture process.

• The two defect variants which have so far been proposed differ
significantly in their bias dependence [65]. The charge emission
times of the ‘fixed oxide traps’ are insensitive to the gate bias, even
deep into accumulation (cf. Fig. 1). By contrast, ‘switching oxide
traps’ have emission times which vary at small gate biases. This
again demonstrates that the observed C/E dynamics cannot rely on a
simple two-state model and must involve metastable states.

• TDDS studies have revealed that electron capture and emission ex-
hibit similar gate bias and temperature dependences as the fixed and
switching hole traps in pMOSFETs [66]. Interestingly, the same
trapping behavior was also observed in device technologies based
on high-κ dielectrics [67,68]. This suggests that charge trapping in
those cases rests upon the same general concepts with similar phy-
sical processes being involved.

All the above findings led to the development of the four-state NMP
model, which relies on the idea of a bistable defect in both charge states
and is illustrated in the state diagram of Fig. 2. It was initially

motivated by the Harry-Diamond-Laboratory (HDL) [69] model, whose
three states were extended by a fourth one in order to explain the full
richness of experimental features. Interestingly, these states would also
be consistent with the configurations for the ′E center proposed in
Ref. [70].

In the four-state NMP model, the defect can become charged or
discharged during a capture or emission event and must, therefore, be
described by two stable charge states (1,2) — such as in a simple two-
state defect model. The peculiarity of this model, however, is the ad-
ditional metastable states, which are present in both charge states and
marked by primes ′ ′(1 ,2 ). These metastable states are assumed to differ
significantly in their configuration from their stable counterparts in the
same charge state. As such, the transitions ⇔ ′1 1 and ⇔ ′2 2 are thought
to be accompanied by large structural rearrangements, leading to defect
deformation and sometimes proceed over barriers that can only be
overcome by thermal activation. By contrast, the actual charge capture
and emission process occurs between different charge states but in-
volves a small structural rearrangement compared to that during the
transitions ⇔ ′1 1 and ⇔ ′2 2 .

Both, the defect deformation together with the NMP transition,
constitute the core of the four-state NMP model illustrated in Fig. 2. The
whole charge capture or emission consists of a two-step process, where
the defect does not undergo a direct transition between the stable states
(1,2) but takes the pathway over one of the metastable states ′ ′(1 ,2 ) as
indicated in Fig. 3. The state pairs ′(1,2 ) and ′(1 ,2) are grouped together
under the term ‘primary’ and the ‘secondary’ configuration, respec-
tively. It is emphasized here that this particular defect property ulti-
mately allows for the trapping dynamics seen for the fixed and the
switching oxide defects.

Even though these first TDDS studies have already provided deep
physical insight into the mechanisms behind charge trapping, later
long-time TDDS studies have augmented the picture of the bistable
defect. The new findings are briefly summarized below [71,72]:

Fig. 1. Measured capture (circles) and emission (triangles) times of a switching
(left) and a fixed (right) oxide hole trap. Both trap types show capture and
emission times with a clear temperature activation and have a pronounced gate
bias dependence in their capture times. However, they differ in the gate bias
dependence of their emission times: While hole emission remains unaffected by
the gate bias in the case of a fixed oxide hole trap, it is sensitive to bias var-
iations for a switching hole trap.
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Fig. 2. State diagram of the multi-state model for an ′E center. The defect has a
stable neutral (1) and a stable positive (2) charge state, where each may have a
metastable state marked by a prime ′ ′(1 ,2 ). The NMP transitions ⇔ ′1 2 and
′ ⇔1 2 occur between different charge states while the thermal transitions ⇔ ′1 1
and ⇔ ′2 2 proceed between same charge states. It is noted that the transitions
between the stable states are of primary interest as they correspond to the
measured capture and emission times seen in TDDS experiments. However, they
involve metastable states ′ ′(1 ,2 ), which strongly affect the gate-bias and tem-
perature dependence of the overall transition. The stick-and-ball models cor-
respond to the atomic configurations of a possible defect candidate, shown here
for illustration purposes only.
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• Defects occasionally disappear, remain inactive, and reappear after
a certain amount of time. This phenomenon is denoted ‘defect vo-
latility’ and observed for the neutral and the positive charge state of
the defects. Under switched bias conditions, this occurs for a large
fraction of the defects and on widely distributed time scales, ranging
from hours up to weeks. Importantly, there are no indications that
the volatile defects behave otherwise differently than their non-vo-
latile counterparts.

• Within the experimental error, the extracted de-activation and re-
activation times are likely to follow an exponential distribution,
consistent with a reaction-limited process. The volatility appears to
be linked to a hydrogen reaction, as suggested by measurements on
large-area devices with a different hydrogen content in the dielectric
[73]. Hence, the sought defect was suggested to be a hydrogen-
complexed defect.

These findings suggest a refined picture, in which the four-state
NMP model is extended by additional inactive states (see the state

diagram in Fig. 4). These newly introduced states exist for the neutral
and the positive charge state and can be accessed via a reaction with
hydrogen. Even though the reactants and their detailed reaction ki-
netics are still under investigation, the hydrogen bridge and the hy-
droxyl ′E center appear to be promising candidates [74]. The latter is
used to explain the state diagram of the extended NMP model in Fig. 4.
In its neutral charge state (1), the hydroxyl ′E consists of a hydroxyl
(OH) group facing a Si dangling bond. This defect may be de-activated
via a reaction to one of its precursor configurations: One possibility is
that a free hydrogen atom saturates the dangling bond, resulting in the
configuration 02. Alternatively, the hydrogen atom of the hydroxyl
group can be released, leading to a distorted O-Si-O bridge in the
pristine SiO2 network. This bridge site is a precursor, called 0, since it is
likely to form a hydroxyl ′E center if a hydrogen atom passes by. Fur-
thermore, the hydroxyl ′E center could also be deactivated in its posi-
tive charge state ′2 . There, the hydrogen atom may attach to one of the
nearby oxygen atoms, where it forms a fixed positive defect complex.
Although further transitions to other inactive defect configurations are
still conceivable, the concept of the extended NMP model relies on
these inactive states which do not allow for hole capture or emission.

The mentioned TDDS studies suggested a microscopic model for a
hypothetical defect, whose atomic structure has remained unspecified.
In order to confirm this model theoretically, the capture and emission
times must be calculated from the energetics of a hypothetical defect
and then compared to the time constants extracted from TDDS ex-
periments. For this purpose, a detailed mathematical model is needed,
which will be presented in the following section.

3. Derivation of the defect model

As charge capture and emission processes are at the heart of the
four-state NMP model, calculating rates of these processes is vital for
identifying defects responsible for these processes. For this purpose, the
theory of CT reactions [41,75,76] provides an excellent basis. Its deri-
vation will, therefore, be summarized in this section. Several essential
aspects, such as the distinction between adiabatic and diabatic transi-
tions, the Franck-Condon principle, the estimation of the electronic
matrix elements, and the computation of the Franck-Condon factors
will be discussed from the perspective of oxide traps in MOS transistors.

Fig. 3. Simplified state diagrams for hole capture (top left, bottom left) and
for hole emission of a fixed (top right) and a switching (bottom right) hole
trap. While hole capture primarily proceeds over state ′2 , hole emission is
dominated by a transition over either of the states ′1 or ′2 . For the latter, the
time-limiting step is assumed to be the pure thermal transition between the
states 2 and ′2 , which involves no CT and is gate bias independent. The former,
however, is dominated by the CT reaction between the states ′1 and 2, resulting
in a strong gate bias dependence.

Fig. 4. Extended four-state NMP model illustrated for a promising defect candidate, the hydroxyl ′E center. The core of this model (middle) is built around the
bistable defect with four states ′ ′(1,1 ,2,2 ) and describes the active defect, which is capable of capturing and emitting charge carriers. However, the extended variant of
the model also accounts for the inactive phases of the defect via transitions to the precursor states 0 and 02 (left) and the inactive states 0+ and 00 (right).
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The resulting CT rates will be incorporated within the framework of the
four-state NMP model, which also includes thermally activated defect
transformations. Furthermore, the CT rates will be generalized to ac-
count for the fact that the defect exchanges charge carriers with a full
spectrum of electronic states from, for instance, the conduction or the
valence band. Finally, Markov theory will be employed to derive the
capture and emission times observed in experiments.

3.1. Adiabatic charge transfer reactions

The most general formulation of CT reactions relies on a quantum
mechanical description of the atomic system in which the reaction is
taking place. Hence, the derivation of their corresponding rates starts
from the time-independent molecular Schrödinger equation

H ⟩ = ⟩Ur R r R|Ψ( , ) |Ψ( , ) .mol (3.1)

Here, Ψ(r,R) denotes the wavefunction of this system. The degrees of
freedoms are given by the 3M electronic and 3N nuclei coordinates with
M and N being the number of consider electrons and nuclei, respec-
tively. U is the total energy of the atomic system, which is described by
the following molecular Hamiltonian ℋmol

H T T V V V= + + + +R r r r R R( ) ( ) ( ) ( , ) ( ).mol n e ee en nn (3.2)

It includes the standard terms for the electronic T r( ( ))e and the nuclear
T R( ( ))n kinetic energies as well as the Coulombic contributions from
the electron-electron V r( ( ))ee , the electron-nuclei V r R( ( , ))en , and the
nuclei-nuclei V R( ( ))nn interactions.

In order to describe a CT reaction, the atomic system of the
molecular Schrödinger Eq. (3.1) has to contain the atomic structure
of the donor, which emits the transferred electron, as well as that of
the acceptor, which captures the transferred electron. The resulting
Schrödinger equation allows for the calculation of the quantum
mechanical states which are required to evaluate the charge capture
and emission rates. Considering charge trapping in transistors, this
atomic system would consist of the substrate and the dielectric in-
cluding the defect that captures or emits the charge carrier. If hole
capture is considered, the donor corresponds to the defect and the
acceptor to the substrate. Naturally, the roles of the donor and the
acceptor are reversed for hole emission. For such large structures,
the resulting Schrödinger equation represents a many-body problem
of interacting electrons and nuclei. In general, this problem is
mathematically intractable due to the complex correlations between
the interacting particles but is even further complicated in this case
due to the high-dimensionality of the considered atomic system and
the unknown amorphous phase of the oxide material. However, the
problem can be treated by two different approaches which make an
assumption on the corresponding wavefunctions and are suited for
different physical situations.

The common approach to solve the molecular Schrödinger equation
is to use the adiabatic approximation, which is also referred to as the
Born-Oppenheimer approximation. It is based on the assumption that
electrons move much faster than nuclei and can instantaneously adapt
to each nuclei configuration. Therefore the nuclei coordinates can be
treated as parameters in the total wavefunction and the adiabatic wa-
vefunction can be approximately expressed as a product of an electronic
ϕ r R( ( ; ))i

a and a nuclear η R( ( ))iα
a wavefunctions:

= ϕ ηr R r R RΨ ( , ) ( ; ) ( ).iα i iα
a a a (3.3)

Employing this ansatz allows one to split the Schrödinger equation
into a set of two coupled equations. The electronic Schrödinger
equation is:

H ⟩ = ⟩ϕ V ϕr R R r R| ( ; ) ( )| ( ; ) ,i i ie
a a a (3.4)

with the Hamiltonian (ℋe) defined by

H T V V V= + + +r r r R R( ) ( ) ( ; ) ( ).e e ee en nn (3.5)

In the basis of the adiabatic wavefunctions, the Hamiltonian can
be rewritten as

H ∑= ⟩⟨V ϕ ϕR r R r R( )| ( ; ) ( ; )|.
i

i i ie
a a a

(3.6)

Since it is of a pure diagonal form, it does not allow for transitions
between single electronic states i according to perturbation theory.

We note that Eq. (3.4) depends parametrically on the nuclei co-
ordinates R, which is why the solutions V R( )i

a of the electronic
Schrödinger equation are also functions of the nuclei coordinates R.
These solutions V R( )i

a act as potentials for the nuclear motion in the
coupled equation for nuclei:

T + ⟩ = ⟩V UR R r R r R( ( ) ( ))|Ψ ( , ) |Ψ ( , )i iα iα iαn
a a a a (3.7)

and are referred to as the adiabatic potential energy surface, discussed
later in this section. For an N atoms system, this potential is a complex
3N-dimensional hyper-surface in the space of the nuclei coordinates R.
For illustration purposes, however, it is usually depicted along a par-
ticular configuration coordinate in 2D diagrams.

When the above molecular Hamiltonian is represented in the basis
of the adiabatic wavefunctions, it reads

H ∑

∑

= ⟩⟨

+ ⟩⟨

U

θ

r R r R

R r R r R

|Ψ ( , ) Ψ ( , )|

( )|Ψ ( , ) Ψ ( , )|.
iα

iα iα iα

iα jβ
ij iα jβ

mol
a a a

,

a a a

(3.8)

This matrix is dominated by its diagonal elements Uiα
a while the off-

diagonal elements θ R( )ij
a are usually small except for rare cases dis-

cussed below.
The dominant elements Uiα

a provide a good approximative solution
for the stationary state of the molecular Hamiltonian. For instance, this
is the case for the frequently discussed example of LiF bonding [77]
shown schematically in Fig. 5. The LiF molecule is (highly) polar near
the equilibrium distance. However, when the atoms separate to about
1 nm, the system of the Li and F atoms becomes much lower in energy
than that of the Li+ and F- ions (see Fig. 5). During such a dissociation
process, an electron is transferred from the F- ion (donor) to the Li+ ion
(acceptor). As shown in the configuration coordinate diagram of Fig. 5,
in the adiabatic approximation the molecule remains on the lower
adiabatic potential instead of keeping its ionic bonding character (the

Conf. Coord.

E
n

er
g

y

Convalent Bonding
Ionic BondingLi

+
F

-

Li
0
 + F

0

iLFiL
+
 + F

-

Avoided
Crossing

Fig. 5. Schematic configuration coordinate diagram of an adiabatic transition,
illustrated for the system of a Li and a F atom. The solid black lines depict the
adiabatic potential of the ground (lower curve) and the first excited (upper curve)
state while the dashed and the dotted line show the behavior of the LiF system
which preserves its bonding character, i.e. the ionic or covalent bonding. The
former are specific to the Born-Oppenheimer approximation, which leads to an
avoided crossing between the involved states and thus results in a charge transfer.
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dotted line). The transition rates along the adiabatic potential can be
calculated using transition state theory and assume the form of an Ar-
rhenius-type expression [40,78,79]

= −k ν βEexp( ).a
0

‡ (3.9)

Here, ν0 takes the role of an attempt frequency and β is defined as
1/(kBT) with kB and T being the Boltzmann constant and the tem-
perature, respectively. E‡ corresponds to a thermal barrier, which must
be surmounted for a transition to occur. Such transitions are referred to
as ‘adiabatic’ transitions and take place in many molecular systems
where the donor and the acceptor are not too widely separated [80–82].

A similar description is applicable to defects in solids. The recent
theoretical investigation [83] demonstrates that the donor-acceptor
distance between defects may even extend up to the nanometer regime.
Assuming that localized defects can be described by molecular models,
it is conceivable that adiabatic transitions may also occur for defects
located close to the substrate-dielectric interface of a transistor. In-
triguingly, the adiabatic transitions exhibit a pronounced temperature
and gate-bias dependence, as seen in the experimental RTN and TDDS
data. In the four-state NMP model, the thermal behavior is due to the
exponential temperature dependence in the Arrhenius-type Eq. (3.9)
and is governed by the thermal barrier E‡. The gate-bias dependence
originates from the fact that a CT reaction inevitably involves a dipole
moment, such as the Li+F- complex of Fig. 5. This dipole moment varies
with the applied electric field and results in a field dependence of the
adiabatic potential and the corresponding thermal barrier E‡[6].

The Hamiltonian (3.8) has also additional matrix elements termed
dynamical coupling elements θ R( )ij

a [84] in Eq. (3.8) that can become
dominant for C/E processes. They originate from the fact that the spatial
derivatives of the quantum mechanical nuclei momenta act on
the electronic wavefunctions. In general, these elements have
two contributions

= +θ θ θR R R( ) ( ) ( ).ij ij ij
a a1 a2

(3.10)

The first term θ R( )ij
a1 results from the second derivatives of the electronic

wavefunctions ϕ r R( ; )i
a with respect to the nuclei coordinates R and

usually yields a negligible correction to the adiabatic potential and will
not be discussed in further detail here. The second term reads [41,77]

∑= − ⟨ ⟩θ
M

η ηR R d R R( ) ℏ ( )| ( )| ( )ij
n n

iα n j β
a2

2
a

,
a

(3.11)

= ⟨ ⟩ϕ ϕd R r R r R( ) ( ; )| ( ; ) .i n j
a a

(3.12)

Here, n denotes the nuclei coordinate and Mn corresponds to the re-
spective nuclei mass and ∇n to the respective spatial derivative. This term
plays an important role as it couples the nuclei states α and β via non-
adiabatic transitions. The farther the donor and the acceptor are sepa-
rated, the smaller the splitting becomes around the avoided crossing. As a
consequence, the dynamical coupling element θ R( )ij

a2 begins to diverge,
leading to the breakdown of the Born-Oppenheimer approximation. This
implies that the donor complex in the state α is likely to transfer to the
different state β in the region around the avoided crossing. In the context
of dissociation of the LiF molecule, such transitions tend to preserve
the bonding character and are represented by the dotted Li++F- po-
tential in Fig. 5.

3.2. Nonadiabatic charge transfer reactions

For an atomic system where the donor and acceptor are far sepa-
rated, CT reactions are better treated within the diabatic approxima-
tion. In [40,41] this approximation was employed for heterogeneous CT
reactions, which can take place at the interface between a solid (a
semiconductor or a metal [85]) and an electrolyte [40], consisting of
molecules. From a quantum mechanical point of view, one faces a
transition from a localized to a delocalized state or vice versa. An
analogous situation is found for charge capture and emission in

transistors where the defect and bulk wavefunctions play the roles of
the localized and the delocalized states, respectively. As such, the dia-
batic approximation appears to be the more suitable approach and will,
therefore, be used to derive the so-called ‘nonadiabatic’ CT
reactions [41,76,78].

The generalized formulation of the nonadiabatic CT reactions rests
upon an adiabatic-to-diabatic transformation [86]

=ϕ S ϕr R R r R( , ) ( ) ( , ),i ij j
a d

(3.13)

Sij(R) denotes a unitary operator and the superscripts ‘a’ and ‘d’ indicate
quantities defined within the adiabatic or the diabatic approximation,
respectively. This transformation allows to construct a basis set which
minimizes the singularities of the dynamical coupling elements and
thus removes the avoided crossing [87,88].

