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Abstract—In this paper, we examine the interplay of two
serious reliability issues in MOSFET devices, namely, bias
temperature instability (BTI) and hot-carrier degradation
(HCD). Most publications are devoted to the characterization
of either BTl or HCD, and complex models have been devel-
oped to independently describe each degradation mode.
However, very limited data are available on the interplay of
both degradation regimes, particularly the effect of a drain
bias onto the charging and discharging dynamics of oxide
traps. Part | of this paper provides an extensive experimental
study toward the impact of mixed-mode stress conditions
on the dynamics of oxide defects. Here, we present the first
microscopic modeling approach beyond a simple electro-
static approximation. We extend the existing nonradiative
multiphonon theory by taking nonequilibrium processes
such as full carrier distribution functions which include the
effect impact ionization along the channel into account.
To ultimately validate our framework, we compare simula-
tion results and experimental data for a single-oxide defect
as well as a large ensemble of traps in a MOSFET device.
We show that our modeling approach accurately captures
the rather puzzling measurement trends for a broad stress
regime and allows developing the knowledge on how oxide
defects can be affected by an increased drain stress.

Index Terms— Bias temperature instability (BTI), defect
modeling, device simulation, hot-carrier degradation,
mixed-mode stress, reliability, single-oxide defects.
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|. INTRODUCTION

ODERN CMOS technologies face two major

reliability issues, bias temperature instability (BTI)
and hot-carrier degradation (HCD) [1], [2]. The vast majority
of publications concerning reliability topics is focused on
the independent experimental characterization of either
BTI or HCD as well as the development of models for each
individual degradation mode [3]-[8]. BTL, on the one hand,
in particular, its recoverable component, is related to oxide
defects and charge trapping in the gate stack. Nonradiative
multiphonon (NMP) theory [9], [10], specifically the four-state
NMP model [4], provides a physical framework to accurately
describe this phenomenon and has been successfully applied
to model BTI recovery across various technologies [11]-[13].

On the other hand, HCD is more permanent and assumed
to be driven by the generation of interface traps due to
the dissociation of Si-H bonds at or near the Si/SiO;
interface [14]-[17]. The most recent formulation of an
HCD model by Tyaginov et. al. [18], [19] links microscopic
quantities, such as the nonequilibrium energy distribution
function (EDF) of carriers, to the trap density at the interface.
Special attention is paid to the EDF, obtained as a solution
of the Boltzmann transport equation (BTE), which is a key
ingredient of the model and determines the rate of interaction
of energetic charge carriers and the Si—H bond.

Both individual degradation phenomena are reasonably well
understood and rather intricate models have been published,
which are able to capture the characteristics of each mode.
However, only a handful of publications are devoted to the
interplay of both mechanisms, and in particular, the implica-
tions of an applied drain bias on the recoverable component of
BTI [20]-[27]. Experimental studies show that with increased
drain bias, the recoverable component, typically attributed
to BTI, decreases [20], [22], [23]. At the best, a simple
electrostatic approximation is used to model this behavior,
where the reduction of the electric field across the interface
for an applied Vp is taken into account [21]. This assumption,
however, implies that source-sided defects would be rather
independent of an applied Vp. Quite contrary to this, we have
shown in Part I [28] of this paper as well as in a recent
publication [22] that even defects located in the vicinity of
the source can be heavily affected by a drain bias.
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Fig. 1. Schematic of the possible interactions of a defect with the channel
within the four-state NMP theory. In the full physical picture, the oxide
defect can interact with VB and CB carriers of the channel.

In this paper, we present a first modeling approach to
accurately describe the complex behavior of oxide defects
for increased drain bias stress. We extend the physical frame-
work of the four-state NMP theory [4] toward nonequilibrium
processes by explicitly taking nonequilibrium EDFs for
electrons and holes into account. To validate our model,
we compare the simulation results and experimentally rec-
orded characteristics for single-oxide defects for various Vg
and Vp stress conditions. Throughout this paper, we used
two different realizations of 2.2-nm SiON pMOSFETs of
a 130-nm commercial technology. The nanoscale devices used
in Section III have a metallic gate length and width of L = 120
and W = 160 nm, respectively. The large area devices,
on the other hand, have the same gate length but a width
of W = 10 um. The simulations are able to fully explain the
rather intricate defect behavior for increased Vp stress. Finally,
we apply this approach to a large ensemble of oxide traps to
understand the reduction of the recoverable BTI component
with increased mixed-mode stress in MOSFET devices.

