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Welcome to the Third International Wigner Workshop (IW2).  The workshop is a two day 

meeting and brings together researchers from all areas of science and engineering areas in 

which Wigner functions have been or could be applied. The 2019 Workshop marks the third 

instalment of this series (the first and second were held in Hawaii, USA, in December 2015 

and in the Lake District, UK, in June 2017) and further fosters the growing Wigner community 

(www.iue.tuwien.ac.at/wigner-wiki/).  The speakers at this year’s workshop provided an 

abstract which was reviewed by the program committee. Topics of interest are (but not limited 

to): Computational or Numerical Challenges, Nanoelectronics, Nanostructures, Quantum 

Circuits, Quantum Information Processing, Quantum Optics, Quantum Physics, and Quantum 

Transport. The workshop hosts four invited speakers and accepted seventeen regular speakers.  

We would like to express our gratitude to our sponsors (in particular the SFB 767, Controlled 

Nanosystems, University of Konstanz – Prof. Wolfgang Belzig) as well as the participants who 

will make the workshop both interesting and successful. We hope that you enjoy it, as well as 

the host conference, and your stay in Evanston, IL. 

David K. Ferry, Josef Weinbub, and Stephen Goodnick 

Chairs of IW2 2019 

May, 2019 

 
General Chair 
David K. Ferry, Arizona State University, USA 
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Program 
 

Sunday, May 19 

8:00 am Registration 

8:50 Opening Remarks: Josef Weinbub 

9:00 Session 1:  Quantum Statistics 

 Chair: David K. Ferry 

9:00 Mark Everitt, Loughborough University, UK, “Quantum Mechanics of 

Anything (From Qubits to Atoms and Molecules) as a Statistical 

Theory (i.e. in Phase Space)” (Invited)     1 

9:45 General questions and discussion 

10:00 Lindsay Orr1, Lisandro Hernandez de la Pena2, and Pierre-Nicholas 

Roy1, 1University of Waterloo, Canada, 2Kettering University, USA, 

“Microcanonical Centroid Framework and the Wigner Distribution”  

            2 

10:20 Coffee break 

10:50 Bartlomiej J. Spisak and Maciej Woloszyn, AGH University of 

Science and Technology, Poland, “Dynamics of the Wigner 

Distribution Function on the Bunimovich Stadium”   4 

11:10 Session 2: Plasmas and Optics 

 Chair: Josef Weinbub 

11:10 Gert Brodiin, Robin Ekman, and Jens Zamanian, Umea University, 

Sweden, “Non-Linear Damping due to Multi-Plasmon Resonances” 

            6 

11:30 Gert Brodin, Jens Zamanian, Robin Ekman, and Haider Al-Naseri, 

Umea University, Sweden, “Quantum Kinetic Models in Plasmas 

Including the Effects of the Electron Spin”    8 

11:50 Ian Welland and D. K. Ferry, Arizona State University, USA, “Wigner 

Function in Quantum Photonic Processing”    10 

12:10 Lunch 
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2:00 pm Session 3: Transport 1 

 Chair: Mihail Nedjalkov 

2:00 Bertrand Reulet, University of Sherbrooke, Canada, “Squeezing and 

Entanglement in Electron Quantum Transport” (Invited)  12 

2:45 General discussion and questions 

3:00 Josef Weinbub1, Mauro Ballicchia2, David K. Ferry3, and Mihail 

Nedjalkov1, 1Institute of Microelectronics, TU Wien, Austria, 
2Universita Politechnica delle Marche, Italy, 3Arizona State 

University, USA, “Electron Interference and Wigner Function 

Negativity in Dopant Potential Structures”     14 

3:20 Maciej Woloszyn and Bartlomiej J. Spisak, AGH University of 

Science and Technology, Poland, “The Wigner Monte Carlo 

Approach to Transport Characteristics of Nanodevices”  16 

3:40 Coffee break 

4:00 Maarten L. Van de Put1, Bart Sorée2,3,4, and Wim Magnus3, 
1University of Texas at Dallas, USA, 2IMEC, Belgium, 3University of 

Antwerp, Belgium, 4KU Leuven, Belgium, “Wigner Time-Evolution 

Using the Spectral Components of the Force” (Invited)  18 

4:45 General discussion and questions 

5:00 Adithya Kommini and Zlatan Aksamija, University of Massachusetts-

Amherst, USA, “Wigner-Boltzman Transport Simulation for 

Improving the Thermoelectric Power Factor in 2D Materials” 20 

6:00 Reception 
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Monday, May 20 

8:50 am Session 4: Quantum Computing and Transport 2 

 Chair: Bartlomiej J. Spisak 

8:50 Robert Raussendorf, University of British Columbia, Canada, 

“Wigner Function Negativity as a Resource for Quantum 

Computation” (Invited)       23 

9:35 General questions and discussion 

9:50 Mauro Ballicchia1,2, Mihail Nedjalkov2, and Josef Weinbub2, 
1Universita Politecnica della Marche, Italy 2Institute for 

Microelectronics, TU Wien, Austria, “Electron Evolution and 

Boundary Conditions in the Wigner Signed-Particle Approach”  24 

10:10  Laura Bellentani1, Enrique Colomes2, Zhen Zhan3, Paolo Bordone1,4, 

Andrea Bertoni4, and Xavier Oriols2, 1Universita degli Studi di 

Modena e Reggio Emilia, Italy, 2Universitat Autonoma de Barcelona, 

Spain, 3Wuhan University, China, 4Instituto Nanoscience-CNR, Italy, 

“On the Incompatibility Between Frensley’s Inflow Boundary 

Conditions and Stationary Wigner Distribution Functions: The 

Problem and the Solution”       26 

10:30 Coffee break 

11:00 Session 5: Numerical Methods 

 Chair: Irena Knezevic 

11:00 Robert Kosik, Mischa Thesberg, Josef Weinbub, and Hans Kosina, 

Institute for Microelectronics, TU Wien, Austria, “On the Consistency 

of the Stationary Wigner Equation”     30 

11:20 Mihail Nedjalkov1, Josef Weinbub1, Mauro Ballicchia1,2, Ivan Dimov3, 

Siegfried Selberherr1 David K. Ferry4, and Karl Rupp1, Institute of 

Microelectronics, TU Wien, Austria, 2Politechnica delle Marche, Italy, 
3Bulgarian Academy of Sciences, Bulgaria, 4Arizona State University, 

USA, “Posedness of the Stationary Wigner Function”   32 

11:40 Sihong Shao, Peking University, China, “Recent Progress in 

Numerical Methods for Many-Body Wigner Quantum Dynamics” 34 
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12:00 Johannes Bülte1, Adam Bednorz2, Bertrand Reulet3, and Wolfgang 

Belzig1, 1University of Konstanz, Germany, 2University of Warsaw, 

Poland, 3Université de Sherbrooke, Canada, “Third-Order Correlation 

Functions of Non-Markovian Quasi-Probabilities”    36 

12:20 Lunch 

2:00 pm David K. Ferry and Ian Welland, Arizona State University, USA, 

“Spin Entanglement in Transition Metal Di-Chalcogenides”  38 

2:20 Lukas Schulz and Dirk Schulz, TU Dortmund, Germany, 

“Formulation of a Complex Absorbing Potential for the Transient 

Numerical Solution of the Wigner Transport Equation”  40 

2:40 Kyoung-Youm Kim1 and Ting-Wei Tang2, Sejong University, Korea, 
2University of Massachusetts, Amherst, USA, “Accuracy Balancing for 

the Discrete Wigner Transport Equation Adopting Higher-Order 

Differencing Scheme”        42 

3:00 Closing Remarks 

 Josef Weinbub 
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Quantum Mechanics of Anything (From Qubits to Atoms and Molecules)  

as a Statistical Theory (i.e. in Phase Space) 

 

Mark Everitt  

Loughborough University, UK 

M.J.Everitt@lboro.ac.uk 

 

We present a complete phase-space formulation of quantum mechanics - extending work by 

Wigner, Weyl, Moyal, and others to any quantum system. This talk is structured in three parts. 