≈θ R( ) 0ij
a2 (3.14)

However, the resulting set of diabatic wavefunctions ϕ r R( ; )i
d does not

diagonalize the electronic Hamiltonian

H ∑

∑

= ⟩⟨

+ ⟩⟨
≠

V ϕ ϕ

θ ϕ ϕ

R r R r R

R r R r R

( )| ( ; ) ( ; )|

( )| ( ; ) ( ; )|.
i

i i i

i j
ij i j

e
d d d

d d d

(3.15)

While this Hamiltonian is still dominated by its diagonal elements
V R( )i

d , new off-diagonal elements θ R( )ij
d appear within the diabatic

approximation. The diagonal elements correspond to the diabatic po-
tential (see Fig. 6) of the electronic state i and usually match well with
their adiabatic counterparts — except for the regions around avoided
crossings. There, the diabatic potentials intersect and are coupled via
the small off-diagonal elements, defined by the static coupling
element [89]

H= ⟨ ⟩θ ϕ ϕR r R r R( ) ( ; )| | ( ; ) .ij i j
d d

e
d

(3.16)

As the construction of a diabatic basis set (3.13) is not well defined by
Eq. (3.14), there exist no accurate analytical expressions for this
quantity. However, a simplifying tight-binding approach leads to

Conf. Coord.

E
n

er
g

y

V1(Va)

V1(Vb)

V2(Vb) V2(Va)

12

Adiab. Pot. Diab. Pot.

Fig. 6. Comparison between the adiabatic (solid line) and the diabatic (dashed
and dotted line) representation of a CT reaction. Their corresponding electronic
states are labeled by numbers (1,2) or letters (a,b), respectively. A large dy-
namical coupling element Θ12

d leads to an avoided crossing within the adiabatic
approximation, where the CT reaction proceeds over the barrier of the adiabatic
potential V1. By contrast, a large static coupling element Θ12

a allows for tran-
sitions between the potentials V1 and V2 in the vicinity of the avoided crossing.
This case is then better described within the diabatic approximation with the
intersecting diabatic potentials Va and Vb.

W. Goes et al. Microelectronics Reliability 87 (2018) 286–320

291



coupling elements which show a strong exponential decay with an in-
creasing separation between the acceptor and the donor [41]. This
exponential behavior has been confirmed by highly sophisticated si-
mulations based on constrained DFT (CDFT) [80,81,90,91] and also
holds for defects in solids according to more recent CDFT studies
[82,83]. Following the argumentation in [41,82], this behavior can be
traced back to the exponential dependence of electron tunneling and in
further consequence to the exponential decay of the electron wave-
functions involved.

The static coupling terms also appear in the molecular Hamiltonian

H ∑ ∑= ⟩⟨ + ⟩⟨
≠

U θr R r R R r R r R|Ψ ( , ) Ψ ( , )| ( )|Ψ ( , ) Ψ ( , )|
iα

iα iα iα
iα jβ

ij iα jβmol
d d d d d d

(3.17)

and lead to a coupling in the molecular Hamiltonian, associated with
‘nonadiabatic’ CT reactions. In comparison to Eq. (3.8), the dynamic
coupling terms θ R( )ij

a are absent in the diabatic representation now.
This results from the fact that the diabatic wavefunctions are supposed
to vary weakly with the nuclei coordinates due to the condition im-
posed by Eq. (3.14).

3.3. Fermi’s golden rule

As pointed out in the previous section, the diabatic representation is
more suited for physical situations where the static coupling between
the electronic states is small and the transition occurs at the intersection
of the diabatic potentials. For instance, this case is encountered for
molecular junctions [40], where a chain of consecutive CT reactions
through one or more molecules between two electrodes yields a cur-
rent. These CT reactions involve the delocalized bulk states of the
substrate or the metal gate and a localized state of a molecule. Both
states are far separated at atomic scales, resulting in a large tunneling
barrier. Therefore, the static coupling elements θ R( )ij

d become small and
Fermi’s golden rule can be employed to calculate the nonadiabatic CT
rates kiα,jβ

= −k π M δ U U2
ℏ

| | ( )iα jβ iα jβ iα jβ, ,
2

(3.18)

= ⟨ ⟩M η θ ηR R R( )| ( )| ( ) .iα jβ iα ij jβ,
d d d

(3.19)

The expression δ(Uiα−Ujβ) in Eq. (3.18) corresponds to the Dirac-delta
function and imposes energy conservation (Uiα ≈ Ujβ) during the CT
reaction. The electronic matrix element θ R( )ij

d takes a central role in the
theory of CT reactions since it determines the magnitude of the tran-
sition rate kiα,jβ.

The CT reactions involved in the conduction of molecular junc-
tions have a lot of similarities with the C/E processes seen in mi-
croelectronic devices. In both cases, there is a wavefunction of a
delocalized bulk state, which decays exponentially with an in-
creasing distance from the interface, and a localized wavefunction,
which belongs to either a molecule or a defect, respectively.
Furthermore, the bulk and defect are also widely separated on
atomic scales, analogously to the electrodes and the molecules at the
molecular junctions. Therefore the theoretical framework used for
describing the nonadiabatic CT reactions in molecular junctions
provides a basis for calculating rates for the C/E processes in the
investigated charge trapping phenomena.

For the sake of completeness, we note that there are also alternative
methods to determine CT rates. One approach relies on the static ap-
proximation, where the electronic wavefunctions are evaluated for
fixed nuclear coordinates. Since these wavefunctions do not depend on
the atomic configuration, the static approximation [92] can be regarded
as a special case of the diabatic approximation. Recently, Alkauskas
et al. [93] have demonstrated that this method yields surprisingly ac-
curate results for bulk defects in semiconductors using conventional
DFT calculations. Another approach is based on a semi-classical picture

[94] where the electronic matrix element takes the form of the ex-
ponential term in Eq. (3.9), but now with the energy barrier measured
up to the intersection point. This semi-classical theory can be improved
by treating the electronic transition within the Landau-Zener theory.
Even though the resulting expression covers the diabatic as well as the
adiabatic regime, it still neglects the effect of nuclear tunneling. For the
remainder of this paper, we use the rate expression (3.18) since it is the
most general formulation of nonadiabatic transitions.

3.4. Franck-Condon principle

For the determination of CT rates (3.18), the largest effort is re-
quired to calculate the matrix elements Miα,jβ. Since the static coupling
element θ R( )ij

d is a function of the nuclei coordinates R, it must be
evaluated for each configuration. In principle, this task can be achieved
using CDFT. For C/E processes, however, the acceptor/donor complex
consists of a semiconductor or metal on the one hand and an insulator
containing the defect on the other hand. Therefore, a realistic atomistic
model must include at least several hundreds of atoms, resulting in
computationally unfeasible costs for CDFT. Alternatively, the static
approximation allows one to rigorously treat the dependence on the
nuclei coordinates by use of the q-centroid approximation [75] but also
this method exceeds the computational capabilities for the large atomic
systems of interest. Therefore, analytical expressions are usually ap-
plied for the evaluation of the electronic matrix element [95].

As a reasonable approximation, the electronic wavefunctions can be
assumed to vary weakly with the nuclei coordinates. For capture and
emission in charge trapping, this statement can be justified by the fact
that the defect distortions do not significantly affect the defect wave-
function in the region of its exponential decay. Based on this assump-
tion, the matrix element Miα,jβ can be simplified to

=M θ IR( ) ,iα jβ ij iα jβ,
d

, (3.20)

where

= ⟨ ⟩I η ηR R( )| ( )iα jβ iα jβ,
d d

(3.21)

are the so-called Franck-Condon factors. The above approximation is
widely used in the field of spectroscopy and quantum chemistry [96]
and is usually referred to as the Franck-Condon principle [96,97].

The Franck-Condon factor Iiα,jβ is given by the overlap integral of the
nuclear wavefunctions of the initial (iα) and the final (jβ) states of the
system in Eq. (3.20). Both are obtained from their respective molecular
Schrödinger equations:

H
P∑= +
M

V R
2

( )k
n

n

n
kmol,

2

(3.22)

H =η U ηR R( ) ( ),k kγ kγ kγmol, (3.23)

where Pn denotes the quantum mechanical momentum operator of the
nuclei n. The electronic states i and j are subsumed by the index k and
the nuclei state α and β by the index γ. Vk(R) still corresponds to the
diabatic potential but the superscript ‘d’ will be omitted for the re-
mainder of the paper. It governs the nuclear motion, which usually has
an oscillatory behavior in solids. These oscillations correspond to lattice
vibrations and close to minima can be described within the harmonic
approximation. Accordingly, the diabatic potential Vk(R) can be ex-
panded into a Taylor series around the energy minimum configuration
Rk n m, /

0 and truncated after the second-order terms. Then the molecular
Schrödinger equation reads

H
P∑= + +

M
V

V
R R

2 2
Δ Δk

n m

k n

n
k

k nm
k n k mmol,

,

,
2

0 ,
2

, ,
(3.24)

H =η U ηR R( ) ( ),k kγ k kγ kγ kmol, (3.25)
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where = −R R RΔ k n m k n m k n m, / , / , /
0 are the components of the displace-

ment vectors. The second and third terms in Eq. (3.24) describe the
diabatic potential, which assumes a paraboloid shape. Its energy
minimum is defined by

=V V R( )k k k
0 0 (3.26)

and its curvature is given by

= ∂
∂ ∂

V V
R R

R( ) .k nm
k

k n k m R
,

2
2

, ,
k
0 (3.27)

It is noted that the first-order terms in the Hamiltonian (3.24)
vanish because no forces act on the nuclei at their energy minima
per definition.

The diabatic potential Vk nm,
2 is of a nondiagonal form, leading to a

coupling between the Hamiltonians of the nuclei coordinates n and m.
In order to eliminate this coupling, the Schrödinger Eq. (3.24) is ex-
pressed in mass-weighted nuclear coordinates [41,75]
− =Q M Rk n n k n, , (3.28)

− =Q M RΔ Δk n n k n, , (3.29)

and their corresponding nuclear momenta

P
P− =

M
.k n

k n

n
,

,

(3.30)

Using the above definitions, the molecular Schrödinger equation
reads

H
P∑ ∑=
−

+ + − −V
V
M M

Q Q
2 2

Δ Δk
n

k n
k

n m

k nm

n m
k n k mmol,

,
2

0

,

,
2

, ,
(3.31)

H
− = −η Q U η Q(Δ ) (Δ ).k kγ k kγ kγ kmol, (3.32)

The tensor for the potential energy can be diagonalized via an ortho-
gonal transformation while keeping the diagonal form of the kinetic
energy tensor.

H
P

=
−

+ + −V
ω

Q
2 2

Δs
k s

k
ks

k smol,
,

2
0

2

,
2

(3.33)

H∑⎧⎨⎩
⎫
⎬⎭

− = −η Q U η Q(Δ ) (Δ )
s

s kγs k s kγs kγs k smol, , ,
(3.34)

Due to the diagonalization, the single Hamiltonians (3.33) are now
decoupled and can therefore be treated separately. Each of them re-
presents a quantum harmonic oscillator for the normal mode s with a
vibrational frequency ωks defined by

=ω
V
M M

.ks
k nm

n m

2 ,
2

(3.35)

Six of the normal modes are zero-valued and correspond to rigid
translation or rotation of the atomic structure. Since they do not affect
the kinetics of the CT reaction, they will be omitted in all sums over the
normal modes s in the rest of the paper. It is noted here that the nuclei
coordinates can now be related to the vibrations of quantum harmonic
oscillators and thus the term vibrational wavefunction will be preferred
to nuclei wavefunction from now on.

The Hamiltonian (3.33) is convenient because solutions for the
harmonic oscillator are well-known and therefore the above transfor-
mation is applied to the initial (i) as well as the final (j) molecular
Schrödinger equation in order to obtain the vibrational wavefunctions
ηiα and ηjβ required to determine the Franck-Condon factors in Eq.
(3.20). These wavefunctions describe the defect vibrations before and
after the CT reaction in terms of the initial and final normal modes.

We note, however, that these modes may actually differ. As a result,
the decay of one mode can give rise to the excitation of several other

modes during a CT reaction and thus leads to a mode mixing known as
the Duschinsky effect [75,98-101]. Since this effect only becomes re-
levant for a highly accurate determination of the CT rates, it is ne-
glected in our studies. Despite this simplification, the expression of the
CT rates still involves the overlap integrals of all combinations between
the initial (si) and the final (sj) normal modes. Since such an accurate
approach would result in a high complexity of the calculations, the
single-mode approximation is frequently proposed. It rests upon the
assumption that the dominant normal modes for the initial and the final
state coincide. This assumption has been implicitly employed in several
works [102–104] but was recently justified by the work of Alkauskas
et al. [105,106]. Consequently, the molecular Schrödinger equations for
the initial (i) and the final (j) state can be expressed by using only one
nuclei coordinate Q, termed the configuration coordinate from now on.
They simplify to

⎧
⎨⎩
− ∂

∂
+ + ⎫

⎬⎭
=

Q
V

ω
Q η Q U η Qℏ

2 2
Δ (Δ ) (Δ )

i
i

i
i iα i iα iα i

2 2

2
0

2
2

(3.36)

⎧
⎨⎩
− ∂

∂
+ + ⎫

⎬⎭
=

Q
V

ω
Q η Q U η Qℏ

2 2
Δ (Δ ) (Δ )

j
j

j
j jβ j jβ jβ j

2 2

2
0

2
2

(3.37)

with the well-known solutions

= + +( )U V n ω1
2 ℏiα i α i

0
(3.38)

= + +( )U V n ω1
2 ℏ .jβ j β j

0
(3.39)

The configuration coordinates ΔQi and ΔQj are referenced to their
corresponding minimum energy configuration Qi

0 and Qj
0, respectively,

which are displaced by ΔQij.

= − = +Q Q Q Q QΔ Δ /2i i ij
0 (3.40)

= − = −Q Q Q Q QΔ Δ /2j j ij
0

(3.41)

= − = −Q Q Q Q QΔ Δ Δij j i i j
0 0 (3.42)

The above molecular Schrödinger equations represent two quantum
mechanical harmonic oscillators, which have nonorthogonal vibra-
tional wavefunctions due to their different vibrational frequencies and/
or the displacement of their equilibrium positions. This fact gives rise to
a wavefunction overlap and results in non-vanishing Franck-Condon
factors in Eq. (3.20). These factors describe an effect similar to nuclear
tunneling [78]. As shown in [107], the overlap of the wavefunctions
can be interpreted as a nuclear tunneling process. In this paper, the CT
process was re-formulated in a theory which is based on nuclear
tunneling and used as a description for the thermal ionization of
deep impurities.

For the sake of completeness, we note that the curvatures ( )ω ω,i j
1
2

1
2

of the harmonic oscillators are usually specified by Huang-Rhys factors
(Si,Sj), defined by the equations:

=
ω

Q S ω
2

Δ : ℏi
ij i i

2
2

(3.43)

=
ω

Q S ω
2

Δ : ℏj
ij j j

2
2

(3.44)

and are denoted as reorganization energies [41]. As illustrated in the
configuration coordinate diagram of Fig. 7, the Huang-Rhys factor Si
corresponds to the energy difference between the energy points V Q( )i j

0

at Pi2 and V Q( )j j
0 at Pi1 and is expressed in multiples of the vibrational

energy quanta ωℏ i. Analogously, S ωℏj is defined as the energy differ-
ence between Pj2 and Pj1.
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3.5. Thermally activated transitions

Even though the above description provides a well-suited method to
determine the Franck-Condon overlap factors, energy conservation
must still be met precisely due to the Dirac delta function in Eq. (3.18).
This means that CT reactions only take place if the energies of the initial
and the final states coincide. However, the CT reaction may also pro-
ceed over a thermally excited state iα of the molecular Hamiltonian in
state i. According to the basic principles of statistical mechanics, the
occupancy of an excited state is calculated by taking the
thermal average

∑= pave (Ω ),
α α

iα iα
(3.45)

where

=
−

∑ −( )
( )

p
exp

exp
iα

k T

γ k T

Ω

Ω

iα

iγ

B

B (3.46)

is the statistical weight of the initial state iα of the CT reaction. All
transitions into the final states j are considered by a summation over all
final states β.

∑= −k π θ I δ U UR2
ℏ

| ( )| ave | | ( ).i j ij
α β

iα jβ iα jβ,
d 2

,
2

(3.47)

Furthermore, the energies Uiα and Ujβ in the Dirac-delta function can be
decomposed according to

= +U V Ωiα i iα
0 (3.48)

= +U V Ω ,jβ j jβ
0

(3.49)

where = −V V VΔ ij j i
0 0 denotes the energy shift between the diabatic

potentials i and j and = +( )n ωΩ ℏiα i i
1

2 and = +( )n ωΩ ℏjβ j j
1

2 are the
vibrational energies of the harmonic oscillators. Using the above defi-
nitions, ki,j can be expressed as

=k π θ ξR2
ℏ

| ( )|i j ij ij,
d 2

(3.50)

with the quantity ξij defined as

∑= − −ξ I δ Vave | | (Ω Ω Δ ).ij α β
iα jβ iα jβ ij,

2

(3.51)

According to this equation, the energy shift ΔVij must be compensated
by the energy difference in the vibrational energies Ωiα −Ωjβ in order
for a CT reaction to be allowed.

3.6. Electronic matrix element

In the context of perturbation theory, the static coupling is fre-
quently denoted as the electronic matrix element. Due to its importance
for CT reactions, it has been the focus of numerous investigations
[80,82,83,90,91]. From simple tight-binding derivations, the static
coupling factor is expected to show an exponential distance
dependence.

= −θ H κdR( ) exp( /2)ij ij
d (3.52)

Here, Hij corresponds to a simple prefactor, which can be estimated
from CDFT simulations for molecular CT reactions [80,90,91]. κ is
termed the decay constant and determines the exponential depen-
dence of the static coupling factor on the donor-acceptor distance d.
This exponential dependence has recently been confirmed for het-
erogeneous CT reactions, which also involve a bulk defect
state [80,82,83].

The static coupling factor is also similar to the electronic matrix
element in the nonradiative multi-phonon (NMP) theory, where dif-
ferent approximate expressions for the tunneling factor were proposed
[30,36,38]. They can be justified by the fact that the magnitude of the
electronic matrix element is dominated by the exponential decay of the
overlap between the defect and the bulk band wavefunction. Since the
defect wavefunction is assumed to be strongly localized compared to
the bulk wavefunction, the electronic matrix element reduces to a
tunneling expression to first order. The electronic matrix element can
then be estimated by

≈ ⟨ ⟩θ ϕ Ĥ ϕR r R r R( ) ( , )| | ( , )ij i j
d d

e
d

(3.53)

≈ ⟨ ⟩k ϕ ϕr R r R( , )| ( , )i j
d d

(3.54)

≈ ≈k ϕ kλ Er R r R| ( , )| ( , , ),͠
i
d

d
2

d (3.55)

where k͠ is a parameter that needs to be calibrated to experimental data
and λ(rd,E) represents the dimensionless Wenzel-Kramers-Brillouin
(WKB) factor with E being the energy of the transferred charge carrier
(see Appendix). With the above expression for the electronic matrix
element, the CT transition rates can be rewritten as

=k π k λ E ξr2
ℏ

( , ) .͠i j ij,
2 2

d (3.56)

3.7. Evaluation of the Franck-Condon factors

The quantity ξij in Eq. (3.51) corresponds to the spectral lineshape
function [108], which has been studied in detail in the context of
fluorescence and optical absorption [41,96]. The corresponding optical
spectrum features a comb of sharp peaks at sufficiently low tempera-
tures. Its peculiar shape results from the discreteness of the energy le-
vels involved in the optical transitions and has been derived for F
centers in solids [96]. The underlying theory has also been extended for
nonradiative transitions in solids [109], in which the characteristic
comb is not observed for typical operation temperatures of transistors.
This originates from the fact that the energies Uiα and Ujβ are broadened
due to their finite lifetimes. The broadening can be described by re-
placing the Dirac-Delta function δ(Uiα−Ujβ) in Eq. (3.47) with a more
realistic Gaussian distribution

⎜ ⎟= ⎛
⎝
− ⎞

⎠
g U

πσ
U
σ

(Δ ) 1
2

exp Δ
2

.
2

2 (3.57)

Here, σ depends on the lifetime of the defect in the single states of the
quantum mechanical harmonic oscillator. As these lifetimes are related
to the complex interactions with the defect environment, this quantity
is hard to determine and was estimated to be around the separation of
the oscillator energies in this study.