Il. EXTENDED NONRADIATIVE MULTIPHONON MODEL

The NMP four-state model, primarily developed to describe
the dynamics of charging and discharging of oxide defects,
is based on four different atomistic defect states. It comprises
a neutral state 1 and a positively charged state 2, and for each
of these charge states, an additional metastable configuration
Fig. 1. Transitions between these states can be split into two
distinct types: structural reconfigurations of the defects are
pure thermal transitions modeled using an Arrhenius equation.
According to transition state theory, charge exchange events
between oxide defects and the semiconductor, on the other
hand, are formulated as NMP transitions, including charge
carriers in the valence band (VB) and conduction band (CB)
Fig. 1. Generally, the total NMP rates for the VB and CB can
be written as

V,(C)
ki,j

Ey,(c0)

_ / Dy (E) f. 00 (EVAL (E, Er) ) (. Er) dE
—00,(Ec)

)

with the density of states of the VB (D) and CB (D,) and
the carrier distribution function for holes (f,) and electrons
(fn). Furthermore, A; ; accounts for tunneling processes and
is approximated by a Wentzel-Kramer—Brillouin factor and
fi,j is the so-called line shape function and can be seen as
a thermally broadened switching trap level. It is calculated
by forming the thermal average of the overlaps between the
eigenstates of the potential energy surfaces describing states i
and j. Usually, the largest contributions arise from the energy
levels close to their intersection point. The key quantity which
enters both models for BTI and HCD is the carrier EDF,
fp.n(E). However, during pure BTI conditions, only a gate
stress voltage is applied as opposed to the HCD regime, where
a high gate and drain bias is applied. Thus, for BTI carriers
are in equilibrium and properly described by a Fermi-Dirac
distribution, while for HCD, this assumption is not valid
anymore. To access the full spectrum of how carriers are
shifted from equilibrium and distributed over energy, a self-
consistent solution of the coupled BTE for holes and electrons
is mandatory [29], [30].

To illustrate the necessity to consider nonequilibrium
processes and highlight the difference in the simulation results,
we use two variants of the NMP model described earlier in our
TCAD simulations: a quasi-equilibrium model that approxi-
mates the EDFs for mixed-mode simulations by Fermi—Dirac
distributions, termed NMPeg..

The second variant, termed NMPeq includes distrib-
ution functions for holes and electrons evaluated with
the higher order spherical harmonics expansion simulator
SPRING [31], [32]. Thereby, the bipolar BTE was solved
self-consistently including phonon and impurity scattering
mechanisms as well as impact ionization with secondary
carrier generation. As an example, EDFs for Vg = —1.5 V
and Vp = 0.0/—1.5/—2.8 V are summarized in Fig. 2.
Apparently visible is that nonequilibrium processes such as
impact ionization affect not only the drain end of the channel
but also the carrier energy distribution at the source side
(see Fig. 2, electron EDF for high Vp). While high energetic
majority carriers typically are accumulated at the drain end
of the channel—a characteristic well known in modeling of
HCD—while electron EDFs become more pronounced in the
channel and source regions. Although the holes Il-rate is
smaller compared to the electron rate in silicon, the results
show a substantial contribution of secondary generated elec-
trons for higher Vp bias [see Fig. 2 (bottom), EDF for holes
and electrons].

The NMPq. model is quite similar to the electrostatic model
introduced in [21]. It accounts for the changes of macroscopic
device quantities such as the electric field and the carrier
concentration across the interface. With increased drain bias,
the inversion layer across the interface is no longer uniform,
particularly on the drain side where a pinchoff region is
formed.

