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The Wigner function was formulated in 1932 by Eugene Paul Wigner, at a time when quantum

mechanics was in its infancy. In doing so, he brought phase space representations into quantum

mechanics. However, its unique nature also made it very interesting for classical approaches and

for identifying the deviations from classical behavior and the entanglement that can occur in

quantum systems. What stands out, though, is the feature to experimentally reconstruct the Wigner

function, which provides far more information on the system than can be obtained by any other

quantum approach. This feature is particularly important for the field of quantum information

processing and quantum physics. However, the Wigner function finds wide-ranging use cases in

other dominant and highly active fields as well, such as in quantum electronics—to model the elec-

tron transport, in quantum chemistry—to calculate the static and dynamical properties of many-

body quantum systems, and in signal processing—to investigate waves passing through certain

media. What is peculiar in recent years is a strong increase in applying it: Although originally for-

mulated 86 years ago, only today the full potential of the Wigner function—both in ability and

diversity—begins to surface. This review, as well as a growing, dedicated Wigner community, is a

testament to this development and gives a broad and concise overview of recent advancements in

different fields. VC 2018 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/
4.0/). https://doi.org/10.1063/1.5046663
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I. INTRODUCTION

The years after the arrival of quantum mechanics around

1900 challenged the existing understanding of physics in

many aspects. The established wave picture of light was put

into question by Planck1 and Einstein,2 who demonstrated

the particle nature of light. This was followed by Thomson3

and Taylor4 showing that indeed light behaves as particles

and waves. This duality has then been also established for

particles by Bohr5 and de Broglie.6 Heisenberg7 introduced a

new view of quantum mechanics, which together with Born

and Jordan yielded a new mathematical formulation.8,9

Based on de Broglie’s work, Schr€odinger developed his

wave mechanics around his famous equation,10–14 which

was soon extended by Madelung15 and Kennard16 as well as

much later by Bohm.17,18
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Eugene Paul (Hungarian Jenô P�al) Wigner, concerned

with the problem of a phase space representation, found a

way to transform the wave function to introduce the missing

momentum variables and published the result in 1932.19

Wigner suggested that one can consider the following

expression for the probability in phase space:

P x; pð Þ ¼
1

p�h

ð1
�1

dy w� xþ yð Þw x� yð Þe
2iy�p

�h ; (1)

which today is termed the Wigner function. Here, we have

recovered a phase space distribution function which is based

upon the quantum wave function. However, as Wigner

noted, this function is real but is not always positive definite.

Wigner was primarily interested in the corrections to the

description of thermodynamic equilibrium that would arise

from the presence of quantum mechanics. To this end, he

also found a correction to the energy, specifically to the

potential energy. This, ultimately, means that the Wigner

approach also leads to a quantum correction to the potential

that has similar form to that found by Madelung15 and

Bohm.17,18 The difference is in the magnitude of this correc-

tion, but the form appears to be very similar. Important to

the success of the Wigner function, over a decade later, the

achievements of Groenewold in 194620,21 and Moyal in

194921,22 independently lead to a complete formalism where

the time evolution of a quantum system itself was defined in

phase space alone (rather than in Hilbert space).21,23–26

The important result of Wigner’s introduction of the

phase space distribution is that it is now possible to treat

classical mechanics and thermodynamics on an equal footing

with quantum mechanics and quantum thermodynamics.

This introduces an additional window into the quantum

world and makes it easier to discover the novel new effects

of quantum mechanics. Such a phase space approach has

become far more useful in recent years where one wants to

see the quantum corrections and to make them visible in the

analysis of experiments.

A. Extending the Wigner function and its applications

The Wigner distribution function is not the only quan-

tum phase space distribution.27–31 In 1940, Husimi published

another famous distribution.32 The Husimi distribution func-

tion is basically a smoothed version of the Wigner function,

as it is a positive semi-definite and semi-classical distribu-

tion. The Husimi distribution thus is a coarse-graining of the

Wigner function with a Gaussian smoothing.33 As a result,

the Husimi function does not produce the correct probability

functions.34 Regardless, the use of the Husimi function

proved very beneficial to applications in quantum optics and

quantum chaos.35 Although the Husimi distribution function

is perhaps the best known distribution aside from the Wigner

function itself, other distribution functions exist as well.31,36

An alternative view of quantum mechanics has been

established by Bohm in 1952, which specifically incorpo-

rates particle trajectories.17,18 Here, the Bohm potential

provides an addition to the total energy and provides a

non-classical force which guides the wave functions in a

self-consistent manner. This can provide a basis to use a

particle representation, where the particles move through

the presence of both the classical and the quantum forces.

The approach was initially based on a hidden variable the-

ory, which was later adapted to the ontological theory by

Bohm and Hiley.37 Based on Bohmian mechanics, a phase-

space picture of quantum mechanics with well-defined posi-

tion and momentum becomes a natural construction and

offers an interesting alternative to the Wigner picture.28,38

In the decades to follow Groenewold and Moyal, the

development of the Wigner function and its use continued

(for overviews see, for instance, Refs. 21, 26, and 39–47). It

must be stressed that in the second half of the 20th century

(in particular, towards the end), this phase space distribution

found its use in a broad range of applied areas in science and

engineering. Here, a short, whirlwind overview of the many

developments which started in this period is given, laying

the groundwork for discussing most recent advances in

Secs. II–VII.

Among the first adopters of the Wigner function was

optics: In 1965, the quantum phase space distribution was

used to describe the coherence of optical fields and to

describe the polarization of these fields.48 In 1977, the semi-

classical limit was explored.49 In the early 1980s, the Wigner

function was utilized to investigate quantum effects in elec-

tron transport.50,51 In 1984, a particularly important

review—with Wigner as co-author—on the fundamental

properties of the Wigner distribution function and on other

distribution functions was published.31 In this period, the

Wigner function has also been investigated for use in ele-

mentary pattern recognition.52 Then, in the mid-late 1980s,

the use of the Wigner function to describe transport in resonant

tunneling devices began to be explored,53–55 and this approach

for device transport grew over the subsequent decades.56,57 In

the 1990s, again with Wigner as a co-author, the wave-packet

spread, coherent-state representation, and squeezed states of

light began to be investigated for quantum optics.58 Also, the

Wigner function started to gain traction in the field of chemis-

try, where it was used to study the dynamics of tunneling, reso-

nance, and dissipation in the transport across/through a

barrier59 as well as (later in 2003) decoherence.60 In this

period, its use appeared for wave propagation through media61

and for wavelets.62 Furthermore, the Wigner function was used

to investigate different theories of quantum dissipation63 and

the mathematical basis of the time-independent Wigner func-

tions was explored.64 In 2001, the Wigner function was also

applied to economics.65 Then, it became clear at the turn of the

century that the Wigner function was perfect for illustrating

the quantum property of entanglement, which became exceed-

ingly important in quantum information theory.66–81 In conclu-

sion, by the end of the 20th century, the peculiar properties of

the Wigner function found a plethora of applications in a

diverse set of research areas, providing a fertile ground for

follow-up research in the 21st century.

B. What this review covers

In Secs. I and I A, we described the arrival of the

Wigner function and its development throughout the 20th
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century. The built-up momentum did not stop there: Since

the 2000s the Wigner function found increased use in many

application areas. In some fields, it is the main method of

choice, whereas in others it continues to play a side role.

Regardless, this increased interest beyond a single field gave

rise to the Wigner Initiative [http://www.iue.tuwien.ac.at/

wigner-wiki/] and with it, additional efforts to introduce

cohesion into the growing, diverse Wigner community: A

special issue in the Journal of Computational Electronics82

was published and the International Wigner Workshop (IW2)

series was established. The latter was begun in 2015 [https://

www.asu.edu/aine/ISANN15/WignerWorkshop.htm], with

the second installment in 2017 [http://www.iue.tuwien.ac.at/

iw22017/], and the third one planned for 2019 [http://

www.iue.tuwien. ac.at/iwcn2019/workshops/iw22019/]. This

review is testament to this development and summarizes the

versatility and far-reaching applicability as well as the high

pace of research in many different fields which depend on

the Wigner function.

Section II will set the stage by discussing the general

properties of the Wigner function, highlighting its use for

depicting entanglement—a key property. Beginning with

Sec. III, recent advances (with the vast majority not older

than 2015) in using the Wigner function in many different

application fields are discussed.

In quantum information processing (cf. Sec. III), the

Wigner function finds multiple uses, ranging from recon-

struction to enable the detection of squeezed states and

highlighting entanglement to using the negativity for identi-

fying non-classicality (or quantumness). Those fundamental

properties are, in particular, important for optical qubits and

thus for quantum information.

In quantum physics (cf. Sec. IV), the Wigner function is

regularly employed to investigate the transition from a quan-

tum to a classical regime (i.e., decoherence processes) and

again to highlight entanglement. In particular noteworthy is

the application to superconductivity, i.e., Josephson junc-

tions and qubits.

In quantum electronics (cf. Sec. V), the Wigner function

is used to model quantum electron transport, for which

extensive efforts were put into tackling the numerical and

computational challenges as well as into integrating scatter-

ing processes and electromagnetic fields into the modeling

approaches. Nowadays, realistic devices like the resonant

tunneling diode are (still) being investigated as are transport-

confined devices and exploratory new devices and systems,

also within the area of entangletronics.

In quantum chemistry (cf. Sec. VI), the Wigner function

is primarily used to investigate the spectra of molecules and

atoms, tunneling effects, and certain quantum correlations.

Nevertheless, the typical models used are found in many

quantum physics applications.

In signal processing (cf. Sec. VII), the Wigner function

is a key tool to investigate wave propagations through certain

media, giving insight into the nature of the materials the

waves pass through. Also, they are used, in practice, to

describe the properties of the signals themselves. In particu-

lar, classical wavelets have a strong connection to Wigner

functions.

All in all, what will be seen from the extensive literature

review is that the areas with the most focused Wigner activi-

ties are in quantum information and devices, such as optical

qubits (cf. Sec. III) and superconductor qubits (cf. Sec. IV).

If there is one take-away message for the reader, it is that

Wigner functions have become very important because, if

for no other reason, they can be reconstructed from experi-

mental measurements in a manner that illustrates the clear

presence of entanglement in the quantum system. This seems

to be unique in quantum transport.

II. WIGNER FUNCTION AND ENTANGLEMENT

As previously indicated in (1), the Wigner function has

a convenient phase space formulation. Wigner gave us his

formulation already in 1932 and demonstrated its usefulness

when spanning the transition from the classical to the quan-

tum world. The Wigner function approach is felt to offer a

number of advantages for use in modeling the behavior of

physical processes in many fields of science. First, it is a

phase-space formulation, similar to classical formulations

based upon the Boltzmann equation. By this, we mean that

the Wigner function involves both real space and momentum

space variables, distinctly different from the Schr€odinger

equation. In this regard, modern approaches with the Wigner

function provide a distinct formulation that is recognized as

equivalent to (but is a different alternative to) normal

operator-based quantum mechanics. Because of the phase-

space nature of the distribution, it is now conceptually possi-

ble to identify where quantum corrections enter a problem

by highlighting the differences from the classical version, an

approach that has been used to provide an effective quantum

potential that can be used as a correction term in classical

simulations.