I will start by presenting a brief introduction and outline of the formalism. This will be followed 

by a number of example applications visualising the quantum properties of qubit, atom-field 

and atomic systems. I will conclude with a summary of some key historical developments in 

the subject and specific mathematical details of the general formalism. 
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Microcanonical Centroid Framework and the Wigner Distribution 

 

Lindsay Orr1, Lisandro Hernández de la Peña2, and Pierre-Nicholas Roy1 

1Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada 
2Department of Chemistry and Biochemistry, Kettering University, Flint, Michigan, USA 

lhernand@kettering.edu 

 

The path integral representation of quantum statistical mechanics introduced by R. P. Feynman 

renders an ideal setting for the description of many-particle systems in canonical 

equilibrium.[1] While static properties are immediately available in this context, dynamical 

properties (via quantum time correlation functions) can be estimated within the linear response 

theory regime using the notion of a path centroid variable, as shown by Jang and Voth.[2] In 

this work, we extend the Feynman centroid approach to the analysis of systems in 

microcanonical equilibrium.[3] We define a general mapping of quantum mechanical operators 

onto centroid phase space and establish how to recover quantum mechanical information 

through classical-like, phase-space averages. We show how to extract equilibrium properties 

and demonstrate that the underlying quantum dynamics is rigorously connected, within this 

formalism, to double Kubo transform quantum time correlation functions. The central quantity 

within this framework, the centroid density, is shown to be closely related to the corresponding 

Wigner function of the ensemble and turns precisely into the Wigner function at a particular 

limit. A Centroid Molecular Dynamics (CMD) approximation to the exact 

quantum dynamics is proposed and proven exact in the harmonic limit. This approach is tested 

numerically, and compared with exact results, for a quartic oscillator and a double-well 

potential. In the case of ground state dynamics, we show that this method can resolve tunneling 

splittings of the double well problem in the higher barrier regime where other approaches are 

likely to fail. 

 

 

 

[1] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, 1965) 

[2] S. Jang and G. A. Voth, J. Chem. Phys, 111, 2357 (1999);  

      S. Jang and G. A. Voth, J. Chem. Phys, 111, 2371 (1999) 

[3] L. Orr et al., J. Chem. Phys., 146, 214116 (2017) 
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Fig. 1: Phase-space representation of the centroid density corresponding to first excited state of the double well 

potential at 𝛽 = 1. 

 

 

 

 
Fig. 2: Exact (blue) and CMD results (red) for the position-position double Kubo quantum time correlation 

function corresponding to the first excited state of the double well potential at 𝛽 = 1. 

 

 

 

 
Fig. 3: Energy gap between ground state and first excited state of a double well potential as a function of the 

barrier height. The results shown are: exact (black solid line), microcanonical CMD (blue dotted line with squares) 

and canonical CMD (purple dashed line with crosses). The inserts denote schematically the three different 

tunneling regimes exhibited by this system. 
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Dynamics of the Wigner Distribution Function on the Bunimovich Stadium 

 

Bartłomiej J. Spisak and Maciej Wołoszyn 

AGH University of Science and Technology 

Faculty of Physics and Applied Computer Science  

al. Mickiewicza 30, 30-059 Kraków, Poland 

bjs@agh.edu.pl 

 

Currently, electronic nanosystems are objects of intensive experimental and theoretical research 

in basic science and engineering.  The interest in these systems results from the fact that they 

are examples of artificial systems in which quantum phenomena are enhanced by the quantum 

size effect.  Computer simulations are an indispensable element of this kind of research because 

optical and transport properties of these nanosystems can be inferred before the experimental 

verifications. 

In this short report we present preliminary results of our studies concerning the quantum 

dynamics of the electronic state in the planar bounded domain which consists of a rectangle 

bounded at both ends by semicircles.  In the classical mechanics such system is called the 

Bunimovich stadium [1, 2] and belongs to the class of simple systems which display a chaotic 

dynamics.  Our studies of the properties of the system are based on the phase-space formulation 

of quantum theory [3].  In this framework the system is characterized by the Weyl symbol of 

the Hamiltonian, and the states are represented by c-number functions of the position and 

momentum variables which are called the quasi-distribution functions.  One of them is the 

Wigner distribution function (WDF) which is defined by the inverse Weyl transform of the 

density operator [4].  Equation of motion for the WDF can be written in the form of the (2+2)-

dimensional integro-differential equation with the non-local integral kernel.  The equation 

augmented by the initial condition in the form of the Gaussian wavepacket is solved using the 

ViennaWD package with the reflecting boundary condition.  The operation of this package is 

based on the stochastic Wigner Monte Carlo method using the signed-particle technique [5, 6].   

As a result of our studies of the Bunimovich stadium we present some dynamical characteristics 

of the system and discuss them in the context of non-classicality.  

 

 

 

Acknowledgments. This work was partially supported by the Faculty of Physics and Applied Computer 

Science AGH UST statutory tasks within subsidy of Ministry of Science and Higher Education. 
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[1] L. A. Bunimovich, Math. USSR Sb. 23, 45 (1975) 

[2] L. A. Bunimovich, Commun. Math. Phys. 65, 295 (1979) 

[3] T. L. Curtright et al., A Concise Treatise on Quantum Mechanics in Phase Space (World Scientific 

Publishing, 2014) 

[4] M. Hillery et al., Phys. Rep. 106, 121 (1984) 

[5] P. Ellinghaus et al., J. Comput. Electron., 14, 151 (2015) 

[6] M. Nedjalkov et al., Phys. Rev. B 70, 115319 (2004) 
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Non-Linear Wave Damping due to Multi-Plasmon Resonances 

 

Gert Brodin, Robin Ekman, and Jens Zamanian 

Department of Physics, Umeå University, Umeå, Sweden. 

robin.ekman@umu.se 

 

Classically, waves in plasmas can be damped through interaction with particles with velocities 

close to the phase velocity, if there are any [1]. A quantum treatment using the Wigner-Moyal 

equation instead predicts, in linear theory, a resonance offset from the phase velocity by 𝑣𝑞 =

ℏ𝑘/2𝑚 where ℏ is the reduced Planck constant, 𝑘 is the wavenumber and 𝑚 is the electron 

mass [2]. We demonstrate that in non-linear theory, there are resonances offset by 𝑛𝑣𝑞 for any 

integer 𝑛 [3]. The non-linear (𝑛 ≥ 2) resonances can be interpreted as absorption/emission of 

multiple plasmon quanta, and we term them multi-plasmon resonances. If the linear resonance 

(𝑛 = 1) is in the tail of the electron distribution, the multi-plasmon processes may be 

comparable or stronger, due to a much larger number of electrons participating. This is 

especially the case for highly degenerate electrons if the 𝑛 = 1 resonance is just outside the 

Fermi sphere, see Fig. 1. We derive evolution equations for the electron distribution and wave 

amplitude. The key step is dividing the phase space into resonant and non-resonant regions [4], 

where non-linear effects are important only in the former. Solving our equations numerically, 

we find the expected wave damping, with damping rate comparable to that from linear theory 

[5]. 