Using the NMP¢q model has therefore two implications:
the charging and discharging dynamics of defects in the oxide
are mainly determined by the interaction with carriers in the
VB, also in the HCD stress regime where carriers potentially
have enough energy to trigger impact ionization and, thus,
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Fig. 2. Distribution functions for various stress regimes obtained from
a solution of the bipolar BTE coupled via impact ionization. Hole EDFs
(left). EDFs for the secondary generated electrons (right). A substantial
contribution of secondary-generated carriers is visible for increasing
stress conditions, particularly in the channel and source region.

create secondary carriers. Furthermore, the source side of the
channel is rather unaffected even by a very high Vp. Hence,
the simulated characteristics of oxide defects located in this
region does not change with increasing Vp.

However, this is in stark contrast to our recent experi-
mental studies presented in [22] and in Part I of this paper
[28], where we have shown that defects, irrespective of their
spatial location, do change their characteristics for various
stress regimes. To access this rather intricate behavior in our
simulations, we use our nonequilibrium model NMPpeq, by
using nonequilibrium EDFs for holes and electrons within (1).
The interaction of high energetic carrier in the VB as well as
the interplay of defects with the secondary generated electrons
in the CB are shown to be the missing aspect to explain the
puzzling results shown in Part I of this paper.

In the following sections, we apply both variants of the
model to explain the behavior of a single-oxide defect and a
large ensemble of traps for different stress regimes. We show
a detailed analysis of the charging and discharging dynamics
to finally unravel the experimentally recorded characteristics.

I11. SINGLE-TRAP CHARACTERISTICS

For the study of individual oxide defects, we characterized
nanoscale 2.2-nm SiON pMOSFETs of a 130-nm commer-
cial technology with W 160 nm and a gate length of
L = 120 nm. All experimental details, such as stress and
recovery sequences, can be found in Part I of this paper.
We chose the defect Bl for our simulation study, since we
could fully characterize this particular defect for a very broad
range of stress conditions.
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Fig. 3. Switching trap behavior of B7 for increased Vg bias stress.

Circles: measurement data. Solid lines: simulation results. Effect of an
increased electric field Eox (right) upon the trap level (top), as well as
the different capture and emission pathways which cause the switching
behavior.

The basis of our study provides the behavior of the trap
for pure BTI conditions. By applying the NMP,,. model and
optimizing the parameter set, we are able to represent the
experimentally recorded characteristic capture and emission
times of BI Fig. 3. As shown in the figure, the defect shows
a switching trap behavior [3], [4], [33] for pure BTI stress
conditions: the emission time shows a strong bias dependence
below Vin ~ —0.5 V. With increasing Vg stress, the trap level
shifts accordingly and the discharging pathway changes from
the preferred path 2 — 1’ — 1 at low Vg to 2 — 2’ — 1 at
higher Vi [see Fig. 3 (bottom right)]. The effective emission
times for each individual discharging pathway, also called the
first passage time 7. (see Section III), are as well indicated
in Fig. 3. Furthermore, the time constants are mainly governed
by transitions between the VB and the oxide trap due to the
low concentration of carriers in the CB for the given stress
voltages.

Interestingly, the behavior of B/ changes in a rather unex-
pected and complex way with increased drain bias, as already
shown in Part I (see Figs. 4 and 5). Stressing the device
with Vg —1.5 V and Vg —2.5 V for a broad range
of drain biases, Vp [0.0 V, —2.8 V], reveals intricate
and puzzling defect behavior. With higher drain bias the
characteristic capture time of the defect—the time it needs to
charge the defect—either stays constant or slightly decreases.
However, at the same time, the defect’s occupancy decreases
dramatically. The most feasible explanation would be an even
faster decreasing emission time. Thus, the defect would par-
tially have already emitted its charge before the measurement
setup switched to recovery conditions. Separate measurements
actually reveal the proposed trend and support this idea.
Unfortunately, only a limited number of experimental traces
are available due to the difficulties of uniquely identifying the
defect for high Vi and Vp bias conditions.