In the following, we will provide a concise derivation

of the Wigner equation (the Wigner equation is often

referred to as the Wigner transport equation). We start with

the density matrix—providing a convenient description of

mixed states—which can be derived from the Schr€odinger

picture

q r; r0; tð Þ ¼
X
n;m

cnm/�m r; tð Þ/n r0; tð Þ � w� r; tð Þw r0; tð Þ; (2)

where cnm is the statistical weight and /n and /�m are basis

functions. The center-of-mass coordinates, the average (r)

and difference (s) coordinates, are introduced as

x ¼ r þ r0

2
; s ¼ r � r0; r ¼ xþ s

2
; r0 ¼ x� s

2
; (3)

so that

q r; r0; tð Þ ¼ q xþ s

2
; x� s

2
; t

� �
: (4)

Using the above center-of-mass coordinates, the phase-space

Wigner function can be represented as the Fourier transform

of the density matrix on the difference coordinate s
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fW x; p; tð Þ ¼
1

h3

ð
ds q xþ s

2
; x� s

2
; t

� �
e�ip�s�h ; (5)

where the density matrix q is expressed in terms of the wave

functions.19,39 This transform, although introduced by Wigner,

is often called the Weyl transform.19,83,84 Incorporating

the center-of-mass coordinate transformations (3) into the

Liouville-von Neumann equation yields a new equation of

motion for the density matrix

i�h
@q
@t
¼ � �h2

m�
@2

@x@s
þ V xþ s

2

� �
� V x� s

2

� �" #
q x; s; tð Þ:

(6)

When the Weyl transform is applied to this equation, one

gets an equation of motion for the Wigner function as

@fW
@t
þ p

m�
� @fW
@x
� 1

i�h
V xþ i�h

2

@

@p

� �
� V x� i�h

2

@

@p

� �� �
fW ¼ 0:

(7)

In the absence of dissipative processes, this can be rewritten

in a more usable form (henceforth referred to as the Wigner

equation)

@fW

@t
þ p

m�
� @fW

@x
� 1

h3

ð
d3p0W x; p0ð ÞfW x; pþ p0ð Þ ¼ 0; (8)

where

W x; p0ð Þ ¼
ð

d3s sin
p0 � s

�h

� �
V xþ s

2

� �
� V x� s

2

� �� �
(9)

is the Wigner potential. In the latter term, we can clearly see

the nonlocal behavior of the potential that is unique to the

system. If the potential is of quadratic, or lower order behav-

ior, then the results are those found with the Boltzmann

equation. That is, a simple quadratic potential yields only the

first derivative of the potential in (9). This is the electric

field, which is the principle driving force for transport, even

in the classical case. On the other hand, if the potential is

sharp, such as a step in potential, then its effect is felt to all

orders of derivatives and can lead to difficulties in numerical

simulations.

The problem with even the equation of motion (7) is

that one must know the value of the Wigner function, or the

wave function, at t ¼ 0. Hence, one must also solve the

adjoint equation for the initial condition.43 The importance

of the initial conditions is especially critical for what is

known as the bound state problem. For example, if the con-

fining potential in (9) is just a quadratic potential, it repre-

sents the simple harmonic oscillator, and the resulting force

from (9) is purely classical. The quantum bound states of the

potential will not result from Eq. (7). The initial states from

the adjoint equation are required to provide the quantization

and, therefore, these bound states.43

The nonlocal behavior of the potential is reflected in just

how the wave function at one point senses the behavior of

the wave function at a distant point. In other words, there is a

correlation in the wave function between two points if these

two points are widely separated. It turns out that this effect

can be significant in the absence of decoherence processes,

and the correlation length can be quite large.

An important consideration is that the Wigner function

satisfies the normalizations that are required on either real

space wave functions or momentum space wave functions.39

That is, we obtain the probability of finding the particle at

any position in space by integrating the Wigner function

over the momentum, which gives the magnitude squared

of the wave function itself. When integrating the Wigner

function over all positions, we find the normalization in the

momentum space. This is an important result, as not all sug-

gested phase space formulations of quantum transport neces-

sarily preserve this normalization. This has an important

generalization. If we have a function Fðx; pÞ, which is either

a function of the position operator alone or of the momentum

operator alone, or of any additive combination of these two

operators, the expectation value is completely analogous to

the equivalent classical expression for such an average.

Another important feature is that the Wigner function

does not spread with time for a fixed momentum, even

though the underlying wave function does so.43 That is, in

normal quantum mechanics, a Gaussian wave packet in posi-

tion alone that moves with such a velocity spreads out in a

diffusive manner, as the Schr€odinger equation is technically

a diffusion equation. In some sense, the spread in velocities

leads to an increasing uncertainty for the normal Gaussian

packet. This does not seem to be the case for the Wigner

function, however. Moreover, the corresponding uncertain-

ties satisfy DxDpx � �h=2 in phase space. Thus, the Wigner

function for a single free particle is already different from

the classical delta function as a result of the quantum uncer-

tainty relation, and the size of the particle is correspondingly

much larger due to this uncertainty. That being said, because

the uncertainty relation means that we really cannot have a

single fixed momentum, or position, the spread in momen-

tum will lead to a spreading of the Wigner function. The

sharper the spread in momentum, the broader the spread in

position will be, as these are coupled. While we will not give

the formal derivation of the equation of motion, it has been

derived by many different approaches, and the reader can

find one such approach from Ref. 39.

One of the interesting aspects of the Wigner function is

the ability to transfer many of the results of classical trans-

port theory into quantum approaches merely by replacing the

Boltzmann distribution with the Wigner function. However,

there is a caveat that must be understood in this regard. And,

this is the fact that the Wigner function may not be a

positive-definite function. That is, there are cases in which

the Wigner function possesses negative values, and these

values can extend over a phase space region of the extent of

Planck’s constant. If one smooths over a region of this size,

the negative excursions will go away. Clearly, these negative

excursions represent the appearance of uncertainly in the

quantum realm but also have other important properties

which will be highlighted in the subsequent application sec-

tions. Indeed, this negativity is important in many fields for
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signifying the presence of non-Gaussian properties and espe-

cially for the existence of entanglement.

A. Entanglement

Entanglement surfaced in 1935 with the famous thought
experiment of the Einstein-Podolsky-Rosen (EPR) para-

dox,85 although it was Schr€odinger who coined the term

entanglement.86 In essence, if two separate quantum bodies

interact, they form a single quantum system, in which each

body leaves traces of itself on the other body—they become

entangled. Once separated, the two bodies still remain a sin-

gle system. The maximal knowledge of this entire single

entity is likely more than the available knowledge of the

original two bodies. This memory of the interaction—the

entanglement—persists regardless of the distance between

the bodies until some form of decoherence happens, which

destroys the memory and thus breaks the entanglement of the

two bodies.

To illustrate entanglement, let us consider a wave function

consisting of two Gaussian wave packets which have inter-

acted and thus formed a composite single wave function27,39

wT x; tð Þ ¼
1ffiffiffi
2
p w1 x� x0; k0ð Þ þ w2 xþ x0;�k0ð Þ½ �: (10)

One portion of the wave function is centered at x0 and moves

in the positive x direction, and a second portion is centered

at �x0 and moves in the negative x direction. When the

Wigner function from such a composite wave function is

generated, an extra term arises34

fW x;p; tð Þ¼
1

4
fþW x;p;tð Þþ f�W x;p; tð Þþ2e�

x2

2r2�2r2p2

cos 2k0xð Þ
h i

:

(11)

The last term in the brackets is a new term that represents the

memory interference that arises from the entanglement

between the two wave packets.87 This term is centered

around x ¼ p ¼ 0 and oscillates rapidly along the x axis. In

Fig. 1, we plot the Wigner function of (11) at a time for

which the two original packets have moved away from x ¼ 0.

The central entanglement term is still seen to be present.

While this is a somewhat trivial example, it is precisely the

form that is usually constructed as a Schr€odinger Cat state,

with which one is particularly interested to study the entan-

glement.67,88 In this view, the two Gaussians are the live and

dead Cat states, and the third term is the alive or dead entan-

glement. We will meet these states in later sections.

Naturally, the question of measuring entanglement

arises, which, however, is strongly related to how entangle-

ment is defined. Arisen from the EPR paradox and coined by

Schr€odinger, Bohm described entanglement based on split-

ting a diatomic molecule, which is split apart by a method

that does not affect the spin of each of the two atoms.17,18,89

In recent years, Bohm’s approach established itself as the de
facto wave function used for the EPR paradox. However,

there are some problems. For instance, the positions and

the momenta of the two atoms must be considered as hidden
variables, as no experiment on the system can yield any

information about the probability distribution of these

quantities. This gives rise to an important advantage of the

Wigner function: It provides a phase space representation of

position and momentum and has been shown to describe the

existence of the entanglement at the same time. This aspect

is particularly relevant to the field of quantum information

processing, which lead to a plethora of various measures and

use cases of entanglement.66–81

III. QUANTUM INFORMATION PROCESSING

Quantum information processing is an umbrella term

and, in general, deals with adding quantum effects to the

field of information processing. This has many sub-branches,

among those are quantum optics, quantum computing, quan-

tum entanglement, quantum teleportation, and quantum

metrology. Here, quantum optics stands out as it was one of

the early adopters of the Wigner function.90–92 However,

Wigner functions also found wide spread use in classical

optics over the last decades:93–97 More recently, they were

used for designing new optical achromatic lenses with sub-

wavelength focusing98 and for optical nanoantenna arrays.99

In this section, we are providing an overview of the

many uses cases of the Wigner function in quantum informa-

tion processing. We categorized the contributions based on

their individual underlying and predominant physics, reveal-

ing that the same concepts find their applications in different

fields.

A. The Jaynes-Cummings model

The coupling between a two-level atom and a resonant

(quantized) optical cavity is described by a relatively old

model, termed as the Jaynes-Cummings model.100 The

model describes the interaction of the two-level atom as it

interacts with a quantized mode of an optical cavity and is of

great interest in atomic physics, quantum optics, and con-

densed matter quantum information systems. The principle

of the model is analogous to the problem of two coupled

classical pendulums that are connected to produce an interac-

tion. This interaction leads to a coupling of the two modes in

a way in which all of the energy oscillates between the two.

At a given instant of time, pendulum 1 may be static while

FIG. 1. Two Gaussian wave packets are shown, under the assumption that

they form a single wave function. Depicted is the resulting Wigner function,

with the entanglement exhibited around x ¼ p ¼ 0.
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all the energy is in the oscillation of pendulum 2, and at a

later time the process is in the opposite state. In the quantum

case, one pendulum is the harmonic oscillator mode of the

electromagnetic cavity, while the second is the atom, which

is described as an oscillator by its Rabi frequency. Hence,

the field interacts with the atomic state and leads to Rabi

oscillations of the atomic state population.