 

[1] D.R. Nicholson, Introduction to Plasma Theory (Wiley, 1983) 

[2] B. Eliasson and P. K. Shukla, J. Plasma Phys. 76, 7 (2010) 

[3] G. Brodin et al., Plasma Phys. Control. Fusion 60, 025009 (2018) 

[4] G. Brodin, Phys. Rev. Lett. 78, 1263-1266 (1997) 

[5] S. Rightley and D. Uzdensky, Phys. Plasmas 23, 030702 (2015) 
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Fig. 1: The two-plasmon resonance in a Fermi-Dirac distribution at 𝑇 =  0.2 𝑇𝐹. The red (blue) lines represent 

absorption/emission of plasmon quanta at the fundamental frequency (second harmonic). Since there are many more particles 

near the multi-plasmon resonance than near the linear resonance, the two-plasmon process can be at least as important as the 

single-plasmon process. 
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Quantum Kinetic Models in Plasmas Including  

the Effects of the Electron Spin 

 

Gert Brodin, Jens Zamanian, Robin Ekman, and Haidar Al-Naseri 

Umeå university, Department of Physics, SE 90187 Umeå, Sweden 

Haidar.al-naseri@umu.se 

 

Many plasmas in laboratory and space can be treated classically. However, when the nearest 

neighbor distance between electrons become of the order of the thermal de Broglie wavelength 

or smaller, quantum effects become important, see fig. 1 for details. A quantum kinetic 

description of electrons can then be devised with the help of the Wigner transform but the 

standard treatment only covers the most basic quantum properties, as described by the 

Schrödinger equation. When the dynamics related to the electron spin becomes significant, a 

more elaborate treatment is needed, based on the Pauli equation or – if relativistic effects should 

be covered – the Dirac equation. Recently a quantum kinetic model for electrons was derived 

based on the Pauli equation by combining the ordinary Wigner transformation by the so-called 

Q-transformation [1]. The model uses the spin state as an extra independent variable and covers 

quantum properties such as particle dispersive effects, spin magnetization, the magnetic dipole 

force, and spin precession. While this model predicts several new phenomena, e.g. resonances 

and wave modes that do not appear in classical theory, it does not include relativistic physics. 

An extended approach, based on the Dirac equation, was conducted in Ref. [2], which covered 

also electric polarization due to the spin and spin-orbit interaction. The derivation still involved 

weakly relativistic approximations and a further generalization to allow for a fully relativistic 

theory was performed in Ref. [3]. Interesting results due to the relativistic approach is, for 

example, the non-trivial relation between momentum and velocity that depends crucially on the 

spin state. A drawback present in Refs. [2,3] but not in [1], is the limitation to scale lengths 

much longer than the characteristic de Broglie length. A model combining the virtues of Refs. 

[1] and [2] allowing for both weakly relativistic effects and short scale lengths is under 

development.         

  

[1] J. Zamanian et al., New J. Phys., 12, 043019, (2010)  

[2] F. A. Asenjo et al., New J. Phys. 14, 073042 (2012)  

[3] R Ekman et al., Phys. Rev. E, 96, 023207 (2017) 

[4] R. Ekman et al., in preparation.  
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Fig. 1: 

Different plasma regimes in the temperature-density parameter space. The dotted line is where the strong coupling 

parameter 𝛤 = 𝐸𝑝/𝑘𝐵𝑇 = 1, where 𝐸𝑝 is the is the potential energy due to the nearest neighbor. For higher densities the 

average kinetic energy of the particles is given by the Fermi energy 𝑘𝐵𝑇𝐹 rather than the thermal energy and the strong 

coupling parameter must be replaced by 𝛤𝐹 = 𝐸𝑝/𝑘𝐵(𝑇 + 𝑇𝐹). In this graph 𝛤𝐹 = 1is illustrated by the dashed curve, and 

the strong coupling region (shaded) lies below this line. Here higher order correlations (collisions) has to be taken into 

account, and the mean-field description is not valid. For comparison, the lines ℏ𝜔𝑝/𝑘𝐵𝑇 = 1 (dotted gray line), where 

ℏ𝜔𝑝 is the plasmon energy and 𝑇𝐹/𝑇 (dotted-dashed gray line) are also plotted. These measure, respectively, the relative 

importance of wave function dispersion and the Fermi pressure. As a rough estimate, the quantum regime lies below these 

lines. The area marked ICF denote the regime of relevance for inertial confinement fusion experiments. 
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Wigner Functions in Quantum Photonic Processing 

 

Ian Welland and David K. Ferry 

School of Electrical, Computer, and Energy Engineering 

Arizona State University, Tempe, AZ 85287-5706 USA 

iwelland@asu.edu  

 

Quantum entanglement is at the heart of information and computing technology proposed for 

the coming generations.  One approach lies in the use of quantum optics for the production of 

qubits in these applications [1,2]. The presence of nonlinearities in Si waveguides [3,4] and ring 

resonators [5,6] can lead to entangled photon generation by four-wave mixing. In this process, 

two source photons are absorbed and two new photons at the signal and idler frequencies are 

created.  The Wigner function is extremely useful in illuminating the physical processes and the 

entanglement arising from the optical interactions. Here, we begin to study the nonlinear optical 

processes by considering the coupling between a dielectric wave guide and a ring resonator, 

considering pulse optical sources at 1.5 m and a Si waveguide of width and height 0.5 x 0.22 

m.  The excitation is considered in terms of the transverse wave function defined by the TE1 

mode at the laser frequency, and a longitudinal Wigner function whose spatial and momentum 

spread are also determined from the pulse parameters. We study propagation of the Wigner 

function including the waveguide dispersion, coupling between the waveguide and the ring 

resonator and interaction between various optical waves. 

 

Acknowledgments. Funding from the Arizona Regents’ Initiative Fund, project 460929, is 

acknowledged. 

  

[1] J. W. Silverstone et al., Nature Commun. 6, 7948 (2015) 

[2] D. Barral et al., J. Opt. Soc. Am. B 33, 2225 (2016) 

[3] J. E. Sharping et al., Opt. Expr. 14, 75093 (2006) 

[4] Q. Lin and G. P. Agrawal, Opt. Lett. 31, 3140 (2006) 

[5] S. Azzini et al., Opt. Expr. 20, 171454 (2012) 

[6] R. Wakabayashi et al., Opt. Expr. 23, 227012 (2015) 
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Fig. 1: The Si waveguide and ring resonator are shown with 

sites of laser illumination.. 