To understand and explain the measured behavior in detail,
we apply both variants of the NMP model described in the
previous section. Naturally, for all subsequent simulation,
a unique parameter set was used, extracted from the simu-
lations described in Fig. 3. The only free parameter left is the
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Fig. 4. Experimental characterization of B7 for increasing Vp bias
versus simulation results obtained with the NMPeq. model. Capture and
emission times (top) for Vg = —1.5V (blue) and Vg = —2.5 V (red). The
simulated occupancy for different stress times fgyess (Middle) as well
as the resulting occupancy at tgiress = 2 S compared to experimental
data (bottom). As can be seen, the NMP¢q. model fails to describe the
behavior of the defect B1.

lateral position of the trap. According to Part I, we set the
position to the experimentally extracted 80 nm and allowed
for a change of £20% in our simulations, corresponding to
the experimental uncertainty.

First, we apply the NMPey model. Quite as expected,
both characteristic trap parameters, the capture and emission
time, increase for higher Vp bias due to the reduced oxide
field Eox Fig. 4. The extracted occupancy of the defect
for a stress time of fyress = 2 s—a cut along the dashed
line in Fig. 4 (middle)—shows a similar decreasing trend
for increasing Vp as the measurements Fig. 4. However, for
Vg = —2.5 V, the plateau visible in the measured data is not
properly represented and, furthermore, the simulation results
tend to saturate at a much higher occupancy compared to the
experimental data. Even worse, 7, as well as 7, show contrary
trends as the measured data. However, this is not a surprising
result since in the NMPeq, model the carrier concentrations in
the VB and CB as well as the EDFs stay approximately the
same compared to the pure BTI regime. Thus, the determining
factor is the electric field in the oxide, Eox, just like the simple
electrostatic model.

Next, we applied our nonequilibrium NMPyeq model.
As shown in Fig. 5, all relevant characteristics are well repre-
sented by the model. The capture time 7. for both Vg condi-
tions stays approximately constant while the emission time 7,
of the defect dramatically decreases with Vp. This behavior
translates into a very good agreement with the measured
occupancy of Bl [see Fig. 5 (middle and bottom)]. Particularly
specific features, such as rather constant occupancy between
Vp = —0.5 and —1.5 V followed by a rapid decrease properly
captured, and will be discussed in the following. A detailed
analysis of the capture and emission pathways reveals the
nature of this interesting behavior (see Fig. 6): while the path
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Fig.5. Experimental characterization of B1 for increasing Vp bias versus
simulation results obtained with the NMPneq. model. The extended model
is able to capture the rather complex experimental trends and properly
describes all characteristic quantities of B1 for increased Vp bias.

10° .
! 10°4—
\. — ktot
10% ! 10 — kes
=z 05— "
g 10 —
.i § 10%
S 7
é 104 g 101
15} [
9 = 1074_
5 10—1. Z
:%“10 = Tc,sim 104
“ — Tesim
10_2_ o Tez/ 103_/ =
L Te]/ -1,2
1073 102_K
00 -10 -20 —28 00 -10 -20 —28
Vp [V] Vp [V]

Fig. 6. Detailed analysis of the various stress regimes for Vg = —2.5 V.
The simulated capture and emission time together with the first passage
times for the two different emission pathways, 'rg and 'r; (left). Ataround
Vp ~ —1.8 V the emission pathway switches from 2 — 2’ — 1 to the
faster one over 1/, similar to the switching trap behavior shown in Fig. 3.
The NMP transition rates k; j which determine the first passage times as
well as the emission time T¢ [see (2)] (right). The analysis clearly shows
a large contribution of secondary generated carriers in the CB to the total
NMP transition rates.

for charging the defects stays the same over the whole Vp
bias range (1 — 2’ — 2), the discharging path changes,
similar to the switching trap behavior characterized in Fig. 3.
As one can see for low Vp conditions, the defect emits its
charge over 2 — 2’ — 1. However, starting from Vp ~ —1.8
V, the emission time 7, is determined by the faster pathway
2 — 1’ — 1. To understand the nature of this change in 7, all
relevant NMP transition rates to calculate the first-passage time
for a pathway, and thereby the emission time 7, are shown in
Fig. 6 (right). The relationship between the NMP rates k; ;,
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the first passage times rei and the emission time 7, are given

by [4]
‘[2/ _ 1 1 (1 + kZ’,Z)
¢k kyy ko o ~ 1
1 1 k Te ~ 1 1 (2)
1 _ 1’,2 - + -
Te = + l + 2= 12/ Tl/
ko ki ko1 ¢ ¢