More recently, it was observed that the photon parity

operator also shows similar behavior with one important dif-

ference. The peaks of the amplitude of the parity operator

seem to occur when the Rabi oscillations are at their mini-

mum. So, the amplitude and decay of this parity operator

seem to be shifted by half a period from the Rabi oscilla-

tions.101 In Fig. 2, we plot the Wigner function of the parity

operator at a time when this operator is near its maximum

amplitude and at a positive peak (of the oscillating operator).

The axes x (real) and y (imaginary) correspond to position

and momentum. While the two major peaks are evident,

there are clear interference fringes between them. These

fringes themselves oscillate at the Rabi frequency when the

parity amplitude is large. Because the parity operator is pro-

portional to the number density of the photon field, this latter

is also in agreement with the two-pendulum concept, as the

Rabi oscillation is a minimum when the majority of the

energy is in the photon oscillator.

Many variations on the Jaynes-Cummings model

appeared over time. First, the model was generalized through

the development of a Markovian master equation approach,

rather than sticking with the Hamiltonian form.102 Then, the

model was extended to a double Jaynes-Cummings model by

incorporating two two-level atoms within the structure,103,104

as well as to a pair of three-level atoms.105 An anti-Jaynes-

Cummings model was devised as well.106 By reconstructing

the Wigner function, these latter authors were able to recon-

struct the wave fields themselves. The Jaynes-Cummings

model was studied in the strong coupling regime (very small

detuning) as a method of investigating broken inversion

symmetry.107 Miranowicz et al. replaced the electromagnetic

field with the phonon field in the study of a nanomechanical

resonator108 (for an excellent review on microwave photon-

ics with superconducting quantum circuits, also discussing

tomography of microwave photons to reconstruct the Wigner

function, see Ref. 109). In Ref. 110, the authors used a

Jaynes-Cummings Hamiltonian to analyze a resonant single-

atom two-photon quantum optical amplifier both dynamically

and thermo-dynamically. It was shown that investigating

the Wigner function one can experimentally discriminate

between initial field states and even the excitation mechanism

(single vs two photon) at long times. In Ref. 111, the authors

discussed the Jaynes-Cummings model within the context of

Josephson photonics. The quantum dynamics of two electro-

magnetic oscillators coupled to a voltage-biased Josephson

junction was investigated.112

B. Squeezed states

One of the most ubiquitous objects in quantum mechan-

ics is the Gaussian wave packet, because it can be used to

create the minimum uncertainty wave packet. In quantum

optics, the minimum uncertainty wave packet is used to rep-

resent a single photon, by adding a propagator to a Gaussian

wave packet a coherent state can be created

W xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

1ffiffiffiffiffiffi
2p
p

r

s
e�

x2

4r2þ
ip0x

�h ; (12)

which is a propagating minimum uncertainty wave packet.

From this coherent state, a Wigner function in phase space

can be constructed which moves with the average momen-

tum of the wave packet

fW x; kð Þ ¼ 1

h
e�

x2

2r2�2r2 k�k0ð Þ2 : (13)

This Wigner function is positive semi-definite; it can be zero

at infinite distances from the center in either position or

momentum. Now, the idea of a squeezed state is to reduce

the uncertainty in either position or momentum of the wave

by utilizing nonlinear optics.113,114

In recent work, a squeezed state was used to do phase

estimation on an interferometer via the Wigner function for

the squeezed state.115 The phase estimation is carried out by

using parity detection via the probe state. In recent years,

there has been a growing interest in this area, both for better

creation of squeezed states as well as for applications of

these states. A more general treatment of the role of nonline-

arity in creating squeezed states was formulated116 as well as

a new time evolution operator to describe the propagation of

the squeezed state117 (in Ref. 118, the authors discussed the

effect of partially coherent, but decentered annular beams,

on the skewness and sharpness of the wave propagation). It

was demonstrated that the squeezed state can be generated

by a parametric amplifier process,119 in which the squeezed

state was generated from a normal harmonic oscillator

mode120 and from two modes of an optomechanical sys-

tem.121 Very recently, two-phonon interactions between

mechanical resonators and spin qubits have been studied to

FIG. 2. The Wigner function for the expectation of the parity operator at the

scaled time for which this quantity is a maximum (near one-half the revival

time). Reprinted with permission from Birrittella et al., Opt. Commun. 354,

286–290 (2015). Copyright 2015 Elsevier.
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show the non-classical states in the presence of dissipa-

tion.122 Figure 3 shows the dynamics of the density matrix

and of a single quantum trajectory as well as the cattiness
versus time for an initial vacuum state for different

parameters.

In addition, the concept of fractional squeezing was

introduced.123 The use of a squeezed state to reduce the

decoherence of a coherent optical pulse was also demon-

strated,124 although one might argue that this was the reason

squeezed states were developed in the first place. The differ-

ence between the quantum nature and the classical nature of

the optical pulse was discussed by using a distance measure

to determine the difference between the Wigner and the

Husimi distribution, and this was claimed to represent a

roughness measure for the propagation of the squeezed

state.125 In Ref. 126, the authors conducted a continuous var-

iable quantum optical simulation for time evolution of quan-

tum harmonic oscillators. By experimentally determining the

transient behavior of a quantum harmonic oscillator in an

open system and reconstructing the Wigner function, they

were able to analytically simulate the dynamics of an atomic

ensemble in the collective spontaneous emission by mapping

an atomic ensemble onto a quantum harmonic oscillator as

an example. Squeezed states and Wigner functions were

used for establishing sufficient conditions for the efficient

classical simulation of quantum optics experiments that

involve inputting states to a quantum process and making

measurements at the output.127 In Ref. 128, the authors

propose a projection synthesis scheme for generating Hermite

polynomial excited squeezed—non-Gaussian—vacuum states

(the presence of non-Gaussian states is taken as an indication

of non-classical behavior). Marshall et al. used squeezing

operations for a continuous-variable protocol for quantum

computing on encrypted variables.129 An excellent overview

of squeezed states and their application to laser interferome-

ters is provided in Ref. 130.

In turn, Ref. 131 shows the use in quantum metrology

and its application in biology. Finally, a theory of higher-

order stochastic differential equations equivalent to arbitrary

multi-variate partial differential equations was derived.132

C. Other photon states

The use of specially created photon states, such as

squeezed states, has been of considerable interest in the

world of quantum information in the optical sciences,133

although other states have been devised as well. The idea of

optical vortex states (a state with angular momentum)134 was

extended so as to produce a squeezed optical state that is

also a vortex state.135 In other work, the vortex state was cre-

ated by a nonlocal photon subtraction process.69,70 In this lat-

ter work, the authors created a photonic chip to continuously

generate and manipulate entangled states of light. The entan-

glement is created by nonlocal photon absorption of two sep-

arable states by means of directional couplers with high

transmittivity. The resulting delocalized photon is then

manipulated by a reconfigurable interferometer, which pro-

duces the desired state after photon counting. The final quan-

tum state has the appeal of being both squeezed light and a

single photon. In Ref. 71, the authors investigated optical

beams with phase singularities (vortices) and experimentally

verified that these beams, although classical, have properties

of two-mode entanglement in quantum states.

Multimode photon-addition and subtraction of photons

arising from Gaussian states can lead to non-Gaussian states,

such as the previously discussed squeezed states, which are

FIG. 3. Left: Dynamics of the density matrix and of a single quantum trajectory. (a) Phonon population versus time. Vertical lines depict times when a phonon

emission process takes place. (b) Wigner function of the mechanical mode given by the density matrix (upper) and the wave function of a single trajectory

(lower), at the times marked with arrows on the top of panel (a). The last two columns of the bottom row depict a jumping cat. Right: Cattiness versus time for

an initial vacuum state for different parameters. Inset shows Wigner function at the time of maximum cattiness. Reprinted with permission from Mu~noz et al.,
Phys. Rev. Lett. 121, 123604 (2018). Copyright 2018 American Physical Society.
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then useful in quantum computation.136,137 It was shown that

a theoretical framework for such multimode photon-added

and -subtracted states can be developed which yields a gen-

eral Wigner function for the states. Quite generally, quantum

computing can outperform classical machines only when

entanglement, and the presence of negative components in

the Wigner function, exists.72 The generation of such a state

by homodyne detection, which is basically a subtractive pro-

cess, was shown to give such a Wigner function.138 Such a

reconstructed Wigner function for photons at 1.55 lm is

illustrated in Fig. 4. The degree of non-classicality in such

added and subtracted states used to create squeezed states

was characterized recently as well.139,140 In Ref. 141, non-

Gaussian states, with negative-valued Wigner functions

(negativity is related to classical non-simulability), were

used to investigate quantum annealing, which is aiming at

solving combinatorial optimization problems mapped to

Ising interactions between quantum spins.

In cavity optomechanics, light circulating inside an opti-

cal resonator is used to manipulate and measure the motion

of a mechanical element via the radiation-pressure interac-

tion. After an optomechanical interaction, performing a mea-

surement on the light can be used to conditionally prepare

mechanical states of motion. Recently, it was shown that by

exploiting the nonlinearity inherent in the radiation-pressure

interaction, nonlinear measurements of thermo-mechanical

motion in an optomechanical system could be performend:142

Utilizing the measurement of the displacement-squared

motion, the first measurement-based state preparation of

mechanical non-Gaussian states was demonstrated. In follow

up work, the preparation of quantum superposition states of

motion of a mechanical resonator was realized by exploiting

the nonlinearity of multi-photon quantum measurements:

Initially, classical mechanical interference fringes were

observed143 followed by the observation of quantum interfer-

ence144 (cf. Fig. 5). Other works exponentially enhanced the

single-photon opto-mechanical coupling strength by using

only additional linear resources145 and investigated the pho-

ton-phonon-photon transfer in optomechanical systems.146 In

Ref. 147, a measurement-based conditional generation of the

superposition of mesoscopic states of a nanomechanical

resonator was proposed. The decoherence processes of the

generated states are highlighted using the Wigner function. In

related work, Van der Pol oscillators were investigated, in

particular, concerning quantum synchronization dynamics148

and oscillation collapse.149 In Ref. 150, microwave-

frequency pulse shaping and conversion between adjustable

frequencies by embedding a mechanical oscillator in a tun-

able circuit were used to demonstrate a temporal and spectral

mode converter. The authors measured the Wigner-Ville dis-

tribution of the input and the converted output signal to ana-

lyze the characteristics of the mode conversion.