Fig. 3: Gaussian for a 6 ps optical optical pulse at 1.55 

m in the silicon waveguide.  The initial pulse, and 

Wigner function, are classical at this point. 

 

 

Fig. 2: Transverse Ey profile for the TE1 mode at 1.5 m. The 

width of the waveguide is overlaid on the figure by the shaded 

area. The position is the lateral x-dimension. 
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Squeezing and Entanglement in Electron Quantum Transport 

 

Bertrand Reulet 

Institut Quantique, Physics Department, Université de Sherbrooke, Sherbrooke, QC, Canada 

bertrand.reulet@usherbrooke.ca 

 

A classical current in a conductor radiates a classical electromagnetic field. We explore some 

properties of the field radiated by a conductor when electron transport must be described by 

quantum mechanics, i.e. when the electron current becomes quantum itself. Using a tunnel 

junction between normal metal contacts placed at ultra-low temperature as a quantum 

conductor, we demonstrate the existence of squeezing as well as entanglement in the  

microwave radiation, thus proving that the electron shot noise generates a quantum 

electromagnetic field [1,2]. This is corroborated by the direct demonstration of photon pairs 

emitted by the sample [3,4]. 

 

 Beyond these experiments, which have been performed in frequency domain by measuring 

quadratures of the electromagnetic field at two frequencies (see corresponding Wigner 

functions in Fig. 1), it is tempting to address quantum properties of the electromagnetic field 

not at a given frequency but at a given time. Indeed, electron transport in quantum conductors 

often bears no intrinsic timescale, thus no preferred frequency. As a consequence, quantum 

correlations in the radiated field are extremely broadband. This comes from the statistics of 

current fluctuations, whose correlations can be clearly understood in time domain. 

   

We will discuss very recent theoretical results which aim at understanding quantum 

electromagnetic fields in time domain, such as quadratures or photon statistics [5]. 

   

[1] G. Gasse et al., Phys. Rev. Lett. 111, 136601 (2013) 

[2] J.-C. Forgues et al., Phys. Rev. Lett. 114, 130403 (2015) 

[3] S. Virally et al., Phys. Rev. A 93, 043813 (2016) 

[4] J.-O. Simoneau et al., Phys. Rev. B 95, 060301(R) (2017) 

[5] S. Virally and B. Reulet, arXiv:1810.06932  
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Fig.1: Probability distribution of the quadratures of the current fluctuations measured at frequencies f1=7 GHz and f2=7.5 

GHz. The sample is a tunnel junction placed at ultra-low temperature T=15mK, biased by a DC voltage and an ac excitation 

at 14.5 GHz. 

 

 

  



 

 

 

      14 

 

IW2 2019 978-3-9504738-1-0 

Electron Interference and Wigner Function Negativity in   

Dopant Potential Structures 

 

Josef Weinbub1, Mauro Ballicchia2,3, David K. Ferry4, and Mihail Nedjalkov2 

1Christian Doppler Laboratory for High Performance TCAD at the 
2Institute for Microelectronics, TU Wien, Austria 

3Department of Information Engineering, Università Politecnica delle Marche, Italy 
4School of Electrical, Computer, and Energy Engineering, Arizona State University, USA 

josef.weinbub@tuwien.ac.at 

We present two experiments in quantum current transport concerning interference effects an the 

use of Wigner function negativity: (1) We show interference effects as a result of the electron 

evolution within a coherent transport medium, offering a double-dopant Coulomb potential 

structure [1]. (2) We discuss the relation between quantum coherence and quantum interference 

and the negative parts of the Wigner quasi-distribution in a single-dopant Coulomb potential 

structure [2]. Injections of coherent electron states into the structures are used to investigate the 

effects on the current transport behavior within the quantum Wigner phase space picture [3,4]. 

Quantum effects are outlined by using classical simulations as a reference frame, a unique 

feature of Wigner function based transport simulations. In particular, the signed-particle 

approach inherently provides a seamless transition between the classical and quantum domain. 

Based on this we are able to identify the occurring quantum effects caused by the non-locality 

of the quantum potential, leading to spatial resonance. Fig. 1 and Fig. 2 show the electron 

density at 200 fs for all absorbing boundary conditions (i.e. an open system) in the classical and 

in the quantum case, respectively. In the classical case, Fig. 1, no interference pattern 

materializes beyond the dopants as the action of the force is local. In the quantum case, Fig. 2, 

the non-locality action of the quantum potential of the dopants affects the injected electrons 

already right after injection and establishes two transport channels below the dopants. Beyond 

the dopants (i.e. y > 30 nm), interference effects manifest which are highly sensitive to changes 

of the dopants’ potential profiles. The results bear a resemblance to the diffraction patterns 

manifesting over time in double-slit experiments [5,6] and depict the use of dopants to design 

transport channels as well as specific interference patterns within an open system. In another 

experiment, a single repulsive dopant is placed in the transport path of an open structure (using 

absorbing lateral boundary conditions) which creates a quasi-two-slit electron system that 

separates the wave function into two entangled branches. Here, the negative part of the Wigner 

function is principally concentrated in the region behind the dopant between the two entangled 

branches, maintaining the coherence between them (Fig. 3). Moreover, quantum interference is 

shown in this region both in the negative and in the positive part (Fig. 4). Both experiments are 

essential steps towards novel applications in the area of entangletronics [1,7]. 
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Fig. 1: Classical electron density ([a.u.]) after 200 fs of the 

initial minimum uncertainty condition using absorbing 

boundary conditions (green circles: Coulomb potentials).  

Fig. 2: Quantum electron density ([a.u.]) after 200 fs of the 

initial minimum uncertainty condition using absorbing 

boundary conditions (green circles: Coulomb potentials). 

  
Fig. 3: Spatial distribution of the negative part of the 

Wigner distribution. 

Fig. 4: Spatial distribution of the positive part of the 

Wigner distribution. 
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The quantum kinetic methods based on the Wigner distribution function and its equation of 

motion are one of the powerful methods of investigating the transport properties of electronic 

systems or nanosystems[1]. This particular approach allows us to have a unique insight into the 

dynamics of such processes and into the details of quantum phenomena taking place during the 

system evolution. However, those possibilities do not come without cost. The price that must 

be paid is the numerical complexity of finding the solution in virtually all non-trivial cases. 

Direct approaches based on the discretization of the Wigner Transport Equation[2] are therefore 

in practice limited to one-dimensional problems. Yet the realistic simulations of nanodevices 

require two- and three-dimensional formulation, which leads to four- or six-dimensional 

problems in the phase space, plus the time dependence. 

Those limitations may be overcome with help of the Monte Carlo methods based on the signed 

particle approach[3,4], which not only allows using the Wigner approach in more than one 

dimension, but also makes it possible to include factors like e.g. scattering or surface 

roughness[5]. In this report we analyze the possibilities of Monte Carlo calculations which 

result in finding transport characteristics such as the current-voltage dependencies, in the case 

of typical systems like e.g. the double-barrier devices used as resonant tunneling diodes[6-9], 

using the ViennaWD software[10]. 
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In this talk, we present an alternative formulation of the Wigner-Liouville equation that is based 

on the spectral components of the classical force instead of the potential energy as detailed in 

Ref. [1]. The standard Wigner-Liouville equation, describing the coherent time-evolution of the 

Wigner function, is known to be a highly oscillatory integro-differential equation that acts non-

locally in both space and momentum. Our formulation, on the other hand, can be interpreted 

intuitively as a density-conserving, local generation process and readily admits a direct 

numerical implementation. 