Fig. 7. Definition of the Huang-Rhys factors Si and Sj. This figure shows the
diabatic potentials for the initial (i) and the final (j) state with their shapes
given by the harmonic potentials = +V Q V ω Q(Δ ) Δ /2i i i i i

0 2 2 and
= +V Q V ω Q(Δ ) Δ /2j j j j j

0 2 2 , respectively.
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Using this substitution, the lineshape function reads

∑= − −ξ I g Vave | | (Ω Ω Δ ),ij α β
iα jβ iα jβ ij,

2

(3.58)

where the magnitude of a certain peak is determined by the overlap Iiα,jβ
of the vibrational wavefunctions iα and jβ. To the best of our knowl-
edge, closed-form solutions of Iiα,jβ only exist for the case that the initial
and the final vibrational frequencies (ωi=ωj) are equal [40]. In the
context of CT reactions, this assumption yields ‘linear electron-phonon
coupling’ and is frequently employed in the literature to compute the
Franck-Condon factors because of its mathematical simplicity.

The more general case of differing vibrational frequencies is referred
to as ‘quadratic electron-phonon coupling’ but can only be solved nu-
merically. One method is based on a finite-volume discretization for
solving the molecular Schrödinger equation. Unfortunately, it suffers
from the numerical inaccuracies in the exponential tails of the vibra-
tional wavefunctions. Alternatively, the vibrational wavefunctions can be
derived from the recurrence relations of the Hermite polynomials,
however, this method only remains sufficiently accurate up to a few tens
of iterations. Therefore, Schmidt et al. [110,111] have developed a new
iteration scheme to directly evaluate the Franck-Condon overlap factors
from an iteration scheme. This method was found to be accurate up to a
few hundred iterations and has therefore been applied in all our studies.
The expression (3.58) of the lineshape function simplifies significantly in
the high-temperature limit, where kBT exceeds the magnitude of the vi-
brational energy quantum ωℏ i. In this regime, the energy separation of

ωℏ i can be thermally overcome and the oscillator dynamics can be
treated classically. This implies that the diabatic potentials Vi(Q) and
Vj(Q) as functions of the configuration coordinate Q can be expressed as:

= − +
= +

V Q c Q Q V
c Q V

( ) ( )
Δ

i i i i

i i i

0 2 0

2 0 (3.59)

= − +

= − + +

V Q c Q Q V

c Q Q V V

( ) ( )

(Δ Δ ) Δ
j j j j

j i ij i ij

0 2 0

2 0
(3.60)

using the curvatures

=c ω1
2i i

2
(3.61)

and

=c ω1
2j j

2
(3.62)

of the diabatic potentials i and j, respectively. Vi j/
0 represents the energy

minimum of the diabatic potential Vi/j(Q) but corresponds to an ad-
ditative constant that can be neglected without loss of generality. ΔVij is
the energy difference between the initial and final states and determines
the direction of the CT reaction. In the next chapter, this quantity will be
related to trap energy levels, which are usually used to discuss C/E
phenomena.

In the classical limit ( →ℏ 0), the discrete energy spectrum of Uiα
and Ujβ becomes continous. Furthermore, the corresponding vibrational
wavefunctions ηiα and ηjβ peak around their classical turning points Q*

defined by the condition Viα/jβ(Q*)=Uiα/jβ and have only a significant
overlap at the intersection point of the diabatic potentials Vi(Q) and
Vj(Q). As a result, the Condon factors have to vanish in a classical
equivalent of the lineshape function [112] and the allowed CT reactions
are restricted to those transitions in which the diabatic potentials in-
tersect. Then, the classical lineshape function can be simplified to:

∫= ′ − ′ ′′− −ξ c c Q V Z δ V Q V Q Q( , , Δ , Δ ) e ( ( ) ( ))dij i j ij ij

Q

βU Q
i j

1 ( )i

(3.63)

with the partition function

∫= ′′−Z Qe d .
Q

βU Q( )i

(3.64)

Due to the Dirac delta function in Eq. (3.63), the integral is only
evaluated at the intersection points ΔQ1,2 of the parabolic potentials
Vi(Q) and Vj(Q).

=
± + −

−
Q

c Q c c Q V c c
c c

Δ
Δ Δ Δ ( )

.
j ij i j ij ij i j

j i
1,2

2

(3.65)

Here, it has been assumed that the curvatures ci and cj differ. This is the
case for quadratic electron-phonon coupling and two intersections of
the diabatic potentials. For certain combinations of parameters
(ci,cj,ΔVij, and ΔQij) no intersection is obtained and the corresponding
CT reaction is prohibited. Making use of the standard transformation:

∫ ∫ ∑′ − ′ ′ =
′ −

′ − ′
′

=

δ V Q V Q Q δ Q Q
V Q V Q

Q( ( ) ( ))d ( ))
| ( ) ( )|

d ,
Q

i j
Q l

l

i l j l1,2 (3.66)

the lineshape function can be rewritten as

∑=
− −=

−
ξ c c Q V

c β
π c Q c Q Q

( , , Δ , Δ ) 1
2

e
| Δ (Δ Δ )|

.ij i j l ij
l

i
βc Q

i l j l ij1,2

Δi l2

(3.67)

The above equation is most strongly affected by the exponential factor,
in which the expression ciΔQl

2 can be identified with the energy barrier
VΔ l ij,

‡ from the minimum up to the intersection point (IP). This barrier
can be expressed as
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(3.68)

The above formula has been derived for the general case of quadratic
electron-phonon coupling with differing curvatures of the parabolic
potentials (ci ≠ cj). By contrast, linear electron-phonon coupling is as-
sociated with the assumption of two equal curvatures (ci=cj) and yields
only one intersection point at

=
+

Q
V c Q

Q
Δ

Δ / Δ
2Δ

.ij i ij

ij
1

2

(3.69)

The corresponding transition barrier VΔ l ij,
‡ is then given by
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⎠
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(3.70)

and the lineshape function simplifies to

=
−

ξ c c Q V
c β
π c Q

( , , Δ , Δ ) 1
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(3.71)

In some publications [34] an alternative nomenclature has been
preferred, which is based on the definitions of the Huang-Rhys factors
(3.43) and (3.44) and the quantity Ri defined by

=S ω R S ωℏ ℏ .i i i j j
2 (3.72)

In this nomenclature, the transition barrier reads
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−
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(3.73)

and the corresponding lineshape function is given by

∑=
−
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2 (3.74)

For linear electron-phonon coupling (Ri=1), the transition barrier and
the lineshape function simplify to

W. Goes et al. Microelectronics Reliability 87 (2018) 286–320

295



=
+

V S ω V
V S ω

S ω
Δ ( ℏ , Δ )

(Δ ℏ )
4 ℏl ij i i ij

ij i i

i i
,
‡

2

(3.75)

and
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respectively. At a first glance, the transition barrier (3.75) seems to
depend quadratically on ΔVij for Ri=1. This holds for weak electron-
phonon coupling ≪S ω V( ℏ Δ )i i ij

= +V S ω V
S ω

V VΔ ( ℏ , Δ ) 1
4 ℏ

Δ 1
2

Δl ij i i ij
i i

ij ij,
‡ 2

(3.77)

However, this barrier dependence becomes linear for strong electron-
phonon coupling ≫S ω V( ℏ Δ )i i ij , which is usually assumed in trapping
models for typical conditions [34]:

= +V S ω V V S ωΔ ( ℏ , Δ ) 1
4

Δ 1
2

ℏ .l ij i i ij ij i i,
‡

(3.78)

However, strong electron-phonon coupling yields a quadratic depen-
dence for Ri ≠ 1. This can be found by expanding Eq. (3.73) up to the
second order:
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3.8. Configuration coordinate diagram

In the previous sections, the CT reactions have been discussed on
the level of diabatic potentials for a two-state molecule (defect) model.
In the framework of this versatile model, the corresponding transition
rates have been derived using the quantities V VΔ ,ji i

0 0, and V j
0, shown in

configuration coordinate diagrams, such as that in Fig. 7. In the fol-
lowing sections, some of these quantities will be linked to defect energy
levels in the band diagram, including the trap levels for the bistable
defect of the four-state NMP model (see Chapter 2).

We note that bistable defects have pairs of stable and metastable
states, represented by a double-well in a configuration coordinate dia-
gram. This is schematically illustrated in Fig. 8 corresponding to the
four-state NMP model. Such defects show much richer trapping dy-
namics compared to two-state defects. The special dynamics of the four-
state NMP model originate from the fact that the charge capture or
emission process proceeds through one of the metastable states ′1 and ′2
rather than directly between the defect states 1 and 2 or ′1 and ′2 . The

latter would result in an effective two-state model, which cannot ex-
plain the experimental TDDS data. In the following, the concept of the
four-state NMP model will be discussed for an electron trap first and
then extended to the case of a hole trap.

3.8.1. Electron trap
The term ‘electron trap’ is frequently mentioned in the context of

reliability issues in electronic devices [66]. However, similar to its ‘hole
trap’ counterpart [65], this term is used ambiguously and refers to
slightly distinct physical situations. For instance, in some publications,
an electron trap is regarded as a defect which captures a negative
charge under stress conditions and becomes neutral during recovery
again (0 ⇔ −). Most often, however, the underlying studies do not
consider the alternative explanation that a positive defect can be neu-
tralized during stress (+⇔ 0). It is pointed out that such a defect would
have a similar impact on the device electrostatics and is therefore
nearly indistinguishable from an electron trap as originally defined.
Sometimes, the electron trap is assumed to capture an electron from the
substrate conduction band — even though the same behavior can be
explained by hole emission into the valence band. Throughout this
work, the electron trap is defined as a defect whose charge state be-
comes more negative. This covers all possible charge capture and
emission processes, including the aforementioned variants of (+ ⇔ 0)
and (0 ⇔ −). Furthermore, this defect can exchange charge carriers
with the conduction as well as the valence band, meaning that it may
undergo both electron capture or hole emission.

The dynamics of the four-state NMP model are defined by the re-
lative energies of defect states in Fig. 8 and energy barriers connecting
states 1 and ′1 and 2 and ′2 . To provide a link between DFT calculations
of defect properties at interfaces and rate calculations discussed above,
we first consider a prototype Si/SiO2 system shown in Fig. 9. It re-
presents a periodic cell of the interface between crystalline Si and a-
SiO2 with an extra electron. This cell is translated both along the in-
terface and perpendicular to the interface and the total system is that of
periodic interfaces. The results of such calculations obviously depend
on the cell size as defects are periodically translated. In the initial state,
the extra electron is delocalized in Si, as shown by the homogeneous
electron density distribution in Fig. 9a. In the final state, after the
electron transfer, the electron is localized on a Si dangling bond in a-
SiO2, as shown in Fig. 9b, and the electronic states in Si are perturbed
by the presence of the defect. In this setup, the energy difference be-
tween the initial and final states as well as the energy barrier between
the states can be calculated directly by comparing the DFT or

Fig. 8. Schematic configuration coordinate diagram of an
electron trap which switches between bistable positive
and neutral charge states. If the defect is positively
charged, the exchanged electron is located in the sub-
strate (full red curve). There, the electron can also oc-
cupy one of the energy levels E in the substrate conduc-
tion or valence band, which results in a full set of possible
diabatic potentials (red dashed curves). If the defect is in
its neutral charge state, the electron is captured in the
trap, leaving behind a hole in the substrate. As required
for the bistable defect of the four-state NMP model, the
defect has one stable state (1) in the primary configura-
tion and another (2) in the secondary configuration. As a
consequence, electron capture and emission proceeds
over one of the metastable states ′1 or ′2 .
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constrained DFT total energies of the two charge configurations. An-
other advantage of this approach is that it directly takes account of the
interaction between the defect and the interface, which results in the
dependence of the tunneling rate on the relative position of the trap
with respect to the interface. Such calculations, however, are very
difficult, require large computer resources due to the large cell size, and
therefore are very rare.

A more common approach to calculating defect energies is to con-
sider an oxide and a substrate separately. This neglects the interaction
of the defect with the interface with the substrate, but provides more
flexibility for treating the defect in different charge states accurately.
This is particularly important for modeling bistable defects and pre-
dicting barriers between defect configurations. The relative energies of
the total system [oxide with defect + substrate] for the electron (hole)
located either in the substrate or in the defect can be determined by
establishing the common electronic chemical potential or Fermi level

for the whole system. This is usually achieved by using the experi-
mentally measured band offset between the substrate (e.g. Si) and the
oxide (e.g. a-SiO2). To change the charge state of the defect, an electron
can be taken from or deposited to the bottom of the conduction band of
Si, as schematically illustrated in Fig. 10.

To remain consistent with the definitions used for the more relevant
case of a hole trap (see next section) we consider switching between
positive and neutral states of a defect. The corresponding potentials for
the positive (V+(Q)) and neutral (V0(Q)) state are depicted in the sche-
matic configuration coordinate diagram of Fig. 8. We note that the whole
system remains positively charged during the charge capture or emission
event and only the location of the positive charge changes as it moves
between the defect and the substrate. Furthermore, the defect features a
bistability as assumed by the four-state NMP model. Therefore, the po-
sitive and the neutral charge state are represented by double-wells,
having a stable (deeper) minimum in addition to a metastable (higher)
energy minimum. In the positive charge state, the electron occupies a
level in the band gap split from the conduction and the valence band. In
order to simplify the following consideration, only a single defect state
(full blue curve Fig. 8) is taken into account although the electron in the
substrate can be thermally excited into different band states.

The standard way of comparing defect energies in computational
materials science is to calculate the so called defect formation energies
[113–115]. Most of such calculations are made using periodic boundary
conditions and supercells capable of accommodating a defect and de-
fect-induced distortion of the surrounding structure. The formation
energy of a defect with the configuration coordinate Q in the charge
state q is defined as:

∑= − − + +F Q F Q F n μ qE E[ ] [ ] [bulk] ,q q

i
i itot tot F corr

(3.80)

where F q
tot is the total energy of the system obtained from DFT calcu-

lation and q=…,−1,0,+1, … is the charge of the simulated system.
Ftot[bulk] is the total energy for the perfect bulk crystal using an
equivalent supercell. μi is the chemical potential of the species i with
and the integer ni is the number of host atoms or impurity atoms of type
i that have been removed from (ni<0) or added to (ni>0) the su-
percell to form the defect. For example, formation of oxygen vacancy
means removing one O atom from the supercell into the gas phase or
into the Si substrate, which determines the chemical potential μO. EF
denotes the chemical potential of the electron reservoir (or the Fermi
level position in the whole system). In our discussion EF can be e.g. the
bottom of the conduction band of the Si substrate. Ecorr is the correction
term that accounts for elastic and electrostatic interactions between
defects in supercells due to periodic translation.

Fig. 9. Electron density distribution in a Si/SiO2 periodic cell containing a
dangling Si bond defect in the middle of the amorphous SiO2 layer. a) The
initial state of the system where an extra electron is delocalized in the Si con-
duction band. b) The final state of the system where the the extra electron is
localized on a dangling bond.

Fig. 10. Construction of the band diagram with trap level (left) from the configuration coordinate diagram (right). The conduction band edge energy is chosen as a
reference level and represented by the solid red line for the diabatic potential V+(Q). According to Eqs. (3.85) and (3.87), the driving forces +

′VΔ 0
12 and +VΔ 0

12 are
measured from the energy V+(Q1), respectively. For the driving force +

′VΔ 0
1 2(3.89), one has to keep in mind that the conduction band energy is now at + ′V Q( )1 . All three

energy difference can be inserted to be plotted into the the band diagram as indicated by the dashed green arrows.
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Defect formation energies can be used to evaluate thermodynamic
transition levels (CTL) defined as the Fermi-level position for which the
formation energies of charge states q1 and q2 are equal. This means that
for the Fermi-level positions below the CTL, the charge state q1 is stable,
while for Fermi-level positions above CTL, charge state q2 is stable, and
near CTL both charge states can coexist. We note that the Kohn-Sham
eigenvalues obtained in DFT calculations are used as electronic energies
in some studies. These values may give reasonable estimates in some
cases but do not correctly account for the atomic relaxation during a
C/E process.

The difference in defect formation energies

= −+E F Q F Q[ ] [ ]q q
tot

1
tot (3.81)

is equivalent to

= − ∼+E V Q V Q( ) ( )1 1 (3.82)

= − ∼+ ′ ′E V Q V Q( ) ( ).1 1 (3.83)

used in our previous discussion and in Fig. 8. The quantity ∼V Q( ) de-
notes the diabatic potentials of the system, where the electron is taken
out of the system consisting of the defect and the substrate and moved
to Fermi level or to vacuum level.

Another important quantity with respect to CT reactions is the
driving force. It has been introduced in Marcus theory and corresponds
to a reaction energy in the context of adiabatic transitions. For the
transition → ′1 2 in the primary configuration, the driving force is given
by

= −+
′

′ +V V Q V QΔ ( ) ( ).0
12

0 2 1 (3.84)

Here, the subscript ‘+0’ of +
′VΔ 0

12 indicates an electron capture or hole
emission process while the superscript ‘ ′12 ’ gives the states involved in
the transition of the four-state NMP model. It is noted that the above
expression can be traced back to typically used electronic energies

= − = ″ −+
′

′ +V V Q V Q E EΔ ( ) ( )0
12

0 2 1 t (3.85)

using the shorthand for the thermodynamic trap level ″Et

″ = − ∼′E V Q V Q( ) ( ).t 0 2 1 (3.86)

The definition of the energy level ″Et is analog to that of the thermo-
dynamic trap level in [56,106,116] and corresponds to the electronic
energy that determines the equilibrium occupancy of the defect. In an
analogous manner, the driving force for the transition ′ →1 2 can be
expressed as

= − = ′ −+
′

+ ′V V Q V Q E EΔ ( ) ( ) ,0
1 2

0 2 1 t (3.87)

where the thermodynamic trap level is defined by

′ = − ∼ ′E V Q V Q( ) ( ).t 0 2 1 (3.88)

It is emphasized here that the whole electron capture or hole
emission process actually requires a transition from state 1 to 2 and is
therefore determined by the energy difference

= − = −+ +V V Q V Q E EΔ ( ) ( ) .0
12

0 2 1 T (3.89)

The obtained quantity = − ∼E V Q V Q( ) ( )T 0 2 1 is equivalent to the ther-
modynamic trap level for the whole process and incorporates the effect
of the transition over the barrier between the states ′2 and 2. In the
following discussion we will use notation ET for the thermodynamic
trap level for the the four-state NMP model to distinguish it from Et as a
generic thermodynamic defect level.