D. Detection of photon states

A squeezed state can indeed be detected, usually via

reconstructing the Wigner function. One recent approach

used point-by-point sampling of the Wigner function via a

ultrafast parametric down-conversion process.151 A loss-

tolerant time-multiplexed detector, based upon a fiber-

optical cavity and a pair of photon-number-resolving ava-

lanche photodiodes, was used. By proper data processing

and pattern tomography, the properties of the light states

could be determined with outstanding accuracy. Another

approach used parity and phase detection within an interfer-

ometer to study the two-mode squeezed state and its result-

ing Wigner function.152 As may be guessed, the use of

quantum tomography is a relatively standard approach to

reconstructing the Wigner function, and this is often done

with homodyne detection.153 This typically includes a phase-

sensitive amplifier to amplify the quadrature component of

the light. Recently, it was shown that a travelling wave para-

metric amplifier based upon an optical nonlinear crystal can

be used to enhance the quality of the Wigner function recon-

struction.154 Here, the Wigner function contains a negative-

valued area along one quadrature and is squeezed along the

other. In Ref. 155, the authors showed experimentally the

full reconstruction of the polarization quasiprobability distri-

bution from measurements using photon-number resolving

detectors. Quantum tomography for reconstructing the

Wigner function was also frequently used within the realm

of electron quantum optics.156–159

Other approaches to detecting and observing non-

classical states have appeared as well in recent years. For

instance, a Knill-Laflamme-Milburn type of interferometer

was used to create non-classical states as measured by the

negativity of the Wigner function.160 In other work, a new

experimental method for determining non-Gaussian multi-

photon states was proposed.161 They recognize that this is a

property of Fock states, which are quantum states for a fixed

number of particles (see Ref. 162 for an investigation on sta-

bilizing Fock states via Josephson junctions). The authors

showed that their proposed approach will give an experimen-

tal method of creating the Fock states from normal multi-

photon states and provide the increased negativity of the

Wigner function.

Aside from detecting photon states, an important chal-

lenge is quantifying the non-classicality of these states.

Recently, new quantifiers for processing multiple estimates

of single-photon state statistics were proposed.163 The

FIG. 4. Reconstructed Wigner function of the single-photon-subtracted,

phase-randomized weakly squeezed vacuum state. Reprinted with permis-

sion from Baune et al., Phys. Rev. A 95, 061802 (2017). Copyright 2017

American Physical Society.
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quantifiers simulate basic capability of single photons to con-

ditionally bunch into a single mode and form a Fock state.

This state exhibits complex non-classical phase-space inter-

ference effects making its Wigner function negative in multi-

ple areas.

Additional measurement works investigated coarse-

graining the phase space of N qubits,164 continuous variable

quantum systems,165 optically controlled Kerr non-linear-

ity,166 twisted photons,167 the potential advantages of hetero-

dyne over homodyne detection,168 symmetric two-mode

squeezed thermal states,169 a temporal and spatial multi-

plexed infrared single-photon counter,170 and probabilistic

cloning of arbitrary coherent states.171

E. Schr€odinger Cat states again

Schr€odinger Cat states were defined above as quantum

superpositions of classical distinguishable states and allow to

generate non-classical states of light as well as to investigate

the decoherence process arising during the transition from

quantum to classical physics88 (cf. Fig. 6). A better under-

standing of decoherence processes, in turn, allows a grasp of

the limits of quantum physical approaches, such as in quan-

tum computing and quantum communications. Small Cat

states (i.e., having small amplitudes) are referred to as Kitten
states.

Recently, the optical Schr€odinger Cat states emerging in

the double-photon pumping and absorbing processes with

single-photon decay in one- and two-coupled-modes systems

were investigated.73 It was shown that the decoherence

effects result in diminishing the negative interference fringes

in the Wigner functions and also suppresses the entangle-

ment and mutual information. In Ref. 172, the authors gener-

ated macroscopic Schr€odinger Cat states in a diamond

mechanical resonator. Here, the Wigner function was used to

show the interference fringes and non-classicality of the

mechanical Cat state. In Ref. 173, a quantum computing

approach was proposed based on Cat states (instead of

qubits). The Wigner function was computed based on the

numerical solution of the Schr€odinger equation. The peaks

of the Wigner function are at the classical stable fixed points,

and the interference fringes in between denote that two oscil-

lation states are superimposed, i.e., a Cat state. An exact

analytical solution of the steady-state density matrix for

driven-dissipative systems, including one-photon losses,

which are considered detrimental for the achievement of Cat

states, was presented.174 Again, the Wigner function was

FIG. 5. Wigner distributions of a

mechanical resonator’s state at differ-

ent times: The initial compass state if

the resonator is in the ground state

(a)–(c); loss of interference due to ini-

tial thermal phonon occupation (d)–(f);

during the evolution, the distribution

rotates so that the interference fringes

oscillate between the position and

momentum marginals. Reprinted with

permission from Khosla et al., Phys.

Rev. X 8, 021052 (2018). Copyright

2018 Author(s), licensed under the

Creative Commons Attribution 4.0

International License.

FIG. 6. A Wigner function for a Schr€odinger Cat state: The presence of the

interference terms indicates that this Wigner function represents a superposi-

tion, i.e., it is in both states alive and dead at the same time. Reprinted with

permission from Rundle et al., Phys. Rev. A 96, 022117 (2017). Copyright

2017 Author(s), licensed under the Creative Commons Attribution 3.0

License.
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used to visualize the non-classicality of a state. In Ref. 175,

the authors investigated the effect of varying monitoring

strategies via quantum measurements to control chaos. The

Wigner function was used to analyze the interference gener-

ated by the nonlinear dynamics and the way different

monitoring strategies (decoherence processes) destroy them.

In Ref. 176, a method for generating any bi-photon superpo-

sition state using only linear optics was introduced, using a

calculated Wigner function to demonstrate non-classical

characteristics. Sychev et al. demonstrated a conversion of a

pair of squeezed Schr€odinger Cat states into a single positive

Cat state with a larger amplitude.177 Electronic Cat states

were investigated regarding elastic scattering by atomic

targets, in particular, the interference effects and the contri-

bution of the Wigner function’s negative values.178

F. Optical qubits

In recent years, the quantum bit, or short qubit, has

become of great interest due to the overall interest in quan-

tum computing. A qubit is the quantum analog of the classi-

cal binary bit and refers to any quantum system with two

levels, which is denoted by j0i and j1i. One approach to rep-

resent optical qubits is rooted in a qubit-oscillator system

approach based on the Jaynes-Cummings model in which the

two-state atom is replaced by the qubit. This was recently

studied within the rotating wave approximation.179,180 This

latter work used the results to examine the differences among

various information theoretic measures. In particular, the

negativity associated with the calculated Wigner distribution

was used for indicating the non-classicality of the developing

state. Also, as previously hinted, the qubit-oscillator system

was studied for broken inversion symmetry.107

Another approach to represent optical qubits is based on

squeezed states. Recently, two-mode qubit-like entangled

squeezed states were compared with entangled coherent

states, through the use of Wigner functions for the two types

of states.74 The Wigner function and its negative excursions

were used to signify the entanglement of as many as 3000

atoms by a single photon.75 The role of entanglement for the

generation of the negative portions of the Wigner function

was also studied for multi-qubit GHz-squeezed states.76

A qubit-oscillator system was used to create Schr€odinger

Kitten states.179–181 By passing these states through a Kerr

medium, the gain by such a process can exceed the normal

optical losses and lead to squeezed Kitten states.

In other work, a scheme for generating squeezed states

of a confined light field strongly coupled to a two-level sys-

tem, or qubit, in the dispersive regime was proposed.182

M€uller et al. investigated cloning of binary coherent states

based on the previous work on binary qubit states, using the

Wigner function to analyze the statistical moments.183

Qubits are especially of interest to applications in quan-

tum computing. Based on the results of Howard et al.,184

Delfosse et al. described a quantum computation scheme by

state injection on rebits, i.e., states with real density matrices,

by using contextuality and Wigner function negativity as

computational resources.185 This was later extended by the

authors by describing schemes of quantum computation with

magic states on qubits.186

G. Bell states

Within the realm of entangled states, a particularly

important concept is a Bell state (also frequently referred to

as EPR state), which is a maximally entangled quantum state

of two qubits. The idea of entangled states in quantum

mechanics arises as early as EPR85 and the subsequent intro-

duction of the phrase entanglement by Schr€odinger.86 The

creation of Bell states became more interesting after the pub-

lication of the Bell inequality187 by Bell in 1964, although

the inequality was known already more than a century ear-

lier.188 Since the inequality was known well before Bell, it

can hardly be used to distinguish between classical and quan-

tum mechanics. Nevertheless, Bell states are used to describe

entangled states which are necessary for the world of quan-

tum information. At the same time, we point out that there is

little to differ between a Bell state and a Cat state.

Recently, entangled non-Gaussian states, obtained from

Gaussian entangled states by photon subtraction, were used

for continuous-variable quantum information protocols, spe-

cifically quantum teleportation.189 The authors described the

teleportation of non-Gaussian, non-classical Schr€odinger Cat

states of light using two-mode squeezed vacuum light that is

made non-Gaussian via subtraction of a photon from each of

the two modes. Here, the Wigner function’s maximum nega-

tivity at the output was used to show how the non-Gaussian

entangled resource lowers the requirements on the amount of

necessary squeezing. In related work, in Ref. 77, the authors

proposed a deterministic scheme for teleporting an unknown

qubit state through continuous-variable entangled states in

superconducting circuits (we return to this below); the

Wigner function was used to measure the amount of entan-

glement of the entangled coherent state.

In optical communications for quantum information proc-

essing, photonic qubits must be processed in complex interfer-

ometric networks. This requires synchronization of the arrival

times when flying through various media. Recently, it became

possible to control the interference between two nearly pure

photons that emerge from two independent quantum memo-

ries.190 Controlled storage times of 1.8 ls were achieved with

sufficient purity that the Wigner function showed sufficient

negative excursions that could be confirmed with homodyne

detection.

In other work, control of the entanglement dynamics

was achieved via a Kerr nonlinearity that is mediated by cav-

ity detuning in a two-photon process.78 Finally, the typical

EPR or Bell state was studied with pseudo-spin type of mea-

surements.191 In Ref. 79, the authors investigated the genera-

tion and characterization of discrete spatial entanglement in

multimode nonlinear waveguides. Pfaff et al. experimentally

showed the controlled release of multiphoton quantum states

(e.g., Schr€odinger Cat states) from a microwave cavity mem-

ory into propagating modes.80 The process allows to gener-

ate entanglement between the cavity and the travelling

mode.
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IV. QUANTUM PHYSICS

The use of the Wigner function is deeply rooted in phys-

ics, with some saying it is a third route to achieve quantiza-

tion.21,26 The Wigner function was and is particularly

attractive for investigating decoherence processes, i.e., to

shine light on the transition of quantum systems from the

quantum to the classical regime.192,193 For example, deco-

herence in a one-dimensional attractive Bose gas, due to the

presence of random walks in momentum space, was stud-

ied.194 Other work looked at the quantum-classical transition

in open quantum dots.195

The Wigner function plays a key role today in many dif-

ferent areas of physics, such as in investigating quantum sys-

tems,196,197 various imaging elements in a scanning

transmission electron microscope,198 X-ray investigations of

the structure and dynamics of polyatomic molecules,199 the

tomography of multispin quantum states,200 bulk-surface

oscillations in driven topological insulators,201 measuring

complete and continuous Wigner functions of a two-level

cesium atom,202 macrospin dynamics in antiferromagnets,203

and quantum cascade lasers,204,205 just to name a few areas.