To recast the Wigner-Liouville equation, we decompose the classical force field into its Fourier 

components, 𝐹(𝑥) = ∑ �̃�𝑘𝑒𝑖𝑘𝑥
𝑘 = ∑ 𝐹𝑘(𝑥)𝑘 . This decomposition allows for the recasting of the 

Wigner-Liouville equation in 1D as a particularly simple equation that bears resemblance to the 

classical Boltzmann transport equation (Vlasov equation): 

 

We find that the last term, that captures the quantum mechanics, acts as a local, density 

conserving, generation rate of positive and negative ‘probability’ to states with momentum 

± ℏ𝑘/2, as illustrated in Fig. 1. This interpretation is similar to the generation of signed 

particles in the Monte-Carlo implementation of the Wigner equation [3]. However, our 

reformulation, and its interpretation as a generation process, facilitates a direct numerical 

implementation. In particular because the factor 1/𝑘 provides a natural damping of the high 

wavevector components of the force field.  We demonstrate the method using two 

implementations based on pseudo-spectral methods, as well as a semi-Lagrangian scheme. Both 

methods minimize numerical diffusion, a necessity to simulate coherent quantum transport over 

significant time periods.  

In Fig. 2, we show coherent reflection of a wavepacket on a single barrier, demonstrating the 

stability and accuracy of our method. In Fig. 3, we show transfer characteristics of a resonant 

tunneling diode (RTD) obtained using Wigner time-evolution [1]. In Fig. 4, we compare the 

Wigner method to a wavefunction based method for a fixed-potential RTD structure [4]. 
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Fig. 1: Particle conserving generation process (C) of 

positive and negative quasi-probability from momentum p 

to 𝑝 ±
ℏ𝑘

2
 with a generation rate given by 𝐺(𝑥, 𝑘) =

𝐹𝑘(𝑥)

ℏ𝑘
. 

Process (C) emerges from processes (A) and (B), as in the 

equation given on the previous page. 

 

Fig. 2: The Wigner function of a wavepacket with average 

wavevector 0.5 𝑛𝑚−1 upon collision with a single barrier at 

40 𝑛𝑚. The classical trajectories (iso-energy lines) are shown 

as black lines. 

  
Fig. 3: The transfer characteristics for a resonant 

tunneling diode obtained using the self-consistent Wigner 

time-evolution. Lines: continuous plot of the current while 

doing an adiabatic sweep of the bias. Points: Time-

evolution to steady state. Fully coherent (Ballistic) and 

with the relaxation time approximation (RTA). 
 

Fig. 4: The Wigner function of (a) a ballistic wavefunction 

based calculation using the quantum transmitting boundary 

method (QTBM) and (b) the steady state of a coherent Wigner 

time-evolution simulation, starting from a uniform Fermi-

Dirac distributions. The classical trajectories (iso-energy 

lines), indicating the position of the barriers, are shown as 

black lines. 
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Thermoelectric (TE) energy conversion has attracted interest as a way to improve the 

efficiency of power generation by converting waste heat in to electricity. Higher power factor 

combined with lower thermal conductivity help to improve the TE conversion efficiency; 

achieving both simultaneously is challenging and typically requires nanostructured and highly 

doped semiconductor materials. Several studies showed that energy filtering of carriers, 

implemented in the form of single and multiple potential barriers in nanocomposites, 

heterostructures, and superlattices, is an effective way to improve power factor [1, 2]. The 

challenge in modeling nanostructured TE materials and devices is in capturing both quantum 

effects, such as tunneling through energy barriers, and “semi-classical” effects like electron-

phonon and impurity scattering. In our previous work [3], we developed an iterative solver for 

the Wigner-Boltzmann transport equation. We studied the impact of the spatially varying 

potential barriers in silicon, both superlattices and nanowires, and concluded that sharp, tall 

barriers with small periods result in higher power factors and therefore better TE performance.  

In this work, we extend our 3D model to simulate quantum transport and capture energy 

filtering in 2D material in order to evaluate their potential for TE applications. We focus on 

single-layer (SL) molybdenum disulfide (MoS2) [4] as it possesses a bandgap, and introduce 

potential barriers (Figure 1). The band structure of MoS2 is calculated from first principles while 

transport is captured in the Wigner-Rode formalism. TE parameters are calculated for SL MoS2 

and found to reproduce the intrinsic behavior (Fig. 2). Then the potential barriers are introduced 

in SL MoS2 to study their influence. Energy relaxation and quantum effects from periodic 

spatially varying potential barriers are modeled using the Wigner-Rode formalism [3]. At higher 

period lengths (Lp), an increase in the amplitude of the applied potential V0, Seebeck coefficient 

(S) increases and electrical conductivity (σ) decreases due to thermionic emission of carriers. 

Reducing Lp results in reduction of S for square barriers. An effect of additional quantum 

reflections that arise in the square barriers that leads to higher tunneling (Fig. 4). Power factor 

increases in square barriers with lower period lengths that are asymmetric (Lower or higher 

duty cycle, 𝛼), and little or no effect on power factor at high period lengths (Fig. 5). Our 

comprehensive Wigner-Rode transport model showed an increase in power factor for both 

cosine and square barriers in SL MoS2 with the height of the potential barrier and at least 30% 

enhancement (Fig. 6). Further investigation into understanding the effect of multi-barrier 

structures will create efficient TE devices for future applications. 
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Fig. 1: Schematic of the simulated structure to study energy 

filtering in SL 𝑀𝑜𝑆2 with a series of spatially varying potential 

barriers.  

 

Fig. 4: Effect of barrier periodic length (𝐿𝑝) on TE 

parameters showing the impact of tunneling in low 

period lengths. 

  

Fig. 2: 𝑆 and 𝜎 for SL 𝑀𝑜𝑆2 at different temperatures by varying 

the carrier density. Power factor is plotted (light gray) to identify 

the maximum with respect to applied carrier density. 

Fig. 5: Effect of square potential barrier duty cycle (𝛼) on 

power factor at both 𝐿𝑝 = 3 𝑛𝑚 and 𝐿𝑝 = 7𝑛𝑚. Here the 

barrier height of 0.4 𝑘𝑇 corresponds to 𝑉0 − 𝐸𝑓 of 

20 𝑚𝑒𝑉 and 1𝑘𝑇 to 35 𝑚𝑒𝑉. The simulations are 

performed at a carrier density of 7 × 1012𝑐𝑚−2 and a 

temperature (T) of 300 K.  
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Fig. 3: Effect of potential barrier amplitude (𝑉0)  on 𝑆 and 𝜎. The 

simulations are performed at a carrier density of 7 × 1012𝑐𝑚−2 

and a temperature (T) of 300 K.  