In this context, the quantities ′εT1 and ′εT2 are worth mentioning as
they relate the aforementioned trap levels ′ ″E E,t t , and ET. ′εT1 corre-
sponds to the ‘relative stability’ of state ′1 with respect to a relaxation to
state 1 and is given by

= −′ + ′ +ε V Q V Q( ) ( ).T1 1 1 (3.90)

We note that this quantity must have a positive value within the four-
state NMP model since the metastable state ′1 is energetically higher
than its stable counterpart ′1 . The ‘relative stability’ of state ′2 is defined
in an analogous manner and thus reads

= −′ ′ε V Q V Q( ) ( ).T1 0 2 0 2 (3.91)

Using the above definitions (3.90) and (3.91), the trap levels ′Et and ″Et
can be expressed as

′ = − ′E E εt T T1 (3.92)

″ = + ′E E ε .t T T2 (3.93)

The above equations demonstrate that the position of ′Et and ″Et is di-
rectly related to relative stability ′εT1 or ′εT2 , respectively. For instance,
″Et is raised by the amount of ′εT2 compared to ET, since it requires more

energy to lift the atomic system from the initial energy V+(Q1) to the
final energy ′V Q( )0 2 rather than to V0(Q2). With regard to the inverse
process of electron capture or hole emission, the role of the initial and
the final states are exchanged. Thus the corresponding driving forces
are the inverted values of +

′
+
′V VΔ , Δ0

12
0

1 2, and +VΔ 0
12.

= −+
′

+
′V VΔ Δ0

2 1
0

12 (3.94)

= −+
′

+
′V VΔ Δ0

21
0

1 2 (3.95)

= −+ +V VΔ Δ0
21

0
12 (3.96)

Other important quantities in the four-state NMP model are the
Huang-Rhys factors and the thermal barriers. For calculating the
Huang-Rhys factors, the reorganization energies S ωℏi i must be eval-
uated for the states = ′ ′i 1,1 ,2,2 first (cf. Fig. 7).

= −+ ′ ′S ω V Q V Qℏ ( ) ( )1 1 2
0

0 2
0 (3.97)

= −′ ′ +S ω V Q V Qℏ ( ) ( )1 1 2
0

0 2
0 (3.98)

= −′ +S ω V Q V Qℏ ( ) ( )2 2 0 1
0

1
0 (3.99)

= −′ ′ ′ +S ω V Q V Qℏ ( ) ( )2 2 0 1
0

1
0 (3.100)

The vibrational frequencies ωi in the above equations can be calculated
from the equation

− =V Q V Q ω Q( ) ( ) 1
2

Δ .i j j j i ij
0 0 2 2

(3.101)

Inserting the obtained vibrational frequencies into Eqs. (3.97)–(3.100)
yields the Huang-Rhys factors.

To first order, the thermal transitions ⇔ ′1 1 and ⇔ ′2 2 in Fig. 8 can be
described by standard transition state theory and follow an Arrhenius law

= −k ν βεexp( ).ij ij0 (3.102)

ν0 denotes the attempt frequency, which can be estimated by DFT
calculations and is usually on the order of 10-13 s. εij is the thermal
barrier from state i to j and can be extracted from the adiabatic
potentials as the energy difference from the energy minimum i up to
the saddle point, which is located at ′Q11

‡ or ′Q22
‡ for the positive or

neutral charge state, respectively. Their definitions in the four-state
NMP model read: -

= −′ + ′ +ε V Q V Q( ) ( )11 11
‡

1 (3.103)

= −′ + ′ + ′ε V Q V Q( ) ( )1 1 11
‡

1 (3.104)

= −′ ′ε V Q V Q( ) ( )22 0 22
‡

0 2 (3.105)

= −′ ′ ′ε V Q V Q( ) ( )2 2 0 22
‡

0 2 (3.106)

Even though the configuration coordinate diagram provides the detailed
microscopical information about the trapping process, the essence of the
trapping dynamics is better represented in a band diagram. In order to
translate the microscopical information to a band diagram, one has to
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choose one electronic reference energy first. Here, the conduction band
edge is usually a good choice for an electron trap (E=Ec). Then, the
driving forces +

′VΔ 0
12 , +

′VΔ 0
1 2, and +VΔ 0

12 can be directly plotted into the band
diagram as demonstrated in Fig. 10.

3.8.2. Hole trap
The hole trap is defined in an analogous manner to the electron trap

here (see Fig. 11). Consequently, the hole trap corresponds to a defect
whose charge state becomes more positive during stress conditions and
returns back to its neutral charge state during recovery. Furthermore,
this defect is assumed to exchange charge carriers with the conduction as
well as the valence band, thereby allowing for hole capture as well as
electron emission. Now the diabatic potentials V+(Q) and V0(Q) describe
the atomic system where the positive charge is located in the defect or
the substrate, respectively. By contrast, the potential∼V Q( ) represents the
reference system again, where the exchanged electron is moved to in-
finity. The electronic energy are then defined by the equations

= − ∼+E V Q V Q( ) ( )2 2 (3.107)

= − ∼+ ′ ′E V Q V Q( ) ( ).2 2 (3.108)

The driving forces for the transitions → ′ ′ →(1 2 ), (1 2), and (1→ 2) read

= −+
′

+ ′V V Q V QΔ ( ) ( )0
12

2 0 1 (3.109)

= −+
′

+ ′V V Q V QΔ ( ) ( )0
1 2

2 0 1 (3.110)

= −+ +V V Q V QΔ ( ) ( ).0
12

2 0 1 (3.111)

Using the definitions

″ = − ∼ ′E V Q V Q( ) ( )t 0 1 2 (3.112)

′ = − ∼′E V Q V Q( ) ( )t 0 1 2 (3.113)

= − ∼E V Q V Q( ) ( )T 0 1 2 (3.114)

they can be expressed in terms of electronic energies.

= − ″+
′V E EΔ 0

12
t (3.115)

= − ′+
′V E EΔ 0

1 2
t (3.116)

= −+V E EΔ 0
12

T (3.117)

If one compares the driving forces +
′V 0

12 of the electron trap and +
′VΔ 0

12 of
the hole trap, the corresponding expressions (3.85) and (3.115) are found
to have the same magnitude but differ in their signs. This is related to the
fact that these transitions are actually reverse processes. Following the
same arguments, one also obtains the negative driving forces for the
reverse processes of (3.115) and (3.117).

= −+
′

+
′V VΔ Δ0

2 1
0
12 (3.118)

= −+
′

+
′V VΔ Δ0

21
0
1 2 (3.119)

= −+ +V VΔ Δ0
21

0
12 (3.120)

Using the stabilities of the states ′1 and ′2

= −′ + ′ +ε V Q V Q( ) ( )T2 2 2 (3.121)

= −′ ′ε V Q V Q( ) ( ),T1 0 1 0 1 (3.122)

the trap levels ′Et and ″Et can be rewritten as

′ = + ′E E εt T T1 (3.123)

″ = − ′E E ε .t T T2 (3.124)

One can recognize that the signs in the above equations differ from those
in Eqs. (3.92) and (3.93). At a first glance, this might be traced back to
the different nature of the electron and the hole trap. But upon closer
inspection, their configuration coordinate diagrams become similar
when the roles of the positive and the neutral charge states are ex-
changed ⇔ ′ ⇔ ′(1 2 and 1 2 ). For instance, the transition → ′ →1 2 2 for
an electron trap (see Fig. 8) corresponds to the transition → ′ →2 1 1 of
the hole trap (see Fig. 11). Since this correspondence is also valid for all
other transitions, the electron and the hole trap can be viewed as dif-
ferent representations of the same defect. As such, the same defect may
behave as an electron or hole trap under different operation conditions.

Hole traps are frequently observed in p-channel transistors [65] and
cause charge trapping in these devices. Their trapping dynamics are
dominated by hole capture and emission, meaning that the defect pri-
marily interacts with the valence band. This case is usually discussed
within the framework of the hole picture due to how intuitive it is and is
outlined in the Appendix.

Fig. 11. The analogous defect configuration of Fig. 8 for a hole trap. In the neutral charge state, the electron is carried by the defect (blue solid line) while it is transferred to
the substrate valence or conduction band in the positive charge state (red solid line). In the latter, the electron can occupy different electronic levels again.
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3.9. Interactions with the conduction/valence band

In the previous section, a combination of certain points in the
configuration coordinate diagram has been identified with the trap le-
vels ( ′ ″E E E, ,T t t ) and the electronic energy E of the exchanged charge
carrier in the substrate. As already pointed out before, this charge
carrier may sit at a single energy level of a continuous spectrum, i.e. the
conduction or the valence band. Therefore, the defect can interact with
the whole conduction or valence band of the substrate and the simple
formulation of the CT reactions must be extended to account for the
transitions with a multitude of band states at different energies E. As
these transitions occur independently of each other, they can be ac-
counted for by summing the rate Eq. (3.56) over the occupied con-
duction or valence band states n.

∑=k π k f E λ E ξr2
ℏ

( ) ( , )͠i j
n

n n ij,
2 2

d
(3.125)

The index ‘n’ is introduced for the carrier energy En in order to distin-
guish between the different charge carrier energies in the substrate.
Furthermore, f(En) represents the probability of finding the required
charge carrier type at energy En. This quantity is termed energy carrier
distribution function and will be denoted by fn or fp=1− fn, depending
on whether the required carrier type for the CT reaction is an electron
or a hole, respectively. These charge carriers in the substrate can be
assumed to be in thermal equilibrium if the source-drain bias is nearly
vanishing. Then the energy-dependent occupancy fn(E) of the charge
carriers is given by the Fermi-Dirac distribution. If the channel of a
transistor carries a significant current, the charge carriers are driven
out of equilibrium and their energy profile has to be obtained
by the solution of a transport formalism, such as the Boltzmann
transport equation [117] or the non-equilibrium Green’s function
approach [118].

Since the conduction and valence band states form a continuous
spectrum, the summation in Eq. (3.125) can also be transformed to an
integral over a density of states, assuming the parabolic-band approx-
imation. For the conduction band, the corresponding integral reads

∫ ∫∑ →
∞ ∞

⊥ ⊥E E D D E2Ω d d ( ),
n E E

2d 1d

c c (3.126)

where E⊥ and E∥ denote the kinetic energy parallel or perpendicular to
the channel interface, respectively. The factor Ω stands for the volume
of the charge carriers in the substrate and the factor ‘2’ accounts for the
spin degeneracy. The one- (D1d) and two-dimensional (D2d) density of
states [119] reads

=
−⊥

⊥
D E

π
m

E E
( ) 1

ℏ 2( )1d
eff

c (3.127)

=D m
π2 ℏ2d

eff
2 (3.128)

with meff being the effective electron mass. Using the transformation
E=E∥+E⊥, the integral can be expressed as

∫ ∫∑ →
∞

⊥ ⊥E E D D E2Ω d d ( ).
n E E

E

2d 1d

c c (3.129)

With this, the corresponding electron capture rate can be written as

∫ ∫= −+

∞

⊥ ⊥ ⊥ + +k k E E D D E f E λ E ξ Vrd d ( ) ( ) ( , ) (Δ )
E E

E

0 2d 1d n
2

d 0 0
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with −k being defined as

− =k π k2
ℏ

2Ω.͠ 2

(3.131)

The dimensionless WKB factor λ(rd,E⊥) decreases exponentially from
E⊥=E towards lower energies. As the decay of this factor dominates

over the exponential dependence of the electron distribution function
fn, the integrand of the Eq. (3.130) has its largest contribution at E⊥=E.
Therefore, the dimensionless WKB factor λ(rd,E) can be evaluated at
E⊥=E and Eq. (3.130) reduces to

∫= −+

∞

+k k E D E f E λ E ξ E Erd ( ) ( ) ( , ) ( , ).
E

0 3d n
2

d 0 t

c (3.132)

Et stands for ′Et or ″Et , respectively, and D3d(E) is the three-dimensional
density of states defined by

= −D E m
π

m E E( )
2 ℏ

2 ( ) .3d
eff
2 3 eff c (3.133)

Here, the lineshape function is now expressed with respect to the carrier
energy E. It is emphasized that the above equation does only apply for
electron capture from the substrate conduction band but not for hole
emission into the substrate valence band. Therefore, a generalized
density of states is introduced, which covers the whole spectrum of
states in the substrate.

= − + −D E m
π

m E E
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π

m E E( )
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2 3 n c

p
2 3 p v (3.134)

mn and mp are the effective carrier masses of the electrons in the con-
duction band and the holes in the valence band, respectively. With
the generalized density of states, the electron capture rate can be
rewritten as

∫= −+ +k k E D E f E λ E ξ E Erd ( ) ( ) ( , ) ( , ).0 n
2

d 0 t (3.135)

It is noted that this formulation of the CT rates is also
applicable to charge capture and emission with a metal gate [120]. In
those materials, the density of states D(E) has no bandgap and therefore
can be described by one analytical expression as it has already been
done in [40,41].

The reverse processes, i.e. electron emission and hole capture, can
be derived in an analogous manner to yield

∫= −+ +k k E D E f E λ E ξ E Erd ( ) ( ) ( , ) ( , ).0 p
2

d 0 t (3.136)

Here, the lineshape ξ+0(E,Et) has been replaced by ξ0+(E,Et) and the
corresponding carrier distribution function is now given by the hole
occupancy function fp(E).

If one considers a channel of charge carriers confined in one di-
mension, the summation over the energy spectrum can also be ex-
pressed as

∫∑ ∑→
∞

⊥ ⊥

E D2Ω d .
n n E

2d

n (3.137)

Here, ⊥En corresponds to the quantized states in the direction perpen-
dicular to the interface with the quantum number n⊥ and can be ob-
tained from the solution of a Schrödinger-Poisson solver [121]. When
inserting this summation in Eq. (3.125), one obtains

∫∑= − +
∞

⊥ ⊥

⊥ ⊥k k E D f E E λ E ξ Vrd ( ) ( , ) (Δ )ij
n E

n n ij ij2d n
2

d
0

n (3.138)

for electron capture (ij → 0+) and electron emission (ij → +0). It is
noted that the prefactor −k is expressed as vthσ, where vth corresponds to
the thermal velocity and σ to a cross capture section. Following the same
arguments as used for the parabolic-band approximation, expressions
analogous to Eq. (3.138) can be derived for hole capture and emission.

A more sophisticated approach has been presented in [122], where
the energetical distribution of the charge carrier density is obtained
from device simulations based on the non-equilibrium Green’s functions
(NEGF) method. Compared to the discrete energy levels obtained from
a Schrödinger-Poisson solver, NEGF describes the energy level broad-
ening due to diverse scattering mechanisms and provides more accurate
results, in particular when charge carriers are present. Alternatively,
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analytical solutions for the charge capture and emission rates have been
proposed in [65,123], where the following assumptions have been
made:

• The density of states is assumed to be parabolic.

• The electron (fn(E)) and hole (fp(E)) occupancy is approximated by a
Maxwell-Boltzmann distribution.

• The WKB factor is approximated by a tunneling factor of the form
exp(−xd/x0). Here, the tunneling length x0 is defined by

=x m E2 2 Δ /ℏ0 t (3.139)

with mt being the tunneling mass (cf. Appendix). The ΔE corre-
sponds to the tunneling barrier, which is approximated as the con-
duction or the valence band offset between the substrate and the
dielectric.

• In [10] the prefactor −k has been interpreted as the product of the
capture cross section σ and the thermal velocity vth of the electrons
or holes.

• The prefactor of the exponential terms in the lineshape function
(3.71) or (3.67) is neglected.

• The CT transfer reaction must be in the strong electron-phonon
coupling regime, which is explained in Fig. 12. Then the largest
contribution to the lineshape function comes from those transition
barriers VΔ ij

‡ that are associated with charge carriers located at
the band edges. The corresponding drifting forces ΔVij(E,Et) in

Eq. (3.73) or (3.75) are therefore just evaluated for electrons at the
conduction band edge in the case of the electron capture/emission
or holes at the valence band edge in the case of hole capture/
emission.

Using the above assumptions, the derivation in [123] yields the
simplified hole capture rate

= + −

× −

k v σ R x x p
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3/2
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where the driving force ΔVij(E,Et) is evaluated for E=Ev. Following the
same derivation, the hole emission rate is obtained as

= − −k k β E Eexp( ( )).p,e p,c
t f (3.141)

It is emphasized that the above equation is in agreement with the well
known relation
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which is frequently mentioned in the context of drain current noise
[10,36,124,125]. Electon capture is given by
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with the driving force evaluated for E=Ec. Analogously to the relation
(3.142), electron capture is linked to the reverse process of electron
emission by

= + −k k β E Eexp( ( ))n,e n,c
t f (3.144)

again.

4. Stochastic dynamics of electron transfer

In the previous sections, we have discussed CT reactions and pure
thermal transitions along with their underlying theory. However, the
complex trapping dynamics seen experimentally are actually caused by
a combination of those processes and involve several meta-/stable
states as pointed out in Section 2. These dynamics are stochastic and
can be correctly treated using homogeneous continuous-time Markov
chain theory [126]. This theory rests upon the assumption that the
future transitions between states do not depend on the past of the in-
vestigated system. This assumption is justified as long as the defect
undergoes structural relaxation after each transition. Thereby, the de-
fect interacts with its environment and loses the memory of its past. In
fact, this is assumed to be the case for both pure thermal and NMP
transitions except for more specialized theories, such as recombination-
enhanced defect reaction [127]. The time evolution of such a defect
system is described by a first-order differential equation system, known
as Master equation.

∑ ∑∂ = −
≠ ≠

π t π t k π t k( ) ( ) ( )t i
j i

j ji
i j

i ij
(4.1)

Here, πi(t) is the time-dependent probability that the defect is in state i and
kij denotes the transition rate from state i to state j. The above stochastic
differential equation can be treated by the Gillespie algorithm [128], which
allows one to generate numerous statistically correct solutions at compu-
tationally feasible costs. Each of these solutions corresponds to one possible
realization where many of them must be computed to gather statistically
meaningful information. If a sufficiently large number of such realizations
has been computed, one can analyze the trapping behavior of single de-
fects. For instance, one can determine the expectation value for the actual
transition times between each combination of states — and therefore also
the capture and emission times between the states 1 and 2 in the four-state
NMP model.

Fig. 12. Strong (top) and weak (bottom) electron-phonon coupling. In the first
case the diabatic potentials are positioned such that the intersection point is
situated in between their minima ( >V S ωΔ ℏij i i and >V S ωΔ ℏij j j) while in the
second case one parabola lies inside the other and the intersection point is lo-
cated beside the two minima ( <V S ωΔ ℏij i i or <V S ωΔ ℏij j j). It is noted that the
term ‘strong’ and ‘weak’ electron-phonon coupling regime are also referred to as
the ‘normal’ and the ‘inverted’ regime in the field of chemistry. In addition, by
changing the gate bias a defect may go from the weak to the strong coupling
regime or vice versa.
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As the above Master equation describes a first-order process, the
occupation probabilities can be averaged, thereby becoming occu-
pancies. The resulting rate equations are of the same form as the above
Master equation and can be solved numerically as a partial differential
equation. In this way, the computation of a vast number of realizations
can be avoided and the rate equation for one defect can be solved ef-
ficiently. Thereby, the calculation of a large number of defects becomes
computationally feasible. Since these defects can have different prop-
erties, this method also accounts for variations in the defect properties
and thus allows to compute their distributions. These variations may
arise from the defect properties or the amorphous defect environments
but can also be attributed to random dopant fluctuations, which have
increasingly attracted scientific interest during the last several
years [10,129].