with rez/ describing the emission time from 2 — 1 over
the metastable state 2’ and rel/ over 1’. Two very important
implications can be seen in Fig. 6. First, it is clear that
interactions with the CB play a major role due to the high
NMP rates, particularly for k1. As can be seen in Fig. 2,
starting from Vp < —1.5 V impact ionization leads to a
high concentration of (energetic) carriers in the CB which
dominate the respective transition rates and, thus, determine
the new and faster discharging path via 1’ to 1. Second, the VB
rates are rather constant for all stress conditions. Typically,
the electric field and, thus, the shift of the trap level determine
the transition rates. This can be clearly seen in Fig. 4 for the
NMPq. model, where both 7, and 7. increase with applied
Vp (= lower electric field). However, taking into account the
EDFs from Fig. 2, one can see a broad energetic distribution
of particles in the channel region. Although the electric field
decreases with increasing Vp bias, the high energy fraction of
the particles in the VB leads to a stronger contribution to the
transition rates. Thus, even the VB NMP rates remain rather
constant over the various stress conditions. To summarize, this
analysis provides insights into how nonequilibrium EDFs are
able to change the respective NMP transition rates and further
explain the results shown in Fig. 5. Finally, to obtain the
good agreement between simulations and experiment for the
NMPy,eq. model, we set the lateral position of the trap B/ to
Xgrap = 65 nm, which is within the £20% uncertainty of the
experimentally extracted position of 80 nm.

Although the measurement data are rather puzzling,
the extended NMPyeq, model is able to fully explain the
complex behavior of B/ without introducing any new parame-
ters, while the NMPeq. model fails to adequately describe all
measured characteristics. The detailed analysis presented helps
to understand how holes and secondary generated electrons
interact with oxide defects. Thereby, it further validates our
approach and demonstrates the necessity to include nonequi-
librium effects for nonuniform BTI stress. However, for the
sake of completeness, we want to emphasize that it is difficult
to deduce a general behavior of oxide defects for increasing
Vb stress regimes. Due to the rather large physical parameter
set of a four state defect as well as the broad distribution
of these parameters in an amorphous oxide, each defect will
exhibit a different response to an applied drain bias.

IV. BEHAVIOR OF LARGE AREA PMOSFETSs

In this section, we apply the described methodology to a
large ensemble of oxide traps to elucidate the behavior of
large area devices. Our comprehensive study covers a broad
V6—Vp stress matrix with Vg = —1.5/—2.0/—2.5 V and Vp
ranges from 0 V up to —2.8 V. We defined the recoverable
component R within the measurement window of fgess = 1 ks
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Fig. 7. Comparison of simulated threshold voltage shifts (solid lines)

to the experimental data (open circles) for pure BTl conditions (top).
The data set was used to calibrate the NMPeq. model to extract a
unique parameter set for all simulations. Recoverable component R for
various stress regimes (bottom). As can be seen, the NMPpeq. model
(solid lines) properly represents the experimental trend (open circles),
while the NMPeq. model (dashed lines) fails to predict R.

and frecovery = 1 ks to be the difference between A Vipmax
(1 us after switching from stress to recovery conditions) and
the degradation A Vi, after 1 ks of recovery.

Our measurements are in full agreement with other experi-
mental studies [20], [21] which also show a reduced recover-
able component R with increased drain bias. Depending on the
applied stress regime, the total degradation is a superposition
of charged oxide traps due to BTI and the creation of interface
states due to HCD. However, it was shown that hot-carrier
induced interface states hardly recover at the used measure-
ment conditions [34]. Thus, the overall recoverable component
R is mainly determined by oxide traps.

In order to extract the model parameters, we again started
by calibrating the NMP., model to pure BTI measurement
data. We used the extended measure-stress-measure technique
with Vg = —1.5/—2.0/—2.5 V and stress and recovery times
of 1 ks to characterize BTI. As shown in Fig. 7, the NMPeq.
model is able to accurately represent the experimental data.
Note that for all subsequent simulations, we used the same
unique parameter set. Furthermore, we want to highlight that
the extracted model parameter set is in full agreement with
the frequently reported defect band in SiON of about 1.35 eV
below the Si channel mid gap (1.41 eV was used in this
paper) [11], [13], [35], [36].