Fig. 6: Power factor enhancement in SL 𝑀𝑜𝑆2 due to 

the energy filtering from potential barriers. 
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This talk is concerned with Wigner functions in finite-dimensional state spaces and their role 

in a particular scheme of universal quantum computation, so called quantum computation with 

magic states. Such computational schemes can be classified by the Hilbert space dimension d 

of the local constituent systems (qudits). As it turns out, there is a difference between odd and 

even d. Namely, if d is odd, then the finite-dimensional case looks very similar to the original 

infinite-dimensional case; but if d is even then there are severe difficulties to overcome. Those 

difficulties originate from Mermin’s square and star, two simple proofs of contextually of 

quantum mechanics. 

My talk will have a review part and a research part. In the former, I’ll describe (a) D. Gross’ 

adaption of the original Wigner function to odd finite dimension [1], (b) Clifford gates and the 

Gottesman-Knill theorem, (c) Quantum computation with magic states [2] and the role of 

Wigner function negativity therein [3], and (d) the relation between Wigner function negativity 

and contextuality of quantum computation [4]. 

In the research part, I discuss work on the case of even d, specifically d=2. There is a 

construction for rebits which gets around the difficulties posed by Mermin’s square and star 

[5]. Time permitting, I will also discuss the full quit case in which there is no way way around 

Mermin’s square and star. We introduce a novel quasiprobability distribution which reduces to 

Gross’ Wigner function for odd d, but looks quite different for d=2. It is covariant under all 

Clifford gates and positivity-preserving under all Pauli measurements. In result, we establish 

negativity of this quasi probability distribution as a necessary prerequisite for a quantum 

speedup, completely analogous to the case of odd d. 
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In modern nanoelectronics understanding quantum current transport is a fundamental challenge. 

In turn, in quantum mechanics evolution is driven by all the derivatives of the electric potential 

so rapid spatial variations of the potential can determine non-local effects, tunneling, and also 

interference phenomena. Those effects give rise to a complex interplay and cannot be 

decomposed in elementary processes to analyze separately. Thus, numerical modeling is a 

fundamental tool for studying quantum phenomena, since it allows to consider specific 

conditions that are difficult to implement by experimental approaches, e.g., switching between 

different boundary conditions to see how this affects the electron evolution [1] or de-activating 

scattering events [2]. The Wigner formulation of quantum mechanics provides a seamless 

transition to classical evolution, that represents a reference to highlight quantum effects [3]. In 

the signed-particle approach [4], electron evolution is modeled by the evolution of numerical 

particles that move along Newtonian trajectories and carry a sign. This aspect simplifies the 

implementation of “classical” boundary conditions, generally unfeasible in practice 

experimental approaches. We analyze the electron evolution against a repulsive dopant with a 

maximum potential energy of 0.175 eV with two different lateral boundary conditions [5]: 

absorbing boundaries, Fig. 1, and perfect reflecting boundaries, Fig. 2. From the comparison 

between the quantum electron density, Fig. 1b), and corresponding classical counterpart, Fig. 

1a), we can notice the non-locality effects before and around the dopant, and also the tunneling 

that increased the quantum electron density in front of the dopant. Fig. 3a) shows the ratio 

between quantum and classical electron density, allowing to witness both the decrease below 

unity due to nonlocal effects and the peak in front of the dopant that reaches the maximum of 

14 due to tunneling effects. In Fig. 2a) and Fig. 2b), we show the same scenario but for lateral 

reflecting boundaries. The electrons reflected from the lateral boundaries, both in the quantum 

and in the classic case, are injected in front of the dopant but in the quantum case the electron 

density is much more closed around the dopant due to the interplay of the non-locality and 

tunneling effects. As shown in Fig. 3b), the quantum density continues to be greater than the 

classic one in front of the dopant but now limited to a factor of 3 since the electrons reflected 

by the boundaries mitigate the effect of tunneling.  
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a)  b)  
Fig. 1: Electron density around the dopant with 0.175 eV peak energy (yellow isoline represents the 0.15 eV level) with 

lateral absorbing boundary condition: a) classical evolution, b) quantum evolution. 

a)  b)  

Fig. 2: Electron density around a dopant with 0.175 eV peak energy (yellow isoline represents the 0.15 eV level) with 

lateral reflecting boundaries: a) classical evolution b) quantum evolution. 

a)  b)  

Fig. 3: Ratio between quantum and classical electron density: a) lateral absorbing boundaries, b) lateral reflecting 

boundaries. 
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The simulation of electron devices requires a partition between an active region (open system) 

and the reservoirs. The Wigner distribution function, dealing with the phase-space of open 

quantum systems, has a large tradition in the simulation of quantum electron devices, but it 

requires reasonable physical arguments to fix the properties of electrons at the spatial borders 

of the active region. To guarantee irreversibility, Frensley suggested the reasonable assumption 

of treating the reservoir as a blackbody; he assumes that the distribution of electron emitted into 

the device is described by the thermal equilibrium distribution function of the reservoir, while 

the outflowing electrons are absorbed without reflection [1]. This translates into fixing entirely 

the Wigner distribution function for all positive (negative) momenta at the left (right) border of 

the active region.  

The problem discussed in this conference appears because the definition of the momentum of 

the Wigner distribution function - through a Wigner-Weyl transformation - is not the same as 

the orthodox one. Although its marginal probability coincides, the former momentum depends 

on position, while the latter does not. We show that this mathematical incompatibility can have 

dramatic consequences in time-independent scenarios, as for scattering states in a single/double 

potential barrier (Fig.1). An electron injected from the left with a well-defined positive orthodox 

momentum (green triangle in Fig.2) induces additional unexpected inflowing Wigner-Weyl 

momenta at the left boundary. The situation is even more dramatic when dealing with a resonant 

state, where an electron with positive orthodox momentum at the left, induces unexpected 

inflowing negative Wigner-Weyl momenta at the right (Fig.3). In the literature, the solutions to 

this incompatibility is either criticizing the Frensley’s boundary conditions [2] or looking for a 

new phase-space distribution [3].  
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On the contrary, we show that this apparent incompatibility is simply solved by using time-

dependent approaches [4]. Here, electrons are defined as wave-packets with a spatially limited 

quantum non-locality (Fig. 4), while scattering states have infinite non-locality. We show that 

this localization prevents spurious Wigner-Weyl momenta to arise at the interfaces (Fig. 5-6), 

and lead to a successful compatibility between the natural Frensley’s boundary conditions and 

time-dependent Wigner distribution functions (with or without irreversible phenomena).   
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Fig. 1: Stationary states (red solid line) of a single-electron 

with well-defined injected momentum for a single (top) and 

double (bottom) potential barrier (blue dashed line). 

Fig. 4: Dynamical wave function at initial (top) and final 

(bottom) time of the single-electron in presence of a single 

potential barrier (blue dashed line). 

 

 

Fig. 2: Wigner distribution function at fixed coordinates for 

the single state of Fig. 1 (top). The grey areas define the 

interface with electronic reservoir, where the single-electron 

mode (green triangle) is injected. 

Fig. 5: Time dependent Wigner distribution function at the 

final time for the wave packet evolution of Fig. 4. The label 

t=0 shows the natural Wigner distribution function at the 

initial time.  
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Fig. 3: Wigner distribution function at different fixed 

coordinates for the resonant state of Fig. 1 (bottom). Negative 

Wigner-Weyl momenta are present at the right interface 

(green circle). 