For a comparison to the single-defect data of TDDS measurements,
one is primarily interested in the transition times between stable states.
The metastable states are only occupied temporarily and therefore
barely observed in experiments. However, they become relevant for the
overall gate bias and temperature dependence of two-step processes.
The transition rates between stable states can be obtained from first-
passage times. This quantity corresponds to the mean time it takes the
considered system to first arrive at state C, provided that it was in state
A but not in state B at the beginning (cf. Fig. 13). The corresponding
transition time reads [34]

= + +

= + +

τ k k k
k k

k k k
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In the multi-state model, the set of four states allows for different
transition pathways (see Fig. 3). The corresponding first-passage times
are listed below
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The rates ′ ′ ′k k k, ,11 1 1 22 , and ′k2 2 correspond to the adiabatic transitions
following Eq. (3.9). Here, these rates are expressed as

= −k ν βεexp( ),ij ij0 (4.7)

where εij is the thermal barrier between from state i to state j and the
attempt frequency ν0 is the order of 1013 s-1.

As pointed out in Section 2, these pathways have been identified as
those transitions visible in stimulated charge trapping and illustrated in
the state diagram of Fig. 3. Here, the capture and emission times are the
response to the alternate application of a high- and a low-level gate bias
as in stimulated charge trapping. However, the same transitions are also
encountered for most of the investigated defects at a constant gate bias

level and therefore observed as drain current RTN [129]. As such, the
general description based on a four-state trap already covers the most
important charge trapping phenomena for the relevant use-conditions
of microelectronic transistors. Besides, the four-state NMP model allows
for many other transitions which might become relevant for charge
trapping phenomena. Some of them have not been investigated ex-
perimentally in full detail while others may not be visible due to a too
low resolution of the measurement equipment. Nevertheless, there are
some further noise phenomena which could be explained within the
framework of the four-state NMP model and will be discussed in
the following.

One of them is anomalous RTN, which was discovered in the early
studies of Uren [10]. They observed electron traps, which repeatedly
produced noise for random time intervals. During the interruptions of
the noise signal, the defects were found to remain negatively charged
and did not generate RTN noise. Within the four-state NMP model, the
noise signal is generated by NMP transitions between the states of the
secondary configuration (see Fig. 14). Therefore, the corresponding
capture and emission time constants are given by the direct NMP
transition rates ′k1 2 and ′k21 , respectively. The recurrent pauses of the
noise signal are initiated by transitions from the stable state 2 to the
metastable state ′2 . During the time of the interruption, the defect
dwells in this state and no NMP transition can take place. Here it has
been implicitly assumed that the NMP transition ′ →2 1 occurs on larger
time scales than the return to the state 2 via the transition ′ →2 2. The
emission time constant τe

s in Fig. 14 defines the mean time interval
during which noise can be observed. Its value is given by the inverse of
the transition rate ′r1/ 22 . The capture time constant = ′τ r1/c

s
2 2 corre-

sponds to the mean time interval until the next noise period starts.
Another noise phenomenon [65] has been observed in TDDS mea-

surements, where the drain current displayed RTN only after a high-
level gate bias had been previously applied. Microscopically, the noise
at low-level gate bias can be linked to defects which continuously
capture and emit charge carriers. In the measurements, the RTN signal
was observed to disappear after a random amount of time. However, it
did not reoccur during the remaining measurement time in contrast to
anomalous RTN. The disappearing noise signal was ascribed to a tran-
sition into a neutral charge state, in which the defects remain. As this
RTN behavior ends after a random amount of time, this phenomenon is
referred to as temporary RTN in TDDS experiments. Within the four-
state NMP model, the generated noise originates from defects switching
back and forth between states 2 and ′1 . Since the associated NMP
transitions ⇔ ′2 1 do not involve any intermediate states, the capture

Fig. 13. The state diagram for a two-step process from the state A to C. The first
passage time of such a process is calculated by Eq. (4.2). Note that the transition
rate kCB, indicated by the dashed arrow, does not enter this equation.

Fig. 14. Top: The hole occupancy f2 during aRTN with the gate bias held at a
constant level. Bottom: Configuration coordinate diagram for an aRTN defect.
Since this defect is a hole trap, the red solid and the blue dashed line correspond
to the positive and neutral charge state, respectively. The double-sided thick
arrow is associated with aRTN while the thin one represents the transitions into
and out of the metastable state ′2 .
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and emission times are given by the inverse of the transition rates ′k1 2
and ′k21 , respectively. As illustrated in Fig. 15, the noise states ′1 or 2 can
be reached by the transition ⇔ ′ →1 2 2 at the high gate bias level. The
other direct pathway → ′1 1 into one of the states ′1 or 2 is assumed to be
suppressed by a large thermal barrier. At the low gate bias level, the
state 1 is thermodynamically favored due to its energetically lower
position compared to the states 2 and ′1 . When the defect returns to its
initial state 1, the RTN signal disappears with a time constant of τe

s. The
corresponding transition could be either → ′ →2 2 1 or ′ →1 1 with a
time constant of ′τe

2 or ′τe;min
1 , respectively (cf. Fig. 15). The actual ter-

mination of the noise signal after a time period of τe
s is determined by

the minimum of these time constants. It is noted that the NMP barriers
→ ′2 1 and ′ →1 2 must not be too large since otherwise trapping events

will not be observed within a practically relevant time period.
One should keep in mind that defects showing an aRTN behavior

can also be responsible for tRTN. When a high-level gate bias is applied,
the defects are forced into one of the states 2 and ′1 where they produce
an RTN signal. As in aRTN, they undergo a transition to the metastable
state ′2 , accompanied by the end of the noise signal. However, this
special sort of defects is characterized by a large capture time constant
= ′τ r1/e

s
2 2, which is larger than the typical measurement window of one

TDDS cycle. As a consequence, the next transition back to the state 2
and the subsequent noise period are shifted out of the experimental
time window of TDDS and will not be recorded during the measurement
run. According to this explanation, tRTN can also be explained as a
stimulated variant of aRTN.

5. Defect candidates

The bistability in both charge states is the key feature of the four-
state NMP model and is thus used as the main criterion in the search for
possible defect candidates. Together with a thermodynamic level
somewhere in the middle of the bandgap of SiO2, this criterion turns out
to be quite restrictive, making a large number of defects known in the
literature unsuitable. The first candidate suggested for the four-state
NMP model was the oxygen vacancy, which is the most prominent
defect known already from the HDL model. Its bistability was predicted
by a large number of independent theoretical investigations [49,51-
53,130] and motivated for the HDL model [69,131] to explain the
switching characteristics observed after irradiation. However, DFT si-
mulations [74,132] have revealed that this defect does not show the
trapping behavior which has been found for the defects investigated by
TDDS because its trap level lies too deep in the SiO2 bandgap.

Other defect candidates are hydrogen-complexed defects, as evi-
denced by ESR measurements [70,133]. One of them is the hydrogen
bridge, which was studied in the context of gate leakage currents in
transistors by Bloechl et al. [7] but has not been related to charge
trapping phenomena, such as drain current RTN and BTI, so far. In
addition to the hydrogen bridge, a newly novel defect termed the hy-
droxyl ′E center was proposed fifteen years ago by Balk [134] and re-
cently confirmed as a promising candidate by DFT investigations
[135,136]. This defect has rarely been studied theoretically since it is
not stable in crystalline SiO2, which is often used in DFT studies due to
its well-known structure and reduced computational costs [137,138].
This underlines the necessity to perform the atomistic DFT simulations
on realistic amorphous host structures, where variations in the bond
length and angles allow for new defect structures. In the following, the
oxygen vacancy (OV), the hydrogen bridge (HB) as well as the hydroxyl
′E (HE) center were chosen for our DFT investigation as they could be

consistent with the trapping behavior seen in TDDS.

5.1. Details of the DFT calculations

For efficiency reasons, a combination of classical force-field mole-
cular dynamics (MD) and a subsequent DFT optimization was employed
to generate amorphous SiO2 host structures. The MD simulations were
based on the ReaxFF force-fields, parametrized to reproduce the prop-
erties of various silicon and silica polymorphs [139,140]. The initial SiO2

structures contained 216 atoms and underwent a melt and quench pro-
cedure [141] in order to produce amorphous SiO2. In the subsequent
step, DFT simulations were employed to geometrically optimize these
structures. These simulations were carried out using the CP2K code [142]
with the non-local functional PBE0 TC LRC [143], which predicts accu-
rate bandgaps and localized states therein. The geometrical optimization
used the Broyden-Fletcher-Goldfarb-Shannon (BFGS) method to mini-
mize the forces on the atoms (below 2.3×10-2 eV Å-1) as well as the
total energies of the defect structures. The above procedure yielded
amorphous structures, which consisted of a defect-free continuum
random network of SiO4 tetrahedra and had an averaged density of
2.16 g cm-3. Geometrical analysis of the obtained structures agreed well
with other previous calculations [144] and experimental neutron-dif-
fraction data [145]. Due to the applied periodic boundary conditions,
charged supercells were calculated by introducing a homogeneous
compensating background charge. The barrier height between two dif-
ferent configurations was determined using the climbing-image nudged-
elastic-band method (CI-NEB) [146] with a spring constant of 2 eV Å-2.

In order to gather sufficiently accurate statistics, a large number of
defects have been investigated (see Table 1). This array included defect
structures with 2, 3, or 4 stable configurations, which correspond to the
states in the four-state NMP model. The relative numbers of those defects
are not related to the corresponding defect concentrations in real oxide
structures. Rather, these numbers were chosen so that a statistical in-
terpretation of the properties for each investigated defect type is justified
(except for the 3-state HE). For this purpose, the more complex defect
structures with 3 or 4 stable configurations were created at defect sites
where the defects are likely to have bistable defect configurations. The

Fig. 15. Top: The same as in Fig. 14 but for tRTN. At t=0 the stress voltage has
been removed and the defect is in its positive state 2. After a time τe

s the defect
ceases to produce noise. Bottom: Configuration coordinate diagram for a tRTN
defect. The double-sided thick arrow indicates the fast NMP transitions between
the states 2 and ′1 related to the occurrence of noise. The possibilities to escape
from these states are shown by the thin arrows.

Table 1
Number of investigated defect structures for the hydrogen bridge (HB), the
oxygen vacancy (OV), and hydroxyl ′E centers (HE). The generated defects
remained stable in two, three, or four configurations, which may be identified
with the states of four-state NMP model.

Dataset 2 states 3 states 4 states

HB 61 9 79
OV 63 53 42
HE 51 — 49
HEbreak 159 — —
HEstick 67 — —
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four obtained defect structures were grouped into configurations A and
B, where one of them corresponds to the primary configuration and the
other to the secondary configuration of the four-state NMP model. The
defect configurations were also distinguished by their charge states and
therefore denoted as A0, A+, B0, or B+. However, these configurations do
not directly correspond to the states of the four-state NMP model since
the latter are differentiated according to their relative energies.

5.2. Oxygen vacancy

In stoichiometric SiO2, two silicon atoms are always connected by
one bridging oxygen atom. If the latter is removed, the two neighboring
silicon atoms establish a dimer bond, illustrated as configuration A0 in
Fig. 16. DFT simulations predict a bond length of approximately 2.5 Å
in crystalline SiO2[52,116] while the bond varies in the range of
2.3–2.7 Å [49,147] in amorphous SiO2 host structures. Nicklaw [130]
extended his defect calculations to highly strained oxygen vacancies
with bond lengths up to 3.2 Å.

The positively charged counterpart of the oxygen vacancy is labeled
configuration A+, which is identified with the ′Eδ center in the EPR
measurements. The missing negative charge within its bond results in a
repulsive force between the two positively charged silicon atoms and in
a stretching or a breakage of the Si-Si bond. In the crystalline SiO2

reference, the Si-Si bond of the ′Eδ center extends from 2.5 Å to 3.0 Å
[52,116] upon hole capture. In a-SiO2, this kind of weak bond experi-
ences large tensile and compressive forces due to the amorphous nature
of the host material. Therefore, the corresponding bond lengths were
found to be widely distributed within a range of 3.0–4.4 Å [130],
consistent with the values given in [52] and [51].

The ′Eδ center can also transform to an ′Eγ center, which corresponds to
the bistable partner B+ of the oxygen vacancy [51,52,69,131].
Starting from the configuration of the ′Eδ center, one side of the defect
undergoes a transformation called ‘back-projection’ or ‘puckering’. During
this process, the dimer bond is broken and one of the silicon atoms moves
through the plane defined by its three oxygen neighbors. This
defect structure is referred to as the back-projected configuration
[49]. If, however, the Si atom is stabilized in this position via formation of
a back bond to a nearby oxygen atom, the resulting configuration is
termed puckered [51]. On the other side, the defect transformation leaves
behind a dangling Si bond, which can carry up to two electrons and
produces an EPR signal depending on its occupation [148]. In crystalline
SiO2, the puckering transformation proceeds over a small thermal barrier
of 0.4 eV, where the final ‘puckered’ configuration B+ is less stable by
0.3 eV [52]. The neutral charge state of the ′Eγ center is susceptible to
return back to its oxygen vacancy configuration [51]. In crystalline SiO2,

however, the DFT calculations of Mysovsky et al. [53] predicts that the ′Eγ
center is more stable via a puckering transformation over a small thermal
barrier of 0.2 eV. The corresponding configuration B0 of the ′Eγ center is
shown in Fig. 16.

5.3. Hydrogen bridge

The hydrogen bridge [56,116,149-152] can be thought of as a Si-Si
dimer bond decorated by a hydrogen atom. For instance, this defect
may be formed by the exothermic reaction of atomic hydrogen and an
oxygen vacancy [135]. Both constituents of the hydrogen bridge,
namely the oxygen vacancy as well as the hydrogen atom, were ex-
perimentally found in abundance in amorphous SiO2: The former was
experimentally confirmed by ESR studies [1,2] but also theoretically
predicted in larger amounts close to the Si-SiO2 interface as suboxides
[153]. The second constituent (hydrogen in its atomic, molecular, or a
bound form) is known to exist in large background concentrations of up
to 1019 cm-3, even within dry oxides of MOS transistors [70]. For in-
stance, it was observed using nuclear reaction analysis [154,155]. Due
to the large availability of both constituents, the hydrogen bridge be-
came one of the prime suspects in our defect search.

In order to explore the above hydrogen reaction in greater detail
[135], an oxygen vacancy was created as described in Sub-section 5.2
and then a hydrogen atom was placed close to several oxygen vacancy
sites. This was done for 144 sites within our amorphous SiO2 structures
in order to collect sufficiently large statistics as required for amorphous
materials. Geometrical optimization of these structures always resulted
in hydrogen bridges, which are more stable by 2.76 eV on average than
their separated constituents.

In the configuration A0 (see Fig. 17), the hydrogen atoms establish a
strong bond to one Si atom with a bonding distance of 1.47 Å on
average. By contrast, the interactions with the other Si atoms are of a
non-bonding character. These interactions are therefore strongly in-
fluenced by the amorphous environment, resulting in a wide distribu-
tion of the corresponding SiH bond lengths with a range between 1.74 Å
and 3.13 Å. In the positive charge state (configuration A+), however,
the defect sometimes forms a common Si-H-Si bond, with the two bond
electrons shared between the three defect atoms of this chain. Since the
two Si atoms of this defect point towards each other, the configurations
A0 and A+ are often referred to as closed hydrogen bridges. In addition,
there is also a broken hydrogen bridge, which is formed when the Si
atom with the dangling bond moves through the plane of its three
oxygen neighbors. Just like oxygen vacancy, this configuration may
also be stabilized by a weak bond to another nearby oxygen atom. This
configuration remains stable for the neutral as well as the positive

Fig. 16. Oxygen vacancy in the configurations A0 (top
left), A+ (top right), B0 (bottom left), and B+ (bottom
right). In the neutral charge state, the oxygen vacancy is
most stable in the configuration A0, which is character-
ized by a dimer bond. When this defect is positively
charged (A+), this dimer bond is either broken or stret-
ched due to the positive charge (not shown here). The
oxygen vacancy can also undergo a defect transformation
called puckering, where one Si atom carries a dangling
bond while the other Si atom bonds to a network O atom
in the back. The corresponding configurations are de-
noted as B0 and B+ for the neutral and the positive
charge state, respectively.
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charge states (configurations B0 and B+, respectively). As a result, the
hydrogen bridge exhibits the required bistability and is thus considered
a potential hole trap. It is also noted here that the hydrogen bridge also
has a stable configuration in its negative charge state, making it pre-
dominantly an amphoteric trap. Therefore, the hydrogen bridge can
also capture and emit negative charges and may act as an electron trap,
as observed in TDDS measurements on nMOS transistors [66].

5.4. Hydroxyl ′E center

The presence of HE centers in MOS transistors is a direct result of
the amorphous nature of SiO2, which exhibits a wide distribution of
bond lengths and angles. Especially in regions of tensile strain in the a-
SiO2, the Si-O bond lengths can sometimes strongly deviate from the
crystalline equilibrium values of 1.61 Å, making their corresponding
bonds chemically reactive [135]. These strained bonds were the subject
of several experimental studies but have also recently been investigated
with regard to possible reactions with hydrogen. It has been discovered
that neutral hydrogen atoms preferentially attacks strained Si-O bonds,
forming a defect referred to as HE center. This defect consists of two
moieties: a threefold coordinated Si atom, which carries a dangling

bond, and a hydroxyl group, which is bound to the silica network (see
Fig. 18). Interestingly, the HE center is energetically more stable than
the hydrogen atom in its interstitial position by 0.8 eV on average.
Furthermore, this defect only occurs at strained Si-O bond sites with a
bond length larger than 1.65 Å. This condition is met by approximately
2% of all Si-O bonds in amorphous SiO2 so that amorphous SiO2 has a
concentration of 1.7×1021 cm-3 possible defect sites. For these rea-
sons, the HE center is assumed to exist as a stable defect present in
significant concentrations and must consequently be considered as an
intrinsic defect of amorphous SiO2.

In addition to the neutral charge state (configuration A0), this defect
is also stable as a positive defect, whose configuration (A+) is strongly
distorted as shown in Fig. 18. There, the oxygen atom from the hy-
droxyl group rebonds to the Si atom with the dangling bond so that the
resulting familiar structure is that of a proton bonded to a bridging
oxygen atom. The HE center also stays stable in its negative charge state
according to DFT calculations in [135]. It can, therefore, be classified as
an amphoteric trap or a negative-U center at 30 or 70% of all possible
sites in a-SiO2 [135]. The former can be present at least in a negative,
the neutral, and a positive charge state depending on the position of the
Fermi level in the semiconductor, while the latter directly switches

Fig. 17. The same as Fig. 16 but for the configurations of
the hydrogen bridge. In the initial neutral configuration
A0, the hydrogen atom bonds to the Si atom on the right-
hand side but only weakly interacts with the left Si atom.
Upon hole capture, the defect adopts the configuration
A+ where the central hydrogen atom establishes a bond
to both Si atoms. A possible secondary configuration is
associated with the puckering of one Si atom, which
points towards (configuration B+) or even bonds to a
back-oxygen (configuration B0).