As for the single trap B/, we applied both models, NMPe
and NMPy., to access the behavior of oxide traps and the
recoverable component R for mixed-mode stress regimes.
As shown in Fig. 7, the NMPyeq. model results in a much
better agreement with experimental data and predicts the rapid
decrease of R much better.

A detailed comparison of both models for a large ensemble
of spatially distributed defects across the oxide and with
distributed trap parameters is shown in Fig. 8. The simulation
snapshots are for Vg = —2.5 V and various Vp values directly
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Fig. 8. Detailed comparison of the NMPeq, versus the NMPneq. model applied to model the behavior of large area pMOSFETSs stressed at nonuniform
BTI conditions for Vg = —2.5 V. The simulation snapshots show the distribution of charged defects across the oxide (yellow: charged defects) and
are taken directly after the stress. Clearly visible for the NMPeq. model is that traps in the source region are unaffected by an increased Vp, while
defects located at the drain side (Vp = —1.5 V) as well as in the middle of the channel (Vp = —2.8 V) stay uncharged due to the reduced oxide
field. On the other hand, the NMPneq. model predicts a much faster reduction of charged defects (highlighted areas in the middle and right) and as

well affects defects located at the source side (highlighted area in the right).

after 1 ks of stress. One can clearly see that with increasing
Vp the amount of charged traps reduces, particularly in the
middle of the channel and the drain sides. However, traps in the
vicinity of the source side are rather unaffected and possess the
same behavior for all drain bias conditions using the NMPeq.
variant [Fig. 8 (top)]. This is as well reflected by the mismatch
between the simulation results and experimental data in Fig. 7.
On the other hand, as the NMP,¢q. model takes nonequilibrium
processes into account, also the source side of the device
is affected. However, as already mentioned in the previous
section, the interaction of the defects with energetic carriers
in the VB and CB strongly depends on the physical parameters
of the individual defect. The results for the NMPy,q. variant of
the model [Fig. 8 (bottom)] show that the reduction of charged
defects proceeds much faster. For Vp = —1.5 V, already
a substantial difference between both variants of the model
is visible. Compared to the NMPy, model, less defects are
charged in the middle of the channel (highlighted area) and on
the drain side. Increasing the drain voltage further aggravates
the situation. In addition to the defects located in the center of
the channel, even some traps located in the source region—
highlighted in Fig. 8—remain partially uncharged and do not
contributed to the recoverable component R. By taking into
consideration nonequilibrium processes, the predicted trend of
the NMPpeq. model results in a very good agreement between
experimental and simulation data (see Fig. 7). We further want
to emphasize that all our simulations include the combined

interaction of oxide defects with carriers in the channel as
well as in the gate. An applied drain bias, however, severely
affects the EDF of carriers in the channel, while carriers in
the gate mostly not distorted. Thus, defects spatially located
closer to the channel interface are potentially more affected by
a drain bias than defects in the vicinity of the gate interface.
This particular effect is also visible in Fig. 8.

V. CONCLUSION

We have presented a modeling approach to understand
the impact of an applied drain bias onto the recoverable
component of BTI. To represent the rather puzzling and
intriguing experimental trends for the dynamics of oxide traps
presented in Part I, we extended the existing four state nonra-
diative multiphonon model toward nonequilibrium processes.
The proposed framework includes full distribution functions—
a concept well known in modeling HCD—for holes and
electrons obtained as a solution of the bipolar BTE.

We compare experimentally recorded characteristics and
simulation results for an individual oxide defect as well as
a large ensemble of traps in a large area device. A detailed
analysis reveals that the complex behavior of defects with
increased drain stress can only be fully understood by taking
interactions with energetic majority and secondary generated
carriers in the VB and CB into account. Furthermore, we show
that due to impact ionization also the source side of the device
is shifted from equilibrium conditions. Thus, even defects in
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this region are possibly affected by an applied drain bias.
We thus conclude that our nonequilibrium model is able to
fully explain the measured trends and thereby explains the
impact of a drain bias on the capture and emission times of
oxide defects.
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