Importantly, in Ref. 67, the authors demonstrated a simple

method for quantum state reconstruction that extends those

previously known for quantum optical systems to other clas-

ses of systems. Using IBM’s Quantum Experience five-qubit

quantum processor, they showed the reconstruction of two

Bell states and the five-qubit GHz spin Schr€odinger Cat state

(cf. Fig. 7) via spin Wigner function measurements.

Based on this initial outlook on the versatility of the use

of the Wigner function in physics, in the following we take a

closer look at a couple of key areas and shed some light on

the details of the individual application.

A. Harmonic oscillator

The harmonic oscillator is ubiquitous in quantum phys-

ics. Groenewold was among the first to treat the harmonic

oscillator in terms of the Wigner function.20 It represents one

of the few exactly solvable systems using the Schr€odinger

equation. The normal harmonic oscillator is described by the

Hamiltonian206

H tð Þ ¼ p2

2m
þ k tð Þ

2
x2; (14)

where p is the normal momentum operator and k tð Þ ¼ mx2.

The harmonic oscillator is used in various forms to

describe the quantization of a variety of different fields,

whether of electromagnetic origin or of mechanical motion,

such as phonons in condensed matter. In these applications,

the field is expanded in a number of modes, each of which is

described by a harmonic oscillator. Among the areas which

apply this is the previously discussed Jaynes-Cummings

model (cf. Sec. III A). The description of the field as an array

of harmonic oscillators means that it has become natural to

describe the background bath as an ensemble of harmonic

oscillators, and this can be used to study the interaction of

other quantum systems with such a bath.

Recently, the use of a phase space was re-emphasized

by a treatment of the driven quantum harmonic oscillator.207

It was shown that the presence of the driving electric field

distorts the Gaussian correlation functions that arise in treat-

ing the Wigner functions of the oscillator.208 The harmonic

oscillator coupled to a heat bath was studied for the case in

which the external force is a kicked impulsive force.209

In other work, the behavior under decoherence of four

different measures of the distance between quantum states

and classical states for the harmonic oscillator coupled to a

linear Markovian bath was investigated.210 In Ref. 211, the

authors used harmonic oscillators to describe a state-

projected centroid molecular dynamics formalism.

One implementation of the harmonic oscillator uses

trapped ion systems. In Ref. 212, the authors observed the

quantum interference between two well-separated trapped-

ion mechanical oscillator wave packets. The superposed state

was created from a spin-motion entangled state using a her-

alded measurement. Wave packet interference was observed

through the energy eigenstate populations. The Wigner func-

tion of these states was reconstructed by introducing probe

Hamiltonians which measure Fock state populations in dis-

placed and squeezed bases. Also using a trapped ion system,

strong nonlinear coupling between harmonic oscillators was

achieved by exploiting the Coulomb interaction between two

of the trapped ions.213 In Fig. 8, the Wigner functions for dif-

ferent quantum states are shown, both for ones found from

the experimental data and the calculated Wigner functions.

A trapped ion system was also used to experimentally dem-

onstrate (near) deterministic addition and subtraction of a

bosonic particle, in particular, a phonon of ionic motion in a

harmonic potential.214

More recently, the characteristics of non-Gaussian pure

states generated from an anharmonic oscillator, and

FIG. 7. The five-qubit GHz, spin Schr€odinger Cat state Wigner function:

The ideal function, and as insets, both simulated and experimental results

from IBM’s Quantum Experience project are shown. Reprinted with permis-

sion from Rundle et al., Phys. Rev. A 96, 022117 (2017). Copyright 2017

Author(s), licensed under the Creative Commons Attribution 3.0 License.
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approximations to these states created using a truncated Wigner

approximation, was studied.215 The truncation method removes

the third and higher order derivatives that arise from the expan-

sion of the Wigner potential. Since this modifies the correspond-

ing terms in the resultant Liouville equation, or the Wigner

equation of motion, there is no guarantee that any non-Gaussian

correlations predicted by the truncated Wigner function would

be accurate. However, these authors showed that such non-

Gaussian states can be reliably predicted, even with the trunca-

tion mentioned. The truncated Wigner approximation is used in

many other areas as well, such as in analyzing conservation

laws and dynamics of a one-dimensional Bose gas,216 the exci-

ton transport in open quantum systems,217 many-body localiza-

tion and thermalization using semiclassical methods,218 and

non-equilibrium dynamics of spin-boson models from phase-

space methods.219

Very recently, the Wigner function was used to investi-

gate the transition to bistability in a quantum nanomechani-

cal oscillator.220 A classical oscillator was capacitively

coupled to a quantum dot and comparisons of the response

with the harmonic oscillator were drawn. The Wigner func-

tion and the harmonic oscillator play an interesting role in

nuclear physics, more precisely in a concept termed the scis-
sors mode, which is a counter revolution of the protons

against the neutrons in deformed nuclei.221

B. Quantum Hall effect

The study of the quantum Hall effect has already yielded

two Nobel prizes, i.e., for the effect itself and for the frac-

tional quantum Hall effect. To this day, there remains signifi-

cant interesting physics in these systems and Wigner

functions play a key role to unravel them. Recently, the

Levitons were examined as excitations in the fractional

quantum Hall effect222 and a form of crystallization of these

excitations was shown to occur. Such excitations were stud-

ied in two-dimensional topological insulators where three-

electron collisions can be found.157 These excitations were

also demonstrated to have a use in two-particle

interferometry in the quantum edge channels, a process

which may have some impact in some approaches to quan-

tum computing.158

C. Superconductivity

Wigner functions find their application within the gen-

eral realm of superconductivity, in particular, for studying

Josephson junctions and qubits. The Josephson junction is a

tunnel junction in which the materials on either side of the

insulator (or non-superconducting material) are supercon-

ductors. Josephson junctions have been previously men-

tioned in Sec. III, in particular, concerning Josephson

photonics: In Ref. 112, the authors coupled two electromag-

netic cavities to a Josephson junction. Here, the circuit is a

series connection of the two cavities with the junction. A

variation on the above concept is using two cavities which

are coupled by a single Josephson junction.111 In this situa-

tion, it is observed that the tunneling of a Cooper pair

through the Josephson junction, from one cavity to the other,

excites two photons, one in each of the cavities, or resona-

tors. These microwave photons leak out and can be observed

experimentally. The role of nonlinearities, arising from the

nonlinear current through the junction, can be important in

the system. The coupling parameter is determined by the

effective parameters of the individual oscillators. If the cou-

pling to both loops is reduced to zero, one gets a non-

degenerate parametric amplifier, while if it is coupled to

only a single resonator, the authors suggest that they achieve

an anti-Jaynes-Cummings model, in that the driving field de-

excites both the resonator and the junction. In the latter case,

the Wigner function demonstrates negative regions of corre-

lation between the resonator and the junction.

A Josephson junction coupled to a superconducting ring

creates two states that can be monitored and can be

entangled, allowing to create qubits from such a structure.

One approach was to use superconducting quantum interfer-

ence devices (SQUIDs) in which a small superconducting

island coupled via two ultrasmall, but identical, Josephson

junctions.223,224 They worked in the charge state basis, in

FIG. 8. Wigner functions for different quantum states. (a)–(f) Wigner functions (from left to right) for the vacuum state, and coherent as well as Schr€odinger

Cat states for different configurations. The top row corresponds to the experimental data, while the bottom row shows the calculated Wigner functions.

Reprinted with permission from Ding et al., Phys. Rev. Lett. 119, 150404 (2017). Copyright 2017 American Physical Society.
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which the single-electron charging energy was much larger

than the Josephson coupling constant. Then, the state of the

qubit can be read by a single-electron transistor capacitively

coupled to the charge qubit.

Dissipation in these Josephson structures will of course

destroy the entanglement and the corresponding negativity of

the Wigner function,225 but it appears in different forms here. It

was demonstrated that a variety of states can be created in these

Josephson systems, including the Schr€odinger Cat state,

squeezed states, and entangled states.180 Furthermore, it was

shown that a system with dissipation can be stabilized by apply-

ing an active feedback from an ancillary system, or by reservoir

engineering.78,226 The study of these systems was also extended

to an array of qubits in an electron ensemble.227 Finally, the

reader is directed to an excellent recent review of the coupled

microwave resonator and the superconducting qubit.109

D. Plasmas

The Wigner function entered the stage for plasma phys-

ics around 1991 with the effort to establish an equation of

motion for the Wigner function.228 Since then it played a key

role in this field. Recently, a Feynman path integral approach

to finding the Wigner function for a canonical plasma was

developed.229,230 In Ref. 231, the authors derived the nonlin-

ear kinetic equations for the degenerate Fermi-Dirac distribu-

tion in an electron plasma. This was followed by an

investigation of the general requirements for the spin-1/2

quantum plasma of electrons.232 The effects of radiation

transfer from a fusion reactor were also studied with the

Wigner function.233

The quantum Brownian motion of particles in a plasma,

in the presence of damping and the diffusion of the particles,

was also studied.234 The authors discussed the cases of linear

and quadratic coupling in great detail and derived the sta-

tionary solutions of the master equation for a Brownian parti-

cle in a harmonic trapping potential using the Wigner

function. This work paves the way for studying the proper-

ties of impurity atoms embedded in a Bose-Einstein conden-

sate or an ultracold Fermi gas.

A two-dimensional, one component plasma was studied

in the cell model with cylindrical symmetry.235 In this work,

the counter ions are placed at the center of the cylindrical

space with the electrons in the larger area around them. The

role of strong correlations in a two-component, degenerate

plasma was also studied recently.236 To that end, the authors

developed a new path integral representation of the Wigner

function representing the canonical ensemble.

The Wigner function was also used in determining the

hydrogen emission line in a low density hydrogen plasma typi-

cal of interstellar situations.237 Furthermore, a weakly ionized,

hydrogen-based plasma was studied for the quantum situation,

and the wave dispersion relation and statistical properties were

determined with a Wigner distribution approach.238

E. Relativistic systems

Schr€odinger proposed an extension of his equation that

meets the requirements of special relativity for spin-less par-

ticles, which is better known today as the Klein-Gordon (or

Klein-Gordon-Fock) equation.239–242 This was subsequently

followed by the more famous Dirac equation for spin par-

ticles.243 Relativity is not only relevant to extremely large

scales such as astrophysics but also in the very small scale,

i.e., on the molecular, atomic, and sub-atomic level.