Fig. 18. The same as Fig. 16 but for the configurations of
the HE center. The initial neutral configuration A0 con-
sists of a hydroxyl group and a Si dangling bond. In the
positive charge state, they recombine to a bridging
oxygen atom with an attached proton (configuration
A+). The secondary configurations involve the puckering
of the Si atom again. Just as in the case of the hydrogen
bridge, the puckered Si atom is directed towards a bond
to the back-oxygen (configuration B0) in the neutral
charge state while it forms a bond in the positive charge
state (configuration B+).
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between a positive and a negative charge state. However, these cate-
gories refer to the equilibrium rather than the dynamic properties of
those defects. For instance, the negative charge states can be in-
accessible during the experimentally relevant timescales due to ex-
cessively large NMP transition barriers and the trapping dynamics
would then be dominated by NMP transitions between the positive and
the neutral charge state.

In addition to the above configurations, this defect also features a
back-projected configuration, in which the Si dangling bond is dis-
placed through the plane of its three oxygen neighbors and points away
from the hydroxyl group. This configuration is stable in the positive as
well as in the neutral charge state (configuration B+ and B0, respec-
tively) for the vast majority of defects if the back-projected configura-
tion is stabilized by a bond of the silicon atom with a nearby network
oxygen atom. As such, the HE center shows a bistability in two
charge states.

The defect structures of the hydrogen bridges were created by se-
lecting different sites within a-SiO2, where the hydrogen atom was
placed close to an oxygen atom with an extremely long Si-O bond
[156]. This selection criterion resulted in HE centers (0.14%) which
also showed a back-projected configuration. Our comprehensive study
on HE centers also included datasets in which the defects were created
without the aforementioned selection criterion. There, the hydrogen
atom was found to either stick to the closest network oxygen atom.
Analogously to [135], the resulting defect is denoted as {SiO4/H},
where the curly brackets indicate the omission of the selection cri-
terion. Alternatively, the hydrogen atom can also break one Si-O bond
and form a hydroxyl group, which is referred to as HE. It is noted that
the datasets {SiO4/H} and {HE} show differently distributed properties
since the HE centers with at least four states represent a small subgroup
due to the selection criterion.

6. Parameter extraction from DFT

In the previous section, we have presented several promising defect
candidates which feature a bistability as required by the four-state NMP
model. In this section, they will be evaluated primarily based on their
trap levels calculated by DFT. Furthermore, other important model
parameters, such as the relaxation energies (S ω S ωℏ , ℏi i j j) and the dis-
placement (ΔQij), will be studied as they have a strong impact on the
NMP transition rates.

For this purpose, the distributions of these quantities will be ex-
tracted from our DFT simulations for three defect candidates. Based on
these data, realistic ranges will be determined for the aforementioned
model parameters. The parameter ranges are regarded as benchmarks
and will be used to evaluate fits of the model to experimental TDDS
data. Furthermore, it will be demonstrated that nuclear tunneling can
strongly affect the NMP transition rates under certain conditions (low
temperatures, specific values of the model parameters S ω S ωℏ , ℏi i j j and
ΔQij). As such, nuclear tunneling will be investigated with respect to its
impact on the magnitude as well as the gate bias and temperature de-
pendence of the NMP transition rates. In particular, we will give esti-
mates for the error made by assuming the classical approximation for
‘typical’ (T ∈ [300 K,500 K] and |Eox|< 10 MV/cm) and ‘extreme’ (T ∈
[300 K,650 K] and |Eox|≲ 10 MV/cm) operation conditions of micro-
electronic transistors.

6.1. Trap levels

A crucial parameter of any defect model is the thermodynamic trap
level since it determines whether a defect can be charged and dis-
charged under certain bias conditions. This is explained for the electron
capture in the configuration coordinate diagram of Fig. 19. Here, the
state 1 corresponds to the case where the electron sits in one of the band
states, represented by the set of parabolas V1(E). In the state 2, how-
ever, the electron is located in the defect, represented by the parabolic

potential V2. If the potential V1(E) is located above V2, the electron is
preferably in the state 2 and thus in the defect. Otherwise, the electron
is in state 1 and occupies one of the band states. As such, the location of
the electron is related to the driving force

= −+V E EΔ 0
12

t (6.1)

(cf. Eqs. (3.85) and (3.87)) and depends on the energy difference E−Et.
Recall that the trapping dynamics involve not just one but a multitude
of band states E. As mentioned in Section 3, these states act as an
electron reservoir in CT reactions and their occupancy is related to the
substrate Fermi level Ef. As a consequence, the occupation of the defect
is ultimately given by the Fermi level. This level can be associated with
the parabola V1(Ef), which corresponds to the highest of the occupied
band states in the band energy diagram. If this parabola V1(Ef) is lo-
cated above V2, the defect is occupied, and otherwise empty. At the
transition between these cases, the parabolas V1(Ef) and V2 are at the
same height ( ′ ≈E Et f ) and the defect and the band states E at the Fermi
level are equally occupied. For example, this is the case for drain cur-
rent noise where the electron capture and emission balances each other
and the corresponding capture and emission times are of the same order
of magnitude. However, the noise signal often remains unnoticed as it
can only be resolved experimentally if the time constants fall within the
measurement window.

In addition, the thermodynamic trap level also determines whether
stimulated charge trapping can occur for the gate bias repeatedly
switching between two voltage levels. If the thermodynamic trap level
is situated below the Fermi level, electron capture (hole emission)
dominates over electron emission (hole capture). Consequently, the
defect adopts its ‘more negative’ charge state in thermal equilibrium. By
contrast, if the thermodynamic trap level lies above the Fermi level, the
roles of capture and emission are reversed and the defect changes to its
‘more positive’ charge state. Therefore, stimulated charge trapping re-
quires the thermodynamic trap level to pass the Fermi level during a
bias sweep. As a consequence, only those defects which have their
thermodynamic trap levels shifted above and below the Fermi level
during a whole period, are visible in TDDS experiments. This condition

Fig. 19. Schematic configuration coordinate diagram (left) for electron capture.
During the CT reaction, the electron with the energy E is in state 1 and un-
dergoes a transition to state 2. The involved states are represented by the initial
potentials V1(E) and the final potential V2. The thermodynamic trap level Et
corresponds to the energy E at which the energy minima of the initial and the
final potential are equal. In the plots of the lineshape functions (right), this
coincides with the point where ζ12(E) and ζ21(E) intersect. The switching trap
level Esw1 is given by the energy E whose corresponding potential V1(E) inter-
sects with the potential V2 in its minimum. At this energy level, the vibrational
transition proceeds at the fastest pace since no thermal excitation is required.
Similarly, the lineshape function ζ21 peaks at the switching trap level Esw2

where the potential V1(E) cuts the potential V2 in its minimum.
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is met for those defects located in the active region, shown in Fig. 20 for
a pMOSFET [157].

It is emphasized here that the thermodynamic trap levels should not
be confused with switching trap levels [7]. The latter are associated
with zero-barrier transitions and are related to the maxima of the
lineshape function for hole capture and emission (see Fig. 19). How-
ever, the switching trap levels have usually no particular relevance at
normal bias conditions during charge trapping and will therefore not be
addressed here.

In the four-state NMP model, the primary and secondary config-
uration have their own thermodynamic trap levels, ′Et and ″Et , respec-
tively which can be extracted from the DFT simulations using Eqs.
(3.112) and (3.113). These trap levels are based on the classification of
stable (1,2) and metastable ′ ′(1 , 2 ) states. However, this definition does
not necessarily agree with the ‘configurations’ (A0,B0,A+,B+), which
are related to the atomic structure of the defects. For this reason, the
configurations (A,B) of the defect candidates must be identified with
the states of the four-state NMP model. Since the shape of the neutral
and the positive potentials vary from defect to defect, a certain defect
configuration may correspond to a stable but also to a metastable state
in our defect model. This aspect is pointed out in Fig. 21, where the

distribution of relative stability ′εT1 is exemplarily shown for different
defects. In this figure, the atomic configurations are implicitly mapped
to the states of the four-state NMP model according to the same scheme

→ → ′ → ′ →+ +A 1, B 1 , A 2 , B 20 0 (6.2)

for each defect. The used mapping scheme identifies the configuration
A with the primary configuration of the four-state NMP model and
consequently the configuration B must be assigned to the secondary
configuration. This mapping scheme is motivated by the finding from
previous DFT studies that the puckered configuration of the oxygen
vacancy corresponds to the metastable state [51,52]. These studies are
also confirmed by our DFT simulations, which predict the puckered
configuration B0 of the oxygen vacancy to be more stable by 3.21 eV
on average than the dimer configuration A0. This fact is reflected in
the histogram of Fig. 21, showing the positive relative stability ′εT1 of
the oxygen vacancy for the above mapping scheme. The same also
holds for the hydroxyl group ′E center. Its energy difference is reduced
to 722 meV and thus makes the puckered configuration accessible
under device operation conditions. The value of ′εT1 is relevant for the
hole emission, where a positive value triggers a transition over the
metastable state ′1 instead of state ′2 . For this transition pathway, hole
emission is dominated by the gate bias dependent NMP transition
⇔ ′2 1 and shows a switching trap behavior similar to the switching

trap (see Fig. 1). In the case of the hydrogen bridge, however, ′εT1 can
assume positive and negative values. Then the above mapping scheme
is inconsistent with the four-state NMP model for defects having me-
tastable configurations A0. In this case, the configuration A0 cannot
correspond to the initial or the final state for charge capture and
emission because the configuration B0 is lower in energy. Conse-
quently, the defects do dwell most of their time in configurations B0,
which become the initial or final states. Then, the roles of the con-
figurations A0 and B0 are actually exchanged, leading to the following
mapping scheme:

→ ′ → → → ′+ +A 1 , B 1, A 2, B 20 0 (6.3)

If the correct mapping scheme (6.2) or (6.3) is selected, not only the
neutral state but also the assumed positive states must be re-ordered. As
a result, the choice of the mapping scheme also affects the relative
stability ′εT2 (see Fig. 22), which is used for the classification of the
defects into four-state and effective two-state traps. If ′εT2 has a positive
value, the state 2 is the stable configuration and corresponds to the
initial or the final state during a charge emission and capture event,
respectively. Then, the trapping dynamics are dominated by transitions

Fig. 20. Active trapping regions of a SiO2 pMOSFET, biased at −0.5 V and
−2.0 V, for the interaction with the metal gate (blue area) and substrate (red
area). For the latter, this region is confined between the substrate Fermi level of
the low and the high gate bias level (solid red lines) because only the defects
therein are shifted above and below the Fermi level during stimulated charge
trapping, can capture and emit a hole from the substrate, and therefore respond
to bias switches. Defects below this area will always remain neutral while the
ones above this area keep their fixed positive charge. Analogously, there also
exists a blue shaded area where electron trapping from the metal gate occurs.

Fig. 21. Histogram of the relative stability ′εT1 for the hydroxyl group, the hy-
drogen bridge, and the oxygen vacancy. Only bistable defects are considered in
the statistics.

Fig. 22. Histogram of the relative stability ′εT2 for the hydroxyl group, the
hydrogen bridge, and the oxygen vacancy. The above statistics are created
accounting for the relative stability between the configurations A0 and B0 by
using either of the mapping schemes (6.2) and (6.3). It is clearly visible that ′εT2

is distributed around zero, meaning that the state ′2 may be higher or lower in
energy. In the latter case, ′εT2 has a negative value and the defect shows the
behavior of an effective two-state trap.
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between the states 1 and 2 as implicitly assumed for the trap in the four-
state NMP model. However, ′εT2 may also have a negative sign, meaning
that the state ′2 actually represents the actual stable configuration. In
this case, the trapping dynamics are governed by direct transitions
between the stable states 1 and ′2 . Indirect transitions may take place as
three-state processes involving the states ′1 and 2 but are likely to be
suppressed. This is due to the fact that either the thermal barriers
′ ′ε ε,11 2 2 or the NMP barriers ′ ′V VΔ , Δ1 2

‡
21
‡ are usually much larger than the

NMP barriers ′ ′V VΔ , Δ12
‡

2 1
‡ . Therefore, these defects show an effective

two-state trap behavior despite their bistability. Such traps were also
encountered in our DFT simulations with a considerable frequency and
have their parameter ′εT2 widely distributed around zero with con-
tributions from negative values, see Fig. 22 and Table 2. Our data show
that the majority of bistable hydrogen bridges (56%), hydroxyl ′E
centers (61%), and oxygen vacancies (66.7%) acts as four-state traps
(see Fig. 23). However, these numbers also imply that two-state var-
iants exist in appreciable concentrations. The existence of two-state
defects seems to be consistent with a large number of publications in
which the behavior of four-state as well as two-state traps was observed
experimentally [9,129].

The energy levels of both trap types are evaluated using the defi-
nitions (3.112)–(3.114). The obtained values were referenced to the
substrate valence band edge, which is the source or sink of exchanged
charge carriers in pMOSFETs and therefore meaningful for the inter-
pretation of charge trapping. The Si valence band offset between Si and
a-SiO2 was set to 4.728 eV, which is within the range of values given in
the literature [158]. It is furthermore noted that the calculation of
energy levels in DFT suffers from uncertainties regarding the en-
ergetical alignment. Even though this issue has been improved by the
use of hybrid functionals in our study, the energy alignment may still
contain errors of up to±0.7 eV [132] and quantitative interpretations
should be treated with caution.

In TDDS studies, four-state traps are prevalently observed and
contribute to stimulated charge trapping. For a-SiO2, their trap level ET
is widely distributed in energy and shown in a histogram for our se-
lection of defect candidates (see Fig. 24). The trap levels of the hy-
drogen bridge and the hydroxyl ′E center are centered close to the Si
substrate valence band edge (see also Table 3). Given the large width of

the distributions, a considerable fraction of the defects feature a trap
level within the ‘measurement window’, which is relevant for ‘typical’
operation conditions of transistors. By contrast, the oxygen vacancy has
a trap level which lies approximately −2.4 eV below the substrate

Table 2
Relative stabilities ′εT1 and ′εT2 . Data are given as mean value plus/minus one
standard deviation.

Dataset ′εT1 [eV] ′εT2 [eV]

4s-HB −0.055± 0.529 0.025± 0.452
4s-OV 3.210± 0.784 0.113± 0.494
4s-HE 0.722± 0.297 0.096± 0.489

Fig. 23. Scatter plot ′ε [eV]T1 vs ′ε [eV]T2 . This figure demonstrates that all three
defects, i.e. HB, OV, and HE, occur as effective two-state or four-state defect.

Fig. 24. The distributed energy levels ET (top) and ′Et (bottom) of the four-state
traps. The rose shaded area marks the energy region in which defects can be
charged and discharged for ‘typical’ bias conditions during stimulated charge
trapping and therefore also contribute to it. For these bias conditions, the trap
level can be shifted by about 1 eV at maximum, assuming that the defect is
located in the middle of a 2 nm-thick device.

Table 3
Trap levels ′Et , ″Et , and ET for the effective two-state and four-state traps of the
hydrogen bridge, the oxygen vacancy, and the hydroxyl ′E center. They are
referenced to the valence band edge of the Si substrate and given by their mean
value plus/minus one standard deviation. The values for both trap types have
been given for comparison with other publications, however, it should be kept
in mind that most publications do not distinguish between effective two-state
and four-state defects.

′Et [eV] ″Et [eV] ET [eV]

Eff. 2-States
HB −0.016±0.399 −0.097± 0.451 −0.481±0.449
OV 0.064±0.959 −2.931± 0.224 −3.420±0.360
HE 0.120±0.390 −0.302± 0.347 −0.671±0.418

4-States
HB 0.266±0.488 −0.453± 0.340 −0.104±0.353
OV 0.764±0.259 −2.723± 0.331 −2.310±0.425
HE 0.760±0.459 −0.310± 0.467 0.082±0.443

Both
HB 0.141±0.472 −0.295± 0.431 −0.271±0.440
OV 0.531±0.679 −2.792± 0.315 −2.680±0.661
HE 0.511±0.534 −0.307± 0.424 −0.210±0.568
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valence band edge. This energy level cannot be shifted above the sub-
strate Fermi level under realistic bias conditions for the thin oxides used
today and therefore must be discarded as a possible defect candidate.

Even though positions of defect levels have been published for
several gate oxides [7,44,50,53,56-59,130,159-162], no published va-
lues could be found for the trap level ET of bistable defects. This is due
to the fact that the trap level ET is only defined for defects that are
bistable in two charge states, and this kind of defect has only been
scarcely investigated so far. However, according to Eq. (3.93) this trap
level is strongly related to the quantity ″Et , which is associated with the
direct transition between the states 1 and ′2 in the primary configura-
tion. For instance, this energy level was calculated for the hydrogen
bridge in crystalline SiO2 by Bloechl et al. [7]. The value of ″Et in this
study lies approximately 0.4 eV above the valence band edge and
therefore falls within the distribution of trap levels ″Et (−0.3± 0.9 eV)
obtained in this work (cf. Table 3). For the oxygen vacancy, the single-
electron level is located 2.0 eV above the SiO2 valence band edge in
[55,130]. This is in agreement with the corresponding value of
−2.792 eV in our study, where the trap level has been measured from
the Si valence band edge and equals +1.94 eV when referenced to
Ev of SiO2.

The RTN at the high or the low bias level of stimulated charge
trapping is produced by the transitions ′ ⇔1 2, which are associated
with the trap level ′Et . This energy level must be located above the
substrate Fermi level so that the defect remains positively charged
when a bias is applied to the gate. However, this defect level must not
be far away from the substrate Fermi level for two reasons: It should be
capable of (1) being discharged after the removal of the gate bias [34]
and (2) producing an RTN signal for normal low-level bias conditions.
Furthermore, the trap level ′Et is also associated with the switching trap
behavior because hole emission involves the gate bias dependent NMP
transitions ′ ⇔1 2 for ′ ≳E Et f . If the trap level ′Et is located much higher
than Ef, the defect will essentially behave as a fixed oxide trap. The
distribution of the trap level ′Et is depicted for our selection of defects in
Fig. 24. For the oxygen vacancy, the mean value is located 0.531 eV
above the substrate valence band. This result is in good agreement with
the single-electron level obtained for the puckered oxygen vacancies in
[51]. Bloechl et al. [7] obtained a thermodynamic trap level ′Et in
crystalline SiO2, located 0.2 eV above midgap, and thus also compares
well with our mean value of 0.531 eV. It is noted here that the trap
levels ″Et and ′Et correspond to the primary and the secondary config-
uration of the four-state defect model. These configurations are some-
times discussed as separate defects in the literature as it was done in
[130] in the case of the OV.