 Fig. 6: Wigner distribution function during the scattering at 

the potential barrier. The inset shows the wave packet (red 

solid line) scattered by the potential barrier (green dashed 

line). 
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The Wigner equation describing stationary quantum transport has a singularity at zero 

momentum (k=0). Numerically the singularity is usually dealt with by just avoiding that point 

in the grid, a method used, e.g, by Frensley [1]. However, results obtained by this method are 

known to depend strongly on the discretization and meshing parameters. The method can even 

yield unphysical results. 

 

We believe that the shortcomings of Frensley’s method and related numerical methods are due 

to the improper treatment of the equation at k=0. We propose a revised approach. We explicitly 

include the point k=0 in the grid and derive two equations for that point. The first one is an 

algebraic constraint which ensures that the solution of the Wigner equation has no singularity 

at k=0. The second is a transport equation for k=0. The resulting system, which we refer to as 

the constrained Wigner equation, is overdetermined. These results are in line with the recent 

analysis in [2]. 

 

An important technical tool is the sigma equation which is the von Neumann equation in a 

rotated coordinate system. The constrained Wigner equation can be related to a sigma equation 

with inflow boundary conditions in the spatial coordinate and fully homogeneous boundary 

conditions in the other coordinate. With these boundary conditions the sigma equation is 

overdetermined as well. The numerical solution from Frensley’s method is related to a sigma 

equation with anti-periodic boundary conditions in the non-spatial coordinate. 

 

In a single spatial dimension the constrained Wigner and sigma equation have been prototyped. 

Results fit well with results from the quantum transmitting boundary method. 
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Fig. 1: Set of equations referred to as the 

constrained Wigner equation. 

 

 

 

 

Fig. 2: Breakdown of Frensley’s Method. 

The upper black line is the numerical 

solution of the unconstrained sigma equation 

(anti-periodic BCs) without upwinding. The 

red lines are I–V curves obtained with 

Frensley’s discretization using upwinding. 

The grid is refined from Nx=800 up to 

Nx=102400.  

 

 

 

Fig. 3: The numerical solutions of the 

constrained sigma equation change with 

grid refinement, but they are quite stable. 

The resonance from the quantum 

transmitting boundary method (QTBM) is 

reproduced. 
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The problem about the existence and uniqueness of the Wigner equation solution is directly 

related to physical and computational aspects of actual quantum transport problems. In the case 

of evolution problems in presence of initial and boundary conditions, it can be shown that there 

is a unique solution. However, if we consider the long time limit, giving rise to a stationary 

Wigner picture, it appears that the equation becomes ill-defined: This is associated to the loss 

of the time derivative and thus the specific evolution role played by the equation in the set of 

notions needed to define a phase space quantum mechanics. The Weyl map defines an 

isomorphism from the algebra of the position and the momentum operators �̂�, �̂� with a product 

and a commutator [.,.]c to the algebra of the phase space functions A(x,p) with a non-

commutative star (∗)-product and Moyal bracket [.,.]M. In particular the evolution of the density 

operator, the von Neumann equation involving the commutator with the Hamiltonian, gives rise 

via the Moyal bracket to the equation for the Wigner function. The latter carries the information 

about the evolution of the physical system, but is not sufficient to define independently phase 

space quantum mechanics: The ∗-product is needed to determine the eigenfunctions to provide 

a physically admissible initial condition. It has been shown that the Wigner equation in presence 

of the initial and boundary conditions is well posed, i.e. it has a solution which is unique [1]. 

The proof is based on the resolvent expansion of the integral form of the equation:   

𝑓(𝑥, 𝑘, 𝑡) = ∫ 𝑑𝑡′ ∫ 𝑑𝑘′ 𝑉𝑤(𝑥(𝑡′), 𝑘(𝑡′) − 𝑘′)𝑓(𝑥(𝑡′), 𝑘′, 𝑡)  + 𝑓0(𝑥, 𝑘)  

𝑡

0

 (1) 

with 𝑓0 = 𝑓𝑖(𝑥(0), 𝑘(0))𝜃Ω(𝑥(0))  + 𝑓𝑏(𝑥(𝑡𝑏), 𝑘(𝑡𝑏))𝜃Ω(𝑡𝑏)   and the field-less Newton 

trajectories 𝑥(𝑡′) = 𝑥 − 𝑣(𝑘)(𝑡 − 𝑡′), 𝑘(𝑡′) = 𝑘 initialized by x, k, t determine the time 

crossing the boundary, the time 𝑡𝐵 by moving backwards in time, 𝑡′ < 𝑡 and 𝑓𝑖 and 𝑓𝑏 provide 

two complementary contributions from the initial condition and the boundaries. The equation 

is of Volterra type with respect to the time variable (Markovian evolution) which allows one to 

prove convergence of the resolvent series under the very general assumption that the potential 

is absolutely integrable function. The stationary Wigner equation is obtained by the long time 

limit of (1), using the change −𝜏 = 𝑡 − 𝑡′:   𝑥(𝜏) = 𝑥 + 𝑣(𝑘)(𝜏);  𝑘(𝜏) = 𝑘. 

𝑓(𝑥, 𝑘) = ∫ 𝑑𝑡′ ∫ 𝑑𝑘′ 𝑉𝑤(𝑥(𝜏), 𝑘(𝑡′) − 𝑘′)𝑓(𝑥(𝜏), 𝑘′)  

0

−𝑡=−∞

+ 𝑓𝑏(𝑥(𝜏𝑏), 𝑘)   (2) 

−∞ <  𝜏𝑏  < 0 is now the time for a trajectory initialized by point x at time 0 to reach the 

boundary moving backwards.  



 

 

 

      33 

 

IW2 2019 978-3-9504738-1-0 

The limit 𝑓(𝑥, 𝑘) = lim
𝑡′→∞

𝑓(𝑥, 𝑘, 𝑡′) =   lim
𝑡→∞

𝑓(𝑥, 𝑘, 𝑡 + 𝜏) defines the stationary solution. Without 

loss of generality we assumed that the initial condition vanishes in the long time limit. Now we 

analyze if the existence of the free term 𝑓𝑏 in (2) guarantees an unique solution. Or if we 

formally write the equation as: (𝐼 − �̂�𝑤)𝑓 = 𝑓𝑏 , we need to show that the operator 𝐼 −  �̂�𝑤 has 

an inverse operator. This is equivalent to showing that the only solution of the homogeneous 

equation (2) is the function 𝑓 = 0. We consider the Fourier transform 𝑓 ̃(𝑞, 𝑘) =

1 2𝜋⁄ ∫ 𝑑𝑥 𝑒−𝑖𝑞𝑥 𝑓(𝑥, 𝑘) and use the change 𝑦 = 𝑥 + 𝑣(𝑘)𝜏 to obtain: 

𝑓 ̃(𝑞, 𝑘) =
1

2𝜋
∫ 𝑑𝜏 ∫ 𝑑𝑦 𝑒−𝑖𝑞𝑦𝑒−𝑖𝑞𝑣(𝑘)𝜏 ∫ 𝑑𝑘′ 𝑉𝑤(𝑦, 𝑘′)𝑓(𝑦, 𝑘 − 𝑘′)  