Relativity and quantum physics—and as we will see by

extension the use of the Wigner function—are thus not only

relevant but also even important over the entire scale spec-

trum.39,244 Within the realm of particle physics, strong mag-

netic fields were particularly investigated with the use of the

Wigner function, in particular, regarding fermions245 and for

spin-1/2 particles.246 In other work, the Wigner formalism

was applied to the study of quantum cosmology of the

universe, where the concept of deformation quantization

was applied.247 The authors studied a Friedman-Lem�atre-

Robertson-Walker model of the universe that is filled with

radiation and dust or cosmic strings. The relativistic equation

of motion contains the Wigner function, which is shown in

Fig. 9 for a cosmic string filled universe. There is apparently

a turning point at x ¼ 0 in these coordinates, as one can see

from the yellow line for classical behavior. The Wigner

function determined from the equation of motion has signifi-

cant oscillatory behavior that arises both inside and outside

the classical trajectory. The relativistic situation for the uni-

verse model does not seem to add much to the non-

relativistic approach to semiclassical quantization. In other

work, the role of the chiral anomaly and vorticity in the con-

densation of massive fermions was also discussed using the

Wigner functions.248,249

In general, the quantum treatment of particles and elec-

tromagnetic waves, including relativistic effects, is referred

to as quantum electrodynamics. In quantum electrodynamics,

the particles are the electron, proton, neutron, and photon

(and their anti-particles), where the photon is the carrier of

FIG. 9. The Wigner function of a cosmic string filled universe. The corre-

sponding classical trajectory is denoted by the yellow line. Reprinted with

permission from M. Rashki and S. Jalalzadeh, Gen. Relativ. Gravitation 49,

14 (2017). Copyright 2017 Springer Nature.
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the electromagnetic field and interaction. Some of these par-

ticles are charged and some are fermions (electron and pro-

ton) and bosons (neutron and photon). The Wigner function

has become a key tool in quantum electrodynamics, e.g.,

recently the magnetic effect in quantum electrodynamics on

heavy fermions was investigated.250

Further investigation on how the nucleus is held together

yielded the so-called strong force as well as quantum chro-

modynamics and in turn a new set of fundamental particles

(e.g., quarks)—a hadron is a composite particle made of

quarks held together by the strong force—of which the previ-

ous fundamental particles are composed. In Ref. 251, the

authors generated a Wigner phase space distribution for the

quark transverse position and its momentum in a proton and

showed that this is sufficient to evaluate their cross product,

the orbital angular momentum. Based on quarks and the

strong force carrying particles, gluons, a similarity between

quark-gluon interactions and electron-photon interactions

was established. Then, the kinetic theory of the quark-gluon

plasma can be treated by means of gauge-covariant one-par-

ticle Wigner distribution functions for the quarks, anti-

quarks, and gluons. This similarity was used in many instan-

ces, but particularly recently in Ref. 252, where in the quark-

gluon plasma, the chiral symmetry is restored to the system,

and chirally invariant transport equations could be written

in terms of the Wigner function. A coarse-graining of the

Wigner function, into a Husimi function, was used to deter-

mine the entropy production from relativistic heavy-ion col-

lisions in the case where the dynamics has gone chaotic.253

The Wigner function was used in the context of electromag-

netic fields to describe the behavior of photons254 and

fermions.255 Another aspect of the heavy ion collisions is the

generation of so-called parton jets. Here, the partons are sim-

ply the free hadrons that are emitted during the collision

event of the two heavy ions. These impact the so-called

vacuum state surrounding the colliding ions, and Wigner func-

tions are useful here to describe the nature of the vacuum256

and the parton shower.257

The Wigner function was also used to study the produc-

tion of quark pairs during the plasma formation,258 as well as

the specific role of the bottom quarks (one type of quark).259

Many more applications of the Wigner function within the

context of strong force are available.260–263

Aside from applications in investigating the strong force

and related challenges in particle physics, gravity is investi-

gated to this day with the use of the Wigner function. In par-

ticular, the wave-kinetics of acoustic-gravity waves were

studied.264 Also, the effect that quantum gravity has on the

normal quantum harmonic oscillator was studied from the

approach of the generalized uncertainty principle.265 The dif-

ferences may or may not be measurable, depending upon the

size of the Planck mass. In related work, the effects of noise

on the entanglement enhanced gain in interferometer sensi-

tivity were investigated using the Wigner function.266

V. QUANTUM ELECTRONICS

Quantum electronics describes electron-based devices

where quantum effects are primary factors. Historically

quantum electronics focused on the interactions of electrons

and photons, e.g., quantum cascade light amplification by

stimulated emission of radiation (LASER) devices, which is

why quantum electronics is often linked to quantum optics.

However, quantum electronic devices go way beyond

LASER operation: Fundamental is the understanding of

quantum electron transport which is the base for many use

cases and was investigated in detail in the last decades within

the context of electronic devices with Wigner functions play-

ing a key role.39,56,57,159,244,267–271

When modelling or simulating electronic devices, there

are several challenges to consider. First and foremost, for

simulations are the stability, convergence, and computational

effort of the techniques. Also, because a transport system is,

by necessity, an open system to allow for contacts: The

nature of the boundary conditions is of importance, espe-

cially as these may well dominate questions of stability and

convergence. Self-consistency between solutions of the

Wigner equation of motion and solutions of Poisson’s equa-

tion is of utmost concern. Finally, the role of collisions, i.e.,

scattering effects, is exceedingly important as is the inclu-

sion of the electromagnetic field.

In this section, we first discuss different recent Wigner

function based numerical and computational aspects fol-

lowed by approaches to handle scattering and electromag-

netic fields. Finally, we highlight recent advances in

quantum electron devices.

A. Numerical and computational aspects

A key aspect of solving the Wigner equation of motion

(8) is to handle the derivatives in time, position, and momen-

tum. This has been known since the earliest work in devi-

ces.39,272 A widely applied approach is to use deterministic

approaches based on a finite difference scheme. In recent

work,273 the authors suggest to use momentum domain nar-

rowing to reduce the computational complexity. The ratio-

nale behind it is that there are regions where one does not

need the complete numerical accuracy to resolve the Wigner

equation. Also, the steady-state solution of the discrete

Wigner equation was investigated.274

Here, the balance between the degrees of numerical

accuracy in the evaluation of the kinetic and potential terms

that, respectively, describe two actions in orthogonal direc-

tions of the phase space was investigated. The effect of the

uncertainty principle on the solution of the Wigner equation

was analyzed.275 It was shown that the cross-diagonal-posi-

tion uncertainty of electrons within the device results in a

restriction on the minimum momentum resolution of the

Wigner function, again something that was known to the

early practitioners.53 In Ref. 276, the authors developed a

novel deterministic solution method based on a weighted

essentially non-oscillatory (WENO) scheme. The approach

was compared to a reference non-equilibrium Green’s func-

tions277 solution of a resonant tunneling diode.

Among the problems when using a finite difference

approach, however, is that the electric field exists on an

intermediate spatial grid that is interpolated between the nor-

mal grid points. Computation with the nonlocal potential (or
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even with the local field) is the major difficulty in the self-

consistent solution, as the Wigner potential extends over the

entire space of interest, even if the potential itself does not.

Based on the work of Ringhofer, who suggested that it may

be more efficient to use a spectral method in which Fourier

transformation of the potential is introduced,278 there is

recently a renewed interest in spectral methods: In Ref. 279,

the authors developed a method which uses a spectral

decomposition into L2ðRdÞ basis functions in momentum-

space to obtain a system of first-order advection-reaction

equations. The resulting equations are solved by splitting the

reaction and advection steps so as to allow the combination

of numerical techniques from quantum mechanics and com-

putational fluid dynamics by identifying the skew-Hermitian

reaction matrix as a generator of unitary rotations. Another

approach is based on resolving the linear advection in ðx; tÞ-
space by an explicit three-step characteristic scheme coupled

with a piecewise cubic spline interpolation, while the

Chebyshev spectral element method in k-space is adopted for

accurate calculation of the nonlocal pseudo-differential

term.280 The stability and accuracy of a pseudospectral

scheme for the Wigner equation were investigated as well.281

In other work, the Wigner-Liouville equation was reformu-

lated using a spectral decomposition of the classical force

field instead of the potential energy.282 This simplifies the

Wigner-Liouville kernel both conceptually and numerically

as the spectral force Wigner-Liouville equation avoids the

numerical evaluation of the highly oscillatory Wigner kernel

which is nonlocal in both position and momentum. The

authors evaluated their approach via a simulation of a reso-

nant tunneling diode. Figure 10 shows the Wigner function

near resonance. One clearly sees negative regions where the

Wigner function takes negative values, reflecting non-

classical behavior. These negative regions sustain a current,

carried by a jet of positive quasiprobability density electrons

that tunnel through the resonant level and are accelerated on

the right-hand side of the barriers.

Other recent research on solving the Wigner equation

considered a spatially dependent effective mass,283,284 which

is particularly important for investigating heterostructure

devices.285 Heterostructures contain spatial variations of the

effective mass, which usually are not considered in regular

solution approaches of the Wigner equation. Yet, this can be

quite important if one wants to analyze a resonant tunneling

diode device.

As previously hinted, boundary conditions are a critical

aspect for fully modelling electronic devices.286 In Ref. 287,

the authors considered the existence and uniqueness of the

solution of the Wigner equation in the presence of boundary

conditions. In other work, the drawbacks of using local

boundary conditions as well as upwind or hybrid difference

schemes with regard to coherence effects were studied.288

Based on this analysis, the authors proposed a nonlocal

boundary condition scheme, which includes the effect of the

drift operator. Unphysical results leading to oscillations near

the boundaries could be prevented. The coherence effect is

inherently included and conservation laws were obeyed.

Aside from deterministic approaches, a widely favored

method to solve the Wigner equation is to use a stochastic

approach, in particular, kinetic Monte Carlo methods further

extended to include concepts of weight, affinity, or signed

particles.39,289 Regardless of the particular method, among

the advantages and disadvantages, one advantage of kinetic

Monte Carlo approaches stands out from the computational

side: The option is to exchange memory requirements (which

is a key show stopper, in particular, for higher dimensional

problems) with computing time. This flexibility combined

with other features ensured that the Monte Carlo method

remained a highly attractive option over the years.56,57,290–295

In recent years, the signed particle approach (the correspond-

ing concept is discussed in Refs. 268 and 270) implemented

in the free open source Wigner Ensemble Monte Carlo simu-

lator shipped with ViennaWD [http://www.iue.tuwien.ac.at/

software/viennawd/] (allows to simulate quantum transport

of arbitrary one- and two-dimensional problems) has been

extended to tackle the computational burden by a paralleli-

zation approach, significantly reducing the simulation

runtimes.296,297 Another signed particle approach was

implemented in the nano-archimedes [http://www.nano-

archimedes.com/] software package.