Besides the aforementioned four-state traps, also effective two-state
traps have been observed in numerous studies on drain current RTN.
This noise may be ascribed to the direct transitions ⇔ ′1 2 , linked to the
thermodynamic trap level ″Et . As shown in Fig. 25, the oxygen vacancy
has energy levels distributed around 2.931 eV below the substrate va-
lence band with a standard deviation of 0.224 eV. Even considering the
width of the distribution, none of the oxygen vacancies has a trap level
which can be shifted close to the Si bandgap. As such, the oxygen va-
cancy must also be ruled out as a trap causing drain current RTN. By
contrast, the hydrogen bridge and the hydroxyl ′E center show a dis-
tribution of trap levels ″Et with a considerable fraction falling into the
measurement window for RTN.

In lieu of the direct transition ⇔ ′1 2 , the effective two-state defects
may also undergo transitions between the states 1 and ′2 via the in-
termediate states ′1 and 2. This transition pathway involves the NMP
transitions ′ ⇔1 2 with the trap level ′Et . In this case, the noise signal is
only produced if the energy minima of the initial and the final states
(1 and ′2 ) coincide and therefore does not depend on the position of the
trap level ′Et . Therefore, the trap level ″Et remains the crucial trap level
for this type of defects.

The trap level ″Et may be also relevant for effective two-state traps
with respect to stimulated charge trapping. However, they have not
been experimentally assessed by TDDS so far due to their short emission
times. In addition, also four-state traps can show a similar behavior to
the effective two-state traps provided that the thermal transition ′ →2 2
proceeds at larger timescales than the NMP transition ⇔ ′1 2 .

6.2. Impact of quantum effects on the temperature dependence

Charge trapping in transistors has been demonstrated to be
thermally activated by a large number of experimental investigations
[25,163,164]. The observed thermal behavior can be traced back to a
transition over an energy barrier in the configuration coordinate
diagram. In the four-state NMP model, this transition can be either a
pure thermal transitions ⇔ ′ ⇔ ′(1 1 or 2 2 ) or an NMP process
⇔ ′ ′ ⇔(1 2 or 1 2). While the former can be described by simple

transition state theory [40] following Eq. (3.102), the latter is related
to the more complicated and bias-dependent lineshape function
(3.51). In the classical limit, however, this complicated quantity
simplifies either to Eq. (3.71) or to Eq. (3.67), depending on whether
the involved parabolic potentials have the same curvature or not.
Both of these expressions are governed by an exponential term in-
cluding the energy barrier from the energy minimum of the parabolic
potential Vi(Q) up to the intersection point with the parabolic po-
tential Vj(Q). According to Eqs. (3.59) and (3.60) for harmonic os-
cillators, this barrier strongly depends on the shapes of the involved
potentials and is a function of their curvatures ci and cj and the
displacement ΔQij. In the quantum mechanical picture, these model
parameters are related to the vibrational frequencies (3.61) and
(3.62) or the Huang-Rhys factors (3.43) and (3.44). The latter can be
directly extracted from the absorption and emission spectra of mo-
lecules and therefore have become an established quantity to de-
scribe the shape of the harmonic potentials. Since these parameters
can also be determined from our DFT data, their distributions will be
studied in the following.

In the classical picture, the barrier (3.68) seems to be dependent of
the displacement ΔQij. However, this is due to a unfortunate mathe-
matical representation of the underlying physical problem as will be
demonstrated in the following: It is assumed that the displacement has
two different values, ΔQij and

∼QΔ ij, which differ by the factor ϑ.

=∼Q QΔ ϑΔij ij (6.4)

By contrast, the reorganization energies do not depend on the magni-
tude of ΔQij since they are defined by the equations

= −S ω V Q V Qℏ ( ) ( )i i i j i i
0 0

(6.5)

Fig. 25. The distributed energy levels ″Et of the two-state traps. Such traps are
typically observed in noise experiments but may also play a role in stimulated
charge trapping. They become RTN active if their trap level coincides with the
Fermi level. The rose shaded measurement window covers the energy region
relevant for ‘typical’ bias conditions during device operation.
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= −S ω V Q V Qℏ ( ) ( )j j j i j j
0 0

(6.6)

as illustrated in Fig. 7. Therefore, their expressions (3.97)–(3.100) can
be used to relate the curvatures ci/j and c~i j/ . Using the Eqs. (3.101) and
(3.61)–(3.62), one obtains

=c c~ ϑi i
2 (6.7)

=c c~ ϑ .j j
2 (6.8)

and the quantity

=∼R c
c

~
~i

i

j (6.9)

for the stretched displacement. As a result, the energy barrier (3.73) is
not affected by the stretching factor ϑ and thus the length of the dis-
placement ΔQij. This implies that the classical formulation is over-spe-
cified by the combination of the three quantities ΔQij, ci, and cj. Instead,
the classical formulation is already determined by the reorganization
energies S ωℏi i and S ωℏj j[34], which are therefore better suited to
characterize the potentials Vi(Qi) and Vj(Qj). However, the potential
Vj(Qj) can be discussed using the quantity Ri[65,165], defined by

=S ω R S ωℏ ℏ ,i i i j j
2 (6.10)

in which the states i and j refer to the neutral and the positive charge
state, respectively. Ri relates the reorganization energies of the involved
charge states. As the latter are associated with the curvatures of the
corresponding diabatic potentials, Ri can be interpreted as a measure
for the deviation in the curvatures of the two charge states. For the
special case Ri=1, the reorganization energies ( =S ω S ωℏ ℏi i j j) are
equal, implying that the involved potentials Vi(Qi) and Vj(Qj) have the
same curvatures (ci=cj). As such, the assumption of Ri=1 is associated
with linear electron-phonon coupling.

The distributions of the reorganization energies have been ex-
tracted from DFT simulations for our three defect candidates, as given
in Table 4 and shown in the histograms of Figs. 26 and 27. The mean
reorganization energies S ωℏi i of the different defect structures range
between 1.72 eV and 3.26 eV and are thus widely spread over 1.5 eV.
However, their standard deviations remain below 0.66 eV for the
investigated defect structures. Only the hydrogen bridge with a
standard deviation of nearly 1 eV is an exception here. These dis-
tribution widths may appear wide, however, they are actually con-
sistent with previous DFT calculations regarding the negatively
charged hydrogen bridge [56]. It is furthermore noted that the re-
organization energies calculated for the hydrogen bridge and the
oxygen vacancy in crystalline SiO2 considerably deviate from their
corresponding mean values in a-SiO2 by more than one standard

deviation. This underscores the necessity to collect statistical data
from realistic amorphous material systems.

The distributions of S ωℏi i in Fig. 26 contain the most frequently sus-
pected defects in the context of charge trapping. These defects sub-
stantially differ in their chemical structure, where a considerable fraction
of them even feature secondary configurations associated with additional
NMP transitions. Furthermore, the amorphous SiO2 host structure causes
variations in the trap properties and thus gives rise to two-, three-, as well
as four-state traps. As such, the presented statistics are considered to
contain enough distinct defect structures so that the combined data give
representative distributions for oxide defects in general. This argument is
also corroborated by the fact that the combined distributions are found to
largely overlap. For these reasons, the combined distributions give in-
dications for realistic ranges of the model parameters S ωℏi i. It has ap-
preciable contributions varying between 1.0 eV and 4.0 eV, with an
average at 2.31 eV and a standard deviation of 0.69 eV.

The mean values of the model parameter Ri lie between 0.82 and
1.30 and their corresponding standard deviations are about 0.26. As
before, the values obtained for crystalline SiO2 are found to strongly
deviate from their corresponding mean values in an amorphous host
material. Furthermore, the combined distributions of Figs. 26 and 27
range between 0.5 and 1.5, where the average lies at 1.06 eV and the
standard deviation is 0.22 eV. This means that the curvature of the
neutral potential tends to be stronger compared to that of the positive
charge state.

The reorganization energy S ωℏi i and Ri are critical parameters of the
four-state NMP model since they determine the temperature and the
gate bias dependence of the four-state NMP model. For instance, these
parameters were calibrated to the experimental data of TDDS

Table 4
The reorganization energies S ωℏA0 A0 and S ωℏB0 B0 along with their corre-
sponding values RA0 and RB0, all of which have been extracted from our DFT
datasets. The abbreviations HB, OV, and HE stand for the hydrogen bridge, the
oxygen vacancy, and the hydroxyl ′E center, respectively. Their prefixes ‘2s’,
‘3s’, and ‘4s’ indicate the number of stable configurations, found in the corre-
sponding datasets. The distributions are given by their average plus/minus one
standard deviation.

Dataset S ωℏA0 A0 [eV] RA0 [1] S ωℏB0 B0 [eV] RB0 [1]

4s-HB 3.07± 0.98 1.18±0.20 1.72± 0.32 1.00± 0.10
3s-HB 2.95± 0.66 1.26±0.17 — —
2s-HB 1.73± 0.37 0.99±0.09 — —
4s-OV 2.68± 0.41 1.27±0.09 1.62± 0.65 1.04± 0.28
3s-OV 2.54± 0.22 1.29±0.07 — —
2s-OV 2.55± 0.31 1.30±0.08 — —
4s-HE 3.26± 0.50 1.29±0.26 2.12± 0.42 0.91± 0.17
2s-HE 2.48± 0.22 1.06±0.07 — —
{HE} 2.29± 0.43 0.93±0.15 — —
{SiO4/H} 1.73± 0.26 0.82±0.07 — —

Fig. 26. Histogram of the reorganization energy S ωℏA0 A0 (top) and the model
parameter RA0 (bottom) in our DFT datasets.
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measurements and the obtained values are listed in Table 5. The cali-
brated experimental reorganization energies S ωℏA A0 0 vary between
1.52 eV and 3.94 eV and are thus well within the ranges given by our
DFT simulations. Also, the parameter Ri is predicted to fall within the
range of [0.5 eV,1.5 eV]. As such, our model calibrations to TDDS data
are consistent with the DFT results.

6.2.1. High-temperature limit
In the classical high-temperature limit, the NMP transition is as-

sumed to occur at the intersection point (IP) between the initial and the
final potential. In the schematic of Fig. 28, the intersection lies at an
energy of about 0.27 eV, independently of the magnitude of the dis-
placement ΔQij. The quantum mechanical formulation of the CT reac-
tions is based on harmonic oscillators, which feature a characteristic
discrete energy spectrum with a constant energy spacing of ωℏ i and ωℏ j.

Fig. 27. The same as in Fig. 26 but for the model parameters S ωℏB0 B0 (top) and
RB0 (bottom).

Table 5
Summarized model parameters S ω R S ωℏ , , ℏA0 A0 A0 B0 B0, and RB0, obtained by
fitting the four-state NMP to the experimental TDDS data.The labels ‘A1’, ‘A4’,
etc. refer to single-defect data obtained from TDDS studies [65] and include our
showcase examples ‘A1’ and ‘A4’.

S ωℏA0 A0 [eV] RA0 [1] S ωℏB0 B0 [eV] RB0 [1]

A1 3.22 1.05 0.38 0.99
A4 1.87 1.19 — —
A6 3.32 1.14 1.48 0.94
B3 3.94 1.18 1.41 0.95
D6 1.58 0.77 — —
G5 1.52 0.75 — —
H4 1.78 0.77 1.30 0.71

Fig. 28. The vibrational wavefunctions of two harmonic oscillators and their
overlaps. The equilibrium configurations Qi

0 and Qj
0 are separated by 4 uÅ and

the reorganization energies S ωℏi i and S ωℏj j are set to 1 eV. The vibrational
wavefunctions are plotted for the range in which the probability of finding the
defect system exceeds 99.99%. The wavefunctions are found to overlap sig-
nificantly at energies above 0.17 eV, with the lowest one corresponding to the
transition 7 → 5.

Fig. 29. Lineshape function for different displacements ΔQij. Its trap level Et co-
incides with the energy E of a charge carrier. In the band edge approximation, this
quantity is proportional to the transition rate of an NMP process. In the above
simulations, the reorganization energies are chosen to be 2.5 eV, which falls well
into the range of values extracted from DFT simulations. It is noted that the si-
mulated rates approach the classical limit with increasing displacement ΔQij.

Fig. 30. The same as in Fig. 28 but for a reduced displacement of 2 uÅ.
Following Eqs. (3.43) and (3.44), the small displacement results in a less dense
energy spectrum of the harmonic oscillators but also in larger wavefunction
overlaps. The energetically lowest transition has decreased to an energy of
0.11 eV, thereby reducing the effective energy barrier.

W. Goes et al. Microelectronics Reliability 87 (2018) 286–320

311



Due to the nuclear tunneling, the NMP transition can also take place
below the intersection. In Fig. 28, this is the case for the transition 7 →
5 at an energy of 0.17 eV. As a result, the defect can undergo an NMP
transition below the intersection and therefore must only overcome a
reduced thermal barrier. This effect has been illustrated for the show-
case example in Fig. 29, where the magnitude of the lineshape function
has been plotted as a function of the temperature for a fixed pair of
diabatic potentials. It is obvious that the classical approximation may

lead to a severe error of the lineshape function, associated with a
considerable reduction of the NMP transition probability. The error due
to the classical approximation diminishes for higher temperatures but
still underestimates the classical solution by about two orders of
magnitude even at 300 K. This indicates that the effect of
nuclear tunneling cannot be neglected for normal use-conditions of
microelectronic transistors.

Notably, the effect of nuclear tunneling is also observed to become
more pronounced for lower displacements ΔQij. This is a result of the
fact that the overlaps between the initial and final vibrational wave-
functions already become significant at lower energies as demonstrated
by the comparison of Figs. 28 and 30. There, the displacement ΔQij is
reduced from 4 uÅ (in Fig. 28) to 2 uÅ, resulting in contributions
from transitions 2 → 1 at an energy of 0.11 eV. The nuclear tunneling
effect is also shown in Fig. 31 where the effective transition barrier was
extracted for different values of the displacement ΔQij. The data show
that ΔQij can significantly affect the effective barrier and may lead to
tremendous errors at low temperatures. Even though the tunneling ef-
fect decreases with higher temperatures, it is still pronounced in the
middle range of the ‘typical’ conditions (around 400 K). As an example,
the effective barrier is overestimated by 0.1 eV assuming a temperature
of 400 K and a displacement ΔQij of 3 uÅ. The latter value lies at the
lower limit of the ΔQij distribution, which has its largest contributions
in the range between 3 uÅ and 10 uÅ (cf. Fig. 32). As such, the
chosen value of 3 uÅ corresponds to the worst-case error of the
classical approximation. This example shows that nuclear tunneling
remains relevant for typical operation conditions of microelectronic
transistors and therefore should be considered in the calculation of the
NMP transition rates.

The error made by the classical approximation can also be quanti-
fied by the ratio between the quantum mechanical (ξqm,ij) and the
classical (ξcl,ij) lineshape function.

=E E T
ξ E E T
ξ E E T

Θ ( , , )
( , , )
( , , )ij

ij

ij
t

qm, t

cl, t (6.11)

In Fig. 33, this quantity is plotted as a function of the temperature for
different displacements ΔQij. Its value is limited to less than one order of
magnitude for temperatures higher than 300 K and a realistic dis-
placement of 3 uÅ. In addition, the classical error Θij(E,Et,T) shows a
large decrease within the range of the relevant temperatures. This re-
flects the fact that the classical approximation leads to an appreciable
deviation in the temperature dependence, which becomes more

Fig. 31. Effective energy barrier calculated by using an Arrhenius law for dif-
ferent displacements ΔQij. The above data are extracted from the simulations in
Fig. 29. They demonstrate that the classical approximation strongly over-
estimates the effective energy barrier for a temperature of 400 K, which lies in
the middle of the range of the ‘typical’ conditions.

Fig. 32. The displacement ΔQij for the configurations A and B extracted from
our DFT dataset.

Fig. 33. Error made by neglecting the nuclear tunneling (Et=Ev). If the dis-
placement ΔQij is larger than 3 uÅ, the absolute error in the NMP transition
rates is estimated to remain below one order of magnitude above room tem-
perature. This error is considered significant since the capture and emission
rates just vary by a few orders of magnitude within the typical conditions.
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pronounced at low temperatures. In conclusion, this confirms that nu-
clear tunneling affects the temperature dependence as well as the
magnitude of the NMP transition rates for typical reorganization en-
ergies, small displacements, and low temperatures.

6.3. Impact of quantum effects on the gate bias dependence

In the four-state NMP model, the gate bias dependence solely ori-
ginates from the NMP processes, which are described by the transition
rates (3.135) and (3.136). There, the gate bias dependence enters the
NMP transition rates in two ways: First, the application of a gate bias
causes a shift of the Fermi level, which affects the charge carrier oc-
cupancies fn(E) and fp(E) within the integral of the rate equations. This
effect becomes relevant during a bias sweep from accumulation into
inversion or vice versa. However, transistors normally switch just be-
tween weak and strong inversion, where this effect is much less pro-
nounced. Second, the gate bias also affects the lineshape function
ξ0+(E,Et,T) and ξ+0(E,Et,T) via the energy difference between the
electronic energy (E) and the thermodynamic trap levels ( = ′ ″E E E,t t t )
as derived in Section 3. The bias dependence of the charge carrier oc-
cupancy and the lineshape functions are illustrated in Fig. 34 for a p-
channel transistor with an oxide thickness of about 2.5 nm. If the gate
bias is reduced from −0.4 V to −2.4 V, the thermodynamic trap level
is raised by approximately

≈ ±E q E xΔ Δt 0 ox t (6.12)

where ΔEox is the change in the oxide field. Et represents the trap levels
of the primary ′E( )t or the secondary ″E( )t configuration. An increase of
the trap level is also accompanied by an upwards energy shift of the
hole capture and emission lineshape by the same amount. In particular,
this can be recognized by a shift of their crossing point ‘CP’, which
coincides with the position of the trap level. Considering hole capture,
the transition probability at a certain gate bias is then given by the

integral of the NMP transition rate (3.135). Its integrand is most
strongly affected by the hole occupancy fp(E) and the lineshape function
ξ0+(E,Et,T). The exponent of fp(E) varies linearly with the carrier en-
ergy E for thermal equilibrium between the channel charge carriers. By
contrast, the exponential energy dependence of the lineshape function
is much weaker since the NMP transition barriers vary weakly with ΔVij.
For instance, this becomes obvious in the case of linear electron-phonon
coupling (3.70), where the NMP transition barrier (3.75) becomes

⎜ ⎟= ⎛
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(6.13)

and shows a sublinear dependence on E in the region where
− ≲E E S ωℏi it . As a consequence, the integral in (3.135) has its lar-

gest contribution close to the Fermi level (Ef ≈ Ev). There, the occu-
pation function saturates and the NMP hole capture rate follows the
exponential dependence of the capture lineshape ξ0+(E,Et,T). As such,

Fig. 34. Lineshape function (left) and band diagram (right) for a gate biases of
−0.4 V (top) and −2.4 V (bottom). The electron (fn(E)) and the hole (fp(E))
occupancies are indicated by the orange and the green dashed line, respec-
tively. As the gate bias is increased, not only the thermodynamical trap level
but also the hole capture (solid red, ξ0+) and hole emission (solid blue, ξ+0)
lineshapes are shifted upwards. The holes are energetically located close to the
valence band edge Ev ≈ Ef (black dashed line). At this energy, the value of the
lineshape function ξ0+(Ef,Et,T) is increased for hole capture but reduced for
hole emission when the gate bias is switched from −2.4 V to −0.4 V. Since the
integral of the NMP transition rates also has its largest contribution for strong
electron-phonon coupling there, this value determines the magnitude of hole
capture and emission rates. It is noted that the NMP transition remains within
the strong electron-phonon coupling regime due to the large reorganization
energies ( =S ωℏ 2.5i i eV, =S ωℏ 2.5j j eV).

Fig. 35. Comparison between the classical (solid) and the quantum
mechanical hole capture (left) and emission (right) lineshape functions
( = =S ω S ωℏ ℏ 2.5i i j j eV, T=400 K), which are plotted for different values of
the displacement ΔQij. The strong electron-phonon coupling regime covers the
energy range, in which the classical intersection point lies between the
minimum of the initial and the final potential as shown in the inset C. Within
this regime, the classical and quantum mechanical solution differ by less than
one order of magnitude. By contrast, the classical approximation leads to much
larger errors for weak electron-phonon coupling, where one potential lies inside
the other (see insets A and E).

Fig. 36. Ratio between the quantum mechanical and the classical lineshape
function for different displacements ΔQij. The same defect parameters were
assumed as in Fig. 35. The dashed and the solid lines correspond to the hole
capture and emission lineshape function, respectively. The classical solution of
the lineshape functions results in an error less than one order of magnitude.

W. Goes et al. Microelectronics Reliability 87 (2018) 286–320

313



an upwards shift of the capture lineshape function results in ex-
ponentially increasing hole capture rates. Concerning hole emission,
the corresponding NMP transition rate is given by Eq. (3.136) with the
electron occupancy fn(E) as the dominating factor. Analogously to hole
capture, its largest contribution is found close to the Fermi level, below
which the electron occupancy saturates now. The magnitude of this
contribution is dominated by the exponential behavior of the emission
lineshape and therefore gives rise to the decreasing emission rates with
higher gate biases.

Since nuclear tunneling has been found to affect the NMP transition
rates at low and medium temperatures (see the previous section), we
will also address its impact on the gate bias dependence in the fol-
lowing. For this purpose, the lineshape function must be discussed with
respect to its dependence on the displacement ΔQij. In Fig. 35 it can be
recognized that the classical lineshape function and its quantum me-
chanical counterpart match well in the regions around −2.5 eV (re-
gime B) and +2.5 eV (regime D) while they can notably deviate in
between. This region corresponds to strong electron-phonon coupling
(regime C), where the vibrational wavefunctions overlap significantly
below the classical intersection and therefore reduce the thermal bar-
rier as illustrated in Fig. 34. Again, this effect becomes more pro-
nounced for smaller displacements ΔQij, following the same arguments
as in the previous section. By contrast, the tunneling effect diminishes
in the regions around −2.5 eV (regime B) and +2.5 eV (regime D)
since the corresponding NMP transition barrier nearly vanishes there.
The error due to the classical approximation (Θij(Ev,Et,T)) is depicted in
Fig. 36, which demonstrates that this approximation can lead to an
underestimation of the lineshape function by a factor of up to 6.5.

With respect to the gate bias dependence, only the change in
Θij(Ev,Et,T) between the upper and the lower gate bias level during
stimulated charge trapping influences the accuracy of the calculated
NMP transition rates. It is convenient to express this change by

=ζ E E T
E E T
E E T

( , , )
Θ ( , , )
Θ ( , , )

,ij
ij

ij
t,h t,l

v t,h

v t,l (6.14)

where Et,h and Et,l correspond to the trap level at the higher and the
lower level of the applied gate bias, respectively. Since the quantity ζij
can have values larger or smaller than unity, the definition

= −σ E E T ζ E E T ζ E E T( , , ) max ( ( , , ), ( , , ))ij
E E ij ij

b
t,h t,l

,
t,h t,l

1
t,h t,l

t,h t,l (6.15)

will be used as a measure for the classical error in the following. Under
‘extreme’ operation conditions, the shift of the trap level
ΔEt=|Et,h−Et,l| can hypothetically reach values of up to 1 eV when the
defect sits in the middle of a 2 nm-thick insulator. However, the barriers
extracted from DFT corresponding to our TDDS data are often around
0.5 eV, which is therefore assumed to correspond to ‘typical’ operation
conditions of microelectronic transistors. As demonstrated in Fig. 36 for
typical operation conditions, the ratio σ E E( , )ij

b
t,h t,l is roughly estimated

to remain below 2. Given the fact that the charge capture and emission
times show an exponential dependence on the gate bias level, this factor
results in a small deviation from the gate bias dependence predicted by
the classical approximation. We recall that this finding has been ob-
tained for linear electron-phonon coupling and a particular set of model
parameters ( = =S ω S ωℏ ℏ 2.5i i j j eV, T=400 K) as shown in Fig. 36.

6.4. Worst-case scenarios for the classical approximation

In the previous sections, the impact of nuclear tunneling on the
temperature and gate bias dependence has been discussed using a re-
presentative defect, where the parameters S ωℏi i and Ri of this defect
were set to their corresponding mean values obtained from DFT
S ω R( ℏ ~ 1.0eV, ~ 1.0)i i i . Both the temperature and the gate bias de-
pendence were found to be affected by quantum mechanical nuclear
tunneling, albeit to a different extent. Since the dependences are ex-
pected to vary with the model parameters, worst-case scenarios for the

classical approximation were investigated. For this purpose, the max-
imum of the classical error Θij was determined from all combinations of
temperatures T and trap level shifts ΔEt, specified by the ‘typical’ or the
‘extreme’ operation conditions. For the latter conditions, the maximum
classical error is shown for each combination of S ωℏi i and S ωℏj j in the
contour plot of Fig. 37. For small relaxation energies, the magnitude of
the classical NMP transition rates must be expected to deviate from
their quantum mechanical counterparts by a factor of 10. Towards
larger relaxation energies, the classical error Θij may even become more
pronounced and can increase to a factor of 100. However, our collection
of DFT defects accumulates in a region where the classical error remains
below 10 in the worst case. The same behavior of the classical error Θij

was also observed for ‘typical’ operation conditions (not shown here).
This can be partially ascribed to the fact that the effect of nuclear
tunneling is most pronounced at low temperatures, which are covered
by the ‘extreme’ as well as the ‘typical’ operation conditions.

The classical error Θij directly enters the NMP transition rates. At a
first glance, Θij seemingly just affects the prefactor−k in Eqs. (3.135) and

Fig. 37. The maximum classical error for different combinations of S ωℏ 0 and
+S ωℏ for ‘extreme’ operation conditions. The error is represented by the shading

in the contour plot while the circles represent the single defects from our DFT
simulations. Even though the investigated defects cover the region with a small
error for the classical approximation, this error can still yield a deviation of the
hole capture rates by a factor of 20. A similar behavior is found for the hole
emission rates (not shown here).

Fig. 38. The impact of the classical approximation on the temperature depen-
dence σ E T( , )ij

t
t . In the above figure, ‘extreme’ operation conditions are in-

vestigated and the trap level is assumed to coincide with the valence band edge
(Ev=Et). Under these circumstances, the error remains below 10 for most de-
fects (circles).
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(3.136). In most trapping models, this prefactor is a not-further-speci-
fied quantity [35] and often interpreted as a capture or emission cross-
section [8,10,33]. In order to investigate the impact of the classical
error on the temperature dependence, the quantity

=σ E T
E E T

E E T
( , )

max (Θ ( , , ))

min (Θ ( , , ))ij
T

ij

T
ij

t
t

v t

v t (6.16)

is introduced. Depending on the applied gate bias, the energy difference
|Ev−Et| can have different values, leading to a different temperature
behavior of the corresponding NMP transition rates. Therefore, the
classical error in the temperature dependence must be studied for the
entire energy ranges |Ev−Et|< 0.5 eV and |Ev−Et| < 1.0 eV for ‘ty-
pical’ and ‘extreme’ operation conditions, respectively. For the latter
conditions, σ E T( , )ij

t
t is shown in the contour plot of Fig. 38 and found

to remain below a value of 10 for the large majority of the investigated
DFT defects. This behavior changes only marginally for ‘typical’ con-
ditions, where the error reaches a maximum value of 9. As such, the
classical formulation of the NMP transition rates may result in notable
errors in the predicted temperature dependence, most pronounced at
room temperature.

The impact of nuclear tunneling on the gate bias dependence is
investigated based on the quantity σ E E T( , , )ij

b
t,h t,l , which is shown in

the contour plot of Fig. 39 for ‘typical’ and ‘extreme’ operation condi-
tions. For the latter conditions, the classical NMP transition rates can
deviate by a factor of 4. By contrast, σ E E T( , , )ij

b
t,h t,l is limited to a factor

of 2 for the case of ‘typical’ operation conditions. This deviation is small
compared to the strong exponential gate bias dependence observed for
the experimental hole capture and emission times. Hence, the classical
formulation is found to reproduce the gate bias dependence of the NMP
transition rates reasonably well.

The above findings are confirmed by our calibrations of the four-
state NMP model to the experimental TDDS data of defect ‘A1’ (see
Fig. 40). This defect shows both a pronounced gate bias and tempera-
ture dependence in its time constants and is therefore suited for in-
vestigating the effect of nuclear tunneling on the NMP transition rates.
In Fig. 40, the measured capture and emission times are contrasted
against a calibration of the four-state NMP model based on the quantum
mechanical NMP transition rates. Due to their good agreement, the
model is considered to correctly reproduce the gate bias and tempera-
ture behavior. The obtained model parameters were reused in sub-
sequent simulations, in which the classical formulation of the NMP
transition rates was employed and the effect of nuclear tunneling was
therefore neglected. Using this parameter set, the calculated capture
and emission times now fail to reproduce the experimental behavior.
However, this can be traced back to the deviation in the magnitude of
the NMP transition rates. If this error is compensated by a corre-
sponding correction factor in the classical simulations, good agreement
with the experimental data is achieved again. However, the tempera-
ture dependence is still underestimated, which is consistent with our
findings from above. The obtained deviation may be corrected by a
temperature-dependent prefactor of the classical NMP transition rates,
in which the nuclear tunneling effect is estimated by a WKB approx-
imation, similar to [94].

7. Conclusions

In modern semiconductor devices, in particular, nanoscaled tran-
sistors, charge trapping leads to drifts and fluctuations in the drain
current. Both can pose severe problems for device engineers and
therefore have attracted a lot of interest over the last decades. The
nature of charge trapping has recently been understood in un-
precedented detail using the four-state NMP model, in which charge
capture and emission is a combination of thermally activated

Fig. 39. The impact of the classical error on the gate bias dependence, depicted
by using σ E E T( , , )ij

b
t,h t,l for ‘extreme’ (top) and ‘typical’ (bottom) conditions.

Here, the temperature is set to 300 K, at which the effect of nuclear tunneling is
expected to be most pronounced. The classical and the quantum mechanical
formulation deviate by a factor of 4 for ‘extreme’ operation conditions but re-
duces to 2 for ‘typical’ operation conditions.

Fig. 40. Correction of the classical simulations. In a first step, the parameters
were obtained by calibrating the quantum mechanical model to the experi-
mental TDDS data of trap ‘A1’. Then these parameters have been reused for a
simulation with the classical formulation of the NMP transition rates. The ob-
tained hole capture and emission times are represented by the bright lines and
contrasted against the experimental data (circles) in the above figure. A mul-
tiplication of the classical rates by a correction factor (30) leads to the capture
and emission times shown by the dark lines.
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transitions and NMP processes. We have presented a rigorous descrip-
tion of the four-state NMP model, starting from the theory of charge
trapping (CT) reaction and finally arriving at the capture and emission
times that can be compared to experimental results. The NMP transi-
tions have been described within the framework of CT reactions, the
standard theory in the field of physical chemistry. The corresponding
diabatic potentials have been thoroughly incorporated in the config-
uration coordinate diagram of the four-state NMP model, thereby re-
lating the thermodynamic trap levels to particular points of the diabatic
potentials. Interestingly, this methodology has revealed that electron as
well as hole traps — both observed experimentally — can be viewed as
different representations of the same defect. As such, it is conceivable
that the same kind of defect is involved in electron and hole
trapping in transistors.

The above methodology also allows one to extract the model
parameters, such as trap levels ′ ″E E E( , , )T t t and reorganization en-
ergies (S ωℏi i, Ri), from DFT calculations. The trap levels are critical
parameters in any physics-based defect model and must lie within
certain energy ranges compatible with the experimentally observed
trapping behavior. Using their energetical position as a criterion, the
oxygen vacancy — a frequently suggested defect in the context of
charge trapping phenomena — must be discarded. By contrast, the
hydrogen bridge as well as the hydroxyl ′E center have been found to
have reasonable distributions of their trap levels ET and ′Et , confirming
them as possible defects involved in charge trapping.

Furthermore, the reorganization energies have been determined
from our large set of DFT simulations. The calculated range of the re-
organization energies provides valuable information for calibrating the
four-state NMP model to experimental data. Using our DFT calcula-
tions, the inherent uncertainties of the calibration procedure have been

eliminated by determining realistic parameter ranges, which makes the
prediction of the four-state NMP model more reliable.

In addition, the calculated parameter ranges have also been used to
evaluate the effect of nuclear tunneling on the gate bias and tempera-
ture dependence of NMP transition rates. Our study has revealed that
the activation energies are significantly underestimated by the classical
approximation. However, this deviation can be well corrected by ad-
justing the unknown prefactor or the capture and emission cross-sec-
tions. By contrast, the classical formulation of the NMP transitions
correctly reproduces the gate bias dependence for the ‘typical’ use-
conditions of modern microelectronic transistors.
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Appendix A

A.1. Hole trap in the hole picture

The description of theoretical solid-state physics naturally relies on the basic interactions between electrons and therefore the calculated energies
usually refer to electrons. Along this line, our defect model has also been derived in the picture of electrons. As for semiconductors and especially p-
channel transistors, the concept of holes has proven to be practical. It is based on the interactions of holes and allows for a simpler description. In this
hole picture, the atomic system actually remains the same as in the case of the electron picture — but with the difference that a hole, instead of an
electron, is exchanged between the defect and the substrate. Therefore, the hole resides in the defect for the positive charge state while it is located in
the substrate for the neutral charge state (cf. Fig. 41).

Fig. 41. Configuration coordinate diagram of a hole trap in the hole picture. In the positive charge state (red solid curve), the hole dwells within the defect but is
located in the substrate when the defect is neutral (blue solid curve). Since the hole energy Emay have different values within the hole picture, the vertical position of
the corresponding potential V0(Q) can vary (indicated by the blue dashed curves).
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In the hole picture, the hole energy Ē is defined by

= − −Ē V Q V Q( ) ( )0 1 1 (8.1)

= − −
′ ′V Q V Q( ) ( ).0 1 1 (8.2)

−V Q( ) denotes the diabatic potential of the atomic system, from which the positive charge is removed to infinity. Due to this definition, the electron
and hole energies can be converted using the equation

= −Ē E. (8.3)

The driving forces are expressed as

= −+
′

+ ′V V Q V QΔ ( ) ( )0
12

2 0 1 (8.4)

= −+
′

+ ′V V Q V QΔ ( ) ( )0
1 2

2 0 1 (8.5)

= −+ +V V Q V QΔ ( ) ( )0
12

2 0 1 (8.6)

and therefore remain unchanged in comparison to the electron picture. Inserting Eq. (8.1) into the above driving forces yields

= ″ −+
′V Ē ĒΔ 0

12
t (8.7)

= ′ −+
′V Ē ĒΔ 0

1 2
t (8.8)

= −+V Ē ĒΔ 0
12

T (8.9)

where the corresponding trap levels are obtained as

″ = − −
+ ′Ē V Q V Q( ) ( )t 2 1 (8.10)

′ = − −
+ ′Ē V Q V Q( ) ( )t 2 1 (8.11)

= − −
+Ē V Q V Q( ) ( ).T 2 1 (8.12)

Analogously to the electronic energies E and Ē , the above trap levels can be converted into the electron picture using the following equations

″ = − ″Ē Et t (8.13)

′ = − ′Ē Et t (8.14)

= −Ē E .T T (8.15)

When using the definitions of the stabilities

= −′ + ′ +ε V Q V Q( ) ( )T2 2 2 (8.16)

= −′ ′ε V Q V Q( ) ( )T1 0 1 0 1 (8.17)

the following relations are found:

′ = − ′Ē Ē εt T T1 (8.18)

″ = + ′Ē Ē εt T T2 (8.19)

It is pointed out that each of the above expressions in the hole picture has its correspondence in the electron picture and can be converted by making
use of the Eqs. (8.3) and (8.13)–(8.15).

A.2. Wenzel-Kramers-Brillouin method

The WKB method [166] is an semiclassical approximation to compute the wavefunctions of the stationary Schrödinger equation. However, this
approximation yields a diverging expression for the wavefunction, where the particle energy E equals the potential energy V(x). As a result, the
wavefunction left and right to this point cannot be adjusted, which is the case at the discontinuity of the semiconductor-dielectric interface for
instance. One way to overcome this problem is to apply Langer’s procedure [166], which is not presented here. The WKB method also applies to
classically forbidden regions where the particle energy E lies below the potential barrier V(x). It is therefore frequently used to approximate the
wavefunctions of the substrate electrons or holes. In the classical forbidden region, the shape of the wavefunction is dominated by the
exponential term

∫≈
⎛

⎝
⎜−

⎞

⎠
⎟λ x p x x( ) exp 1

ℏ
( )d

x

x

1

2

(8.20)

with

= −p x m V x E( ) |2 ( ( ) )|t (8.21)

and mt being the tunneling mass. x1 and x2 stand for the classical turning point at the semiconductor-dielectric interface and the position of the trap,
respectively. Supposing that only a negligible amount of charges is located in the dielectric, the potential energy V(x) can be expressed as
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  

= + −
−

−

=

V x V V V
x x

x x( ) ( ).

q E

1
2 1

2 1
1

0 ox (8.22)

For a trapezoidal barrier, λ(x) simplifies to

≈ − − + −( )λ x κ V E κ V E( ) exp ( ) ( )2
3
2 1

3
2 (8.23)

with

=κ
m

q E
2 2
3ℏ

t

0 ox (8.24)

If tunneling occurs through a triangular barrier, the classically forbidden region extends to

= + −x x E V
q E

.0 1
1

0 ox (8.25)

For negative electric fields (V2< E< V1), one obtains

≈ −( )λ x κ V E( ) exp ( ) .1
3
2 (8.26)

while positive electric fields (V1< E< V2) results in

≈ − −( )λ x κ V E( ) exp ( ) .2
3
2 (8.27)

These two cases are commonly known as the Fowler-Nordheim formulas [167]. For a rectangular barrier with E< V1=V2=V, the integral in Eq.
(8.20) simplifies to a multiplication.

≈ ⎛

⎝
⎜−

−
− ⎞

⎠
⎟λ x

m V E
x x( ) exp

2 ( )
ℏ

( )t
2 1

(8.28)
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