Very recently, a novel numerical solution technique—

termed lattice Wigner method—was introduced which solves

the Wigner equation based on a lattice discretization of

momentum space.298 This approach was derived from the

lattice Boltzmann method, originally introduced as an alter-

native to the discretization of the Navier-Stokes equations of

continuum fluid mechanics. This approach is particularly

attractive due to the reduction of the momentum space to a

comparatively small set of representative momentum vec-

tors, which opens up interesting prospects for the simulation

of one-, two-, and also three-dimensional quantum systems.

B. Scattering

Scattering happens when electrons collide with other

entities, such as impurities, lattice vibrations (phonons), or

FIG. 10. The Wigner function of a resonant tunneling diode near the reso-

nance peak in arbitrary units. Reprinted with permission from Van de Put

et al., J. Comput. Phys. 350, 314–325 (2017). Copyright 2017 Elsevier.
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other electrons. Considering scattering effects is increasingly

important as scattering causes decoherence which in turn

destroys quantum coherence.299 In principal, the Wigner

equation offers the ability to include scattering via inclusion

into the Hamiltonian. That being said, the general task of

including scattering into quantum transport modeling is far

from straightforward and remains a challenging task (for a

history on including scattering effects into the Wigner equa-

tion see, for example, Ref. 270). Recently,300 the signed

particle approach for the Wigner transport model was used

for analyzing the electron state dynamics in quantum wires

focusing on the effect of surface roughness. The limits of

local scattering models to describe dissipation and decoher-

ence phenomena were depicted and based on this non-local

quantum operators were devised to overcome those limits.301

In Ref. 302, the electron transport behavior in transition

metal dichalcogenides with a dominant spin-orbit interaction

was investigated. The authors showed that this leads to a 2 �
2 Wigner matrix for either the conduction band or the

valence band. The off-diagonal elements display interference

phenomena from the two diagonal components which are

relevant, for instance, for modelling electron scattering and

spin coherence. A critical view on the application of the

Boltzmann collision operator for the time-dependent model-

ing of dissipative quantum transport was discussed for the

Wigner picture.303,304 The authors discussed unphysical

results and suggested to tackle this problem via Bohmian
conditional wave functions. In Ref. 305, it was shown that

the coherent multiple scattering of electrons in a one-

dimensional disordered system leads to the slowdown of its

dynamics due to weak localization. A transport model using

the Wigner-Rode formalism to investigate thermoelectric

properties of periodic quantum structures was developed.306

The approach covers the full electronic bandstructure as well

as carrier scattering with phonons and ionized impurities,

enabling one to simulate both energy relaxation and quantum

effects from periodic potential barriers.

C. Electromagnetic fields

The motion of classical particles is governed by forces,

which at any instant act locally causing acceleration over

Newtonian trajectories. A charged particle, moving in an

electromagnetic medium, experiences the Lorentz force,

comprised by the joint action of the electric and magnetic

fields. Therefore, for a full electromagnetic transport picture

in solids, a full treatment of the electric and the magnetic

forces must be conducted. A Wigner approach is uniquely

qualified for this task. In a recent work, the Wigner theory

for Bloch electrons in homogeneous electric and magnetic

fields of arbitrary time dependence was developed.307 The

resulting equation for free electrons in constant magnetic

and electric fields resembles the classical Boltzmann coun-

terpart. The approach is then generalized for arbitrary energy

bands.

Very recently, a general treatment of electromagnetic

fields within the Wigner picture was developed based on pre-

vious investigations regarding the choice of the gauge308

using the introduction of the Weyl-Stratonovich transform of

the density matrix.309 The Weyl-Stratonovich transform

introduces a function of phase space variables corresponding

to the kinetic momentum and position. The equation of

motion was derived for the case of scalar and vector poten-

tials corresponding to general, inhomogeneous, and time-

dependent electromagnetic conditions. The equation is inde-

pendent of a particular choice for the gauge, which makes it

particularly attractive for numerical implementations.

D. Quantum electronic devices

In this section, we show use cases of Wigner function-

based simulations of quantum electron devices. The historic

preeminent example is the resonant tunneling diode, which

has been already mentioned several times. Conceptually, a

resonant tunneling diode is composed of a quantum well

placed between two potential barriers. The bound state in the

well provides resonant tunneling through the structure,

which in turn provides a filter on the electronic states which

pass through, e.g., this structure is the electronic equivalent

of an optical resonator. As a result, the device is clearly a

quantum mechanical structure and exhibits negative differ-

ential conductance in the current, which can be used for a

two-terminal oscillator. Historically, the resonant transmis-

sion of electron waves through double barriers dates back to

1951 and Bohm89 and is used to this day as testbed to inves-

tigate quantum transport effects and novel numerical and

computational approaches with Wigner function

approaches.273,274,276,284,310–314 In particular, Ref. 310 deals

with recent work on dissipative transport of the resonant

tunneling diode and offers quite nice new information on the

current and the dissipative parameters. Figure 11 depicts the

Wigner distribution function calculated for the bias voltage

corresponding to the peak of the current without and with

scattering.

Aside from the prototypical quantum mechanical elec-

tronic device, the resonant tunneling diode, the Wigner func-

tion was also used to model the quantum electron transport

in metal-oxide-semiconductor field-effect transistors.315–317

There the Wigner function is particularly useful to identify

the ballistic and diffusive transport regimes (scattering

effects).

Modern day quantum electronics, however, is primarily

concerned with confined devices in the nanometer regime, in

particular, graphene, quantum wires (also known as nano-

wires), and quantum dots, representing a two-, one-, and a

zero-dimensional transport system, respectively. Those con-

fined quantum systems potentially open paths to sustain the

high pace of electronics, be it challenges regarding scaling

limitations of conventional electronics (e.g., memory applica-

tions318), energy generation (e.g., solar cells319), energy stor-

age (e.g., memory devices320), novel computing approaches

(e.g., binary atomic silicon logic321), and many more. Two-

dimensional ballistic electron quantum transport in graphene

has been investigated and similarities with the classical pic-

ture have been identified.322 The results show that the quan-

tum treatment is particularly important for strong electric

fields, as the model predicts a non-negligible correction to the

charge inside the device (similar to corrections that occur
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with quantum potentials323). Other work dealt with a fluid-

dynamic model for electron transport in graphene.324

Regarding nanowires, based on earlier work on simulating

wave guide transport with the use of Wigner functions,325,326

where investigations were restricted to elastic scattering by

impurities and low lattice temperatures or ballistic transport,

modeling capabilities improved over time. The electron-

phonon interaction could be simulated in a quantum wire327

as well as the quantum transport in a carbon nanotube field-

effect transistor315 and in a silicon nanowire,328 just to name

a few. More recently, some investigations of quantum

wires300,329 and quantum dots330 were conducted within the

Wigner picture. Figure 12 shows the Wigner function of a

gate-all-around silicon nanowire transistor for different outer

radii of the silicon shell.

Wigner functions were also used in modeling quantum

well lasers,331 in particular, for modeling the carrier dynam-

ics and the effect of the boundary conditions. More recently,

a Wigner function approach was used to simulate partially

coherent, dissipative electron transport in biased semicon-

ductor superlattices,204 particularly those for quantum cas-

cade lasers. There a GaAs/AlGaAs superlattice was

investigated based on a model collision integral with terms

that describe energy dissipation, momentum relaxation, and

the decay of spatial coherences.

Other quantum devices, such as quantum ratchets332–334

(i.e., periodical structures with broken spatial symmetry,;

also known as Brownian motors) and quantum shuttles30

(i.e., a nanoelectromechanical system that transports elec-

trons one by one by utilizing a combination of electronic and

mechanical degrees of freedom) have also been studied with

the Wigner function.

Aside from known device concepts, the Wigner transport

picture also enables to investigate novel device concepts.

Recently, a new branch of quantum electronics is materializ-

ing coined entangletronics, short for entangled electron-

ics.335 This term describes applications and approaches

where the fundamental aspect is the manipulation of the

electron dynamics via processes maintaining coherence

(here, entanglement is understood to represent the compli-

cated coupling between device and contact states); coherence

describes all properties of the correlation between physical

quantities of a single wave, or between several waves or

wave packets. However, scattering processes strive to coun-

teract coherence and therefore have a strong impact on the

entire process. In Ref. 335, the authors presented a two-

dimensional analysis of lens-governed Wigner signed parti-

cle quantum dynamics to investigate manipulation of elec-

tron evolution via electrostatic lenses. Very recently, in

follow up work,336 the electron interference in a double-

dopant potential structure was investigated by comparing

classical with quantum simulation results: A unique feature

of a Wigner function-based transport modeling approach. By

FIG. 12. The calculated Wigner func-

tion of an active channel for two differ-

ent radii (RSi) of the outer silicon shell

of a gate-all-around nanowire transistor.

Quantum interference patterns and hot-

electron relaxations at the drain electro-

des (right) are identified. Reprinted with

permission from Lee et al., Solid-State

Electron. 139, 101–108 (2018).

Copyright 2018 Elsevier.

FIG. 11. The Wigner distribution function calculated for the bias voltage cor-

responding to the peak of the current without scattering (a) and with scatter-

ing (b). Reprinted with permission from M. Wołoszyn and B. J. Spisak, Phys.

Rev. B 96, 075440 (2017). Copyright 2017 American Physical Society.

041104-17 J. Weinbub and D. K. Ferry Appl. Phys. Rev. 5, 041104 (2018)



being able to directly compare the classical with the quantum

world, quantum effects could be clearly identified and simi-

larities with the famous double-slit experiments were

highlighted. Figure 13 shows the interference pattern of the

investigated double-dopant structure surfacing in the quan-

tum case. Although not explicitly associated with entangle-

tronics, other recent work dealing with quantum dynamics of

wave packets interacting with potential barriers using a

Wigner function approach is related.337,338

VI. QUANTUM CHEMISTRY

Quantum chemistry has a long history dating back to

Schr€odinger, but also to Heitler’s and London’s milestone

work published in 1927 on applying quantum mechanics to the

investigation of the diatomic hydrogen molecule and the chem-

ical bond.339 Since then, quantum chemistry evolved and is a

highly active field today340 and in some areas, Wigner func-

tions are a key tool, as we will see in the following.

As hinted above, since the beginning of quantum

mechanics, the analysis of molecules and atoms with their

spectra was a primary concern. An attractive approach is to

find a Wigner function based on path integrals341 to describe

quantum correlation functions. Based on the groundwork of

Poulsen et al.342—who developed a linearized Feynman-

Kleinert variational path integral approach to study, e.g., the

correlation functions for a chain of He atoms—the Feynman-

Kleinert estimation of the density matrix and the resulting

linearized path integral were further developed.343,344 Here,

the approach was applied for determining the dynamic struc-

ture factor in parahydrogen and ortho-deuterium. The

Wigner representation of the density operator was also

applied to study the correlation functions in the spin-boson

model,345 where the authors calculated the equilibrium popu-

lation difference as a bias was applied.

A key interest in quantum chemistry is the connection

between the quantum dynamics and the classical Boltzmann

distribution. In Ref. 346, the exact time-correlation functions

for the normal modes of a ring-polymer were developed in

terms of Feynman paths. Taking the limit of an infinitely long

polymer, the authors found that the lowest mode frequencies

take their Matsubara frequency values (as determined from,

e.g., Matsubara Green’s functions). Wigner-Moyal transfor-

mations of the correlation functions allow the connection to

the classical phase space dynamics. Tanimura347 studied the

real and imaginary time (as used in the Matsubara Green’s

functions) for a hierarchical set of Fokker-Planck equations.

These were then used to study the phase space Wigner

dynamics of a model quantum system coupled to a harmonic

oscillator bath.

Also, a molecular dynamics approach for determining the

microcanonical distribution and connecting it to the Wigner

function was demonstrated.211 In Ref. 348, the Talbot-Lau

matter wave interferometer was investigated with potential

experimental applications in the context of antimatter wave

interferometry, including the measurement of the gravitational

acceleration of antimatter particles.

The dependence upon the initial condition for evolution

of the photodynamics was studied for the pyrrole molecule,

with the quantum situation being described via a Wigner

distribution.349 It was found that the use of the quantum dis-

tribution (using quantum sampling based on a Wigner distri-

bution) already from the initial conditions fits to the evolving

photodynamics much better than a classical thermal distribu-

tion. The underlying technique of sampling a Wigner distri-

bution was also used in elucidating the photophysical

mechanisms in sulfur-substituted nucleobases (thiobases) for

designing prospective drugs for photo- and chemotherapeutic

applications350 as well as in revealing deactivation pathways

hidden in time-resolved photoelectron spectra.351

The Wigner function proved particularly attractive for

investigating tunneling effects. The use of a Wigner function

in the chemical reaction process enables to study the bridge

between classical and quantum treatments in various molecu-

lar and chemical systems. In Ref. 352, the tunneling-based

dissociation of the H atom in electronically excited pyrrole

was investigated. In this work, the authors used a trajectory-

based approach to calculating the various tunneling probabili-

ties from the phase integrals. The trajectories were limited to

straight-line tunneling paths, and it was found that sampling

these paths based upon a fixed energy Wigner distribution

gave the best fit to the quantum mechanical dissociation rates.

Most interestingly, during the study of chemical reactions a

conundrum materialized. Some studies showed vanishing

tunneling times,353–355 or times that are independent of the

barrier thickness.356 These results might suggest that non-

relativistic quantum mechanics is violated. Recent work357

suggested that one should use the transition time or in other

cases a tunneling flight time but shows that their results tend

to agree with estimates using a Wigner tunneling packet. In

FIG. 13. Quantum electron density ([a.u.]) after 200 fs of the initial mini-

mum uncertainty condition. The green circles are isolines at 0.175 eV of the

Coulomb potentials modeling the dopants. Reprinted with permission from

Weinbub et al., Phys. Status Solidi RRL 12, 1800111 (2018). Copyright

2018 Author(s), licensed under the Creative Commons Attribution 4.0

License.
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Ref. 358, the authors use the Wigner function to investigate

excited-state intramolecular proton transfer for o-nitrophenol

where tunneling plays a key role.

VII. SIGNAL PROCESSING

The study of propagation of either acoustic or electro-

magnetic waves through the environment has been a subject

of study almost since the work of Maxwell.39,359 This is

because the environment is inhomogeneous, whether it is the

atmosphere, the solid earth, or a water system. The inhomo-

geneity can be uniform in the directionality or it can intro-

duce birefringence by which waves split into different

directions depending upon their polarizations. Regardless,

wave propagation and their related signal processing meth-

ods can give insight into the nature of the media through

which the signals are passing, making it a viable tool in

many areas of physics and engineering. Here, the Wigner

function—along with Ville’s work from 1948360—to this

day plays an important part.39,361–364

Polarization effects for electromagnetic wave propaga-

tion in random media were investigated.365 Based on a mode

approach, intermode scattering can be used to introduce the

randomness of the medium. The authors studied the loss of

polarization that arises from the intermode scattering, with

the use of the Wigner function to describe the energy density

of the wave. Again, introduction of the Wigner function

leads to a set of stochastic equations which describes the

propagation and the role of the inhomogeneities. Also using

a modal approach, a phase space approximation method for

linear dispersive wave propagation with arbitrary initial con-

ditions was developed.366 Numerical solutions of one-

dimensional waves were also investigated through discretiza-

tion of the space.367 Also targeting random media, the

acousto-optic effect was studied.368 The radiative transport

equations were derived based on the Wigner transform:

These describe the propagation of multiply scattered light in

a medium whose dielectric permittivity is modulated by an

acoustic wave (e.g., the atmosphere-ocean interface). Based

on the previous work on a phase-space approach for propa-

gating field-field correlation functions,369 an approach to

compute the wave correlation functions inside finite spatial

domains driven by complex and statistical sources was intro-

duced.370 An explicit quantitative connection with phase

space densities could be made by presenting the correlation

function as a Wigner function. Recently, an approach to con-

struct accelerating beams in phase space by designing the

corresponding Wigner distribution function was intro-

duced.371 Accelerating beams can be realized by light fields

that propagate along arbitrary trajectories.372

It was found that the Wigner function-based method is

capable of providing both the initial field distribution and the

angular spectrum needed by projecting the Wigner function

into the real space and the Fourier space, respectively. The

use of Wigner functions to investigate phase and diffraction

effects was used for three-dimensional imaging in volumet-

ric scattering media.373 Here, propagation is described by a

simple shearing operation in phase space, allowing one to

trace rays (waves) backward through three-dimensional

space to find depth. In Ref. 374, the authors analyzed the

phase dynamics of underlying oil-water two-phase flows.

Here, the multivariate pseudo Wigner distribution375 was

used to calculate the multivariate time-frequency representa-

tion for three typical oil-in-water flow patterns. Figure 14

shows the time-frequency representation for a particular flow

pattern. Its dominant characteristics lie in slowly quasiperi-

odic movements and obvious intermittent oscillations.

In other recent work, a time-frequency filter was devel-

oped to eliminate cross-terms in the Wigner-Ville distribu-

tion, which is an attractive tool—particular the high

resolution it provides—to conduct time-frequency analysis

of non-stationary systems.376

Cross-terms manifest when the signal contains nonlinear

frequencies or intermittent signal components. A comparison

with an instantaneous frequency estimation method based on a

continuous wavelet transform validated the proposed method.

In related work,377 another approach to reduce cross-terms in

the Wigner-Ville distribution using a tunable-Q wavelet trans-

form was introduced. Finally, the Wigner function was used to

investigate discrete fractional Fourier transforms using closed-

form Hermite–Gaussian-like eigenvectors.378 Here, one should

not overlook the close connection between the Wigner func-

tions and the wavelets themselves.39

VIII. CONCLUSION

Formulated over 86 years ago, the Wigner function

found broad application in many areas of science and engi-

neering. In a way, it left its most noticeable footprint in

quantum information processing and quantum physics,

where it facilitates the ability to actually illustrate quantum

entanglement: This key feature of the Wigner function is

highly important for modern applications, such as in quan-

tum computing and quantum information. But other areas

greatly benefited from the unique features as well: From

allowing to model quantum transport in electronics, enabling

to investigate tunneling in chemistry, and to granting insights

FIG. 14. The multivariate pseudo Wigner distribution of oil-in-water slug

flow with the mixture flow velocity 0.0368 m/s and water cut 60%. Reprinted

with permission from Gao et al., Sci. Rep. 6, 28151 (2016). Copyright 2016

Author(s), licensed under the Creative Commons Attribution 4.0 License.
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into matter via signal processing—just to name a few, the

Wigner function proved its versatility and importance to

many areas of research. The attractiveness of its usage in

both the quantum and the classical world, as well as the pos-

sibility to experimentally reconstruct the Wigner function

makes this particular distribution function stand out over

other quantum approaches. In particular, it has been demon-

strated time and again that the Wigner function can clearly

illustrate the exact differences between the classical and the

quantum worlds. This inherent attractiveness has been useful

to many fields of science over many decades and is still gain-

ing even wider utilization in recent years. Indeed, the vast

majority of research dealt with in this review is not older

than 2015, underlying this very fact. Moreover, this huge

volume of recent work extends over a wide range of fields of

modern quantum mechanics, clearly indicating its fruitful

applications in modern science.

Moving forward, each area has several challenges and

opportunities concerning the application of the Wigner func-

tion, a few of these can be stated. In quantum information

processing and quantum physics, the challenges in applying

the Wigner function are centered around the ability to recon-

struct the Wigner function via measurements. Therefore, fur-

ther improvements to the reconstruction process will enable

more detailed understanding (e.g., highlighting entangle-

ment) based on the reconstructed Wigner function. In quan-

tum electronics, self-consistency between solutions of the

Wigner equation of motion and solutions of Poisson’s equa-

tion is of utmost concern as is the computational effort and

numerical challenges involved in solving three-dimensional

problems and considering scattering effects as well as elec-

tromagnetic fields and spins. All of which will be important

to conduct research into new device designs operating in the

low nanometer regime. In quantum chemistry, calculating

the static and dynamical properties of many-body quantum

systems is a key challenge. There, the Wigner function has

already proved to be a promising option. However, more

accurate calculations of, e.g., transport coefficients and rate

constants will be necessary and will enable a more accurate

prediction of the behavior of many-body systems. In signal

processing, among the major challenges is to describe a

propagating wave when passing through certain media. The

Wigner function is already successfully applied to establish

the necessary radiative transport and diffusion equations.

Incorporation of additional effects, e.g., optical field polari-

zation, will require further research.

While entanglement was mentioned only in the quantum

information area above, every one of these fields depends

upon the entanglement. In some areas, new tomographic

methods allow the reconstruction of the Wigner function in a

manner to demonstrate the entanglement. In other areas,

such as quantum electronics, the issue is the destruction of

the entanglement by the scattering processes. But, we should

add that even in quantum information, the destruction of

entanglement sets the time over which quantum computing

and information transfer must be done. So, all of these areas

can be considered to focus on the presence of entanglement

and its coherence time. This fact means that there is a com-

monality between the areas in which the future focus lies

with problems of improving entanglement and the coherence

time.
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Jin, P. Degiovanni, and G. Fève, Phys. Status Solidi B 254, 1600618

(2017).
159C. B€auerle, D. C. Glattli, T. Meunier, F. Portier, P. Roche, P. Roulleau, S.

Takada, and X. Waintal, Rep. Prog. Phys. 81, 056503 (2018).
160X. X. Xu, H. C. Yuan, and S. J. Ma, J. Opt. Soc. Am. B 33, 1322 (2016).
161I. Straka, L. Lachman, J. Hlou�sek, M. Mikov�a, M. Mičuda, M. Je�zek, and
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