0

−∞

  (4) 

The time integral of the exponent can be evaluated in terms of generalized functions to finally give:  

ℏ𝑞𝑣(𝑘)𝑓 ̃(𝑞, 𝑘) = ∫ 𝑑𝑞′′ �̃�(𝑞′′) (𝑓 ̃ (𝑞 − 𝑞′′, 𝑘 +
𝑞′′

2
) − 𝑓 ̃ (𝑞 − 𝑞′′, 𝑘 −

𝑞′′

2
))  (5) 

with �̃�(𝑞) =  1 2𝜋⁄  ∫ 𝑑𝑦 𝑒−𝑖𝑞𝑦 𝑉(𝑦). This equation must be analyzed for existence of non-trivial 

solutions. Such solutions can be constructed from the stationary Schrödinger equation in 

momentum space,   

(𝐸 − 𝜖(𝑘))𝜓(𝑘) = ∫ 𝑑𝑞 �̃�(𝑞)𝜓(𝑘 − 𝑞) ;              𝜖(𝑘) =
ℏ2𝑘2

2𝑚
  (6) 

As observed by Carruthers et al. [2] in their study of quantum collisions, the function f(q,k) = 

ψ*(k-q/2) ψ(k+q/2) is a solution of (5). Hence the null space of the operator 𝐼 −  �̂�𝑤 contains 

any stationary solution obtained by (6) and we cannot expect a unique solution corresponding 

to given boundary conditions. This is in accordance with the results presented in [3].  

We associate this problem with the loss of the evolution character of the equation: For 

eigenstates of the Hamiltonian the stationary Wigner equation reduces to 𝑣(𝑘) 𝜕𝑓(𝑥, 𝑘) 𝜕𝑥⁄ = 0 

with a solution f(x, k) = ψ(k) given by an arbitrary function of k. On the contrary, the evolution 

problem determined by the time derivative  

𝑣(𝑘)
𝜕𝑓

𝜕𝑥
+  

𝜕𝑓

𝜕𝑡
=  

𝑑 𝑓(𝑥(𝑡), 𝑘, 𝑡)

𝑑𝑡
= 0 (7) 

has a solution 𝑓(𝑥. 𝑘, 𝑡) = 𝑓(𝑥(0), 𝑘, 0) so that a correct physical picture can be obtained by a 

relevant initial condition 𝑓(𝑥(0), 𝑘, 0) which obeys the uncertainty relations. In conclusion, both 

the Wigner equation and the ∗ eigenvalue problem are necessary notions of the phase space 

quantum mechanics. The stationary limit of the former of the former cannot replace the latter 

and actually lacks physical argumentation.  
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The Wigner function has provided an equivalent and convenient way to render quantum 

mechanics in phase space. It allows one to express macroscopically measurable quantities, such 

as currents and heat fluxes, in statistical forms as usually does in classical statistical mechanics, 

thereby facilitating its applications in nanoelectronics, quantum optics and etc. Distinct from 

the Schrödinger equation, the most appealing feature of the Wigner equation, which governs 

the dynamics of the Wigner function, is that it shares many analogies to the classical mechanism 

and simply reduces to the classical counterpart when the reduced Planck constant vanishes. 

Despite the theoretical advantages, numerical resolutions for the Wigner equation is notoriously 

difficult and remains one of the most challenging problems in computational physics, mainly 

because of the high dimensionality and nonlocal pseudo-differential operator. On one hand, the 

commonly used finite difference methods fail to capture the highly oscillatory structure 

accurately. On the other hand, all existing stochastic algorithms, including the affinity-based 

Wigner Monte Carlo and signed particle Wigner Monte Carlo methods, have been confined to 

at most 4D phase space. Few results have been reported for higher dimensional simulations. 

My group has made substantial progress in both aspects.  

(1) We completed the design and implementation of a highly accurate numerical scheme for the 

Wigner quantum dynamics in 4-D phase space. Our algorithm combines an efficient 

conservative semi-Lagrangian scheme in the temporal-spatial space with an accurate spectral 

element method in the momentum space. This accurate Wigner solver has been successfully 

applied into the investigation of quantum tunneling in double well and quantum double slit 

interference. Moreover, the Wigner function for a one-dimensional Helium-like system was 

clearly shown for the first time.  

(2) We explored the inherent relation between the Wigner equation and a stochastic branching 

random walk model. With an auxiliary function, we can cast the Wigner equation into a 

renewal-type integral equation and prove that its solution is equivalent to the first moment of a 

stochastic branching random walk. The accuracy of the resulting implementation can be 

systematically improved and is hardly affected by the choice of time step. In order to further 

gain a substantial reduction in variances, we propose an asymptotical approach which may 

ameliorate the sign problem. The performance of 6-D and higher-dimensional simulations 

demonstrate the accuracy and the efficiency of our asymptotical approach.  

 It should be noted that all proposed numerical schemes fully exploit the mathematical structure 
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of the Wigner equation. Our target is an efficient simulator for analyzing some fundamental 

issues in many-body quantum mechanics, such as the nuclear quantum effect and dynamical 

correlation.  

 

[1] S. Shao and Y. Xiong, Numer. Math. 12, 21 (2019) 

[2] Y. Xiong and S. Shao, Commun. Comput. Phys. 25, 871 (2019) 

[3] Z. Chen et al., J. Sci. Comp. (2018), in press 

[4] Y. Xiong et al., SIAM J. Sci. Comp. 38 (2016) 

[5] S. Shao and J. M. Sellier, J. Comput. Phys. 300, 167 (2015) 

[6] S. Shao et al., Commun. Comput. Phys. 9, 711 (2011) 

 

  



 

 

 

      36 

 

IW2 2019 978-3-9504738-1-0 

Third-Order Correlation Functions of Non-Markovian Quasiprobabilities 

 

Johannes Bülte1, Adam Bednorz2, Bertrand Reulet3, and Wolfgang Belzig1 

1Department of Physics, University of Konstanz, D-78457 Konstanz, Germany 
2Institute of Theoretical Physics, University of Warsaw, Hoza 69, PL-00681 Warsaw, Poland 
3Département de Physique, Université de Sherbrooke, Sherbrooke, Québec J1K2R1, Canada 

Wolfgang.Belzig@uni-konstanz.de 

 

The order of operators detected in quantum weak measurement depends on the measurement 

setup. This corresponds to different quasiprobabilities, in which a markovian (memory-less) 

scheme corresponds to the generalized Wigner function and memory effect lead to 

generalizations [1]. In second order and using a Hamiltonian approach, these different orders 

are traced back to symmetrized correlators ∼ ⟨{𝐴, 𝐵}⟩ and Kubo-type responses ∼ ⟨[𝐴, 𝐵]⟩. [2] 

The latter terms originate from a so-called system-mediated detector-detector interaction and is 

intimately related to detectors having a non-zero internal memory time.  

Here, we combine the phenomenological proposal for nonsymmetrized correlations in quantum 

noninvasive measurements and the microscopic derivation of the system-mediated detector-

detector interaction of second order to investigate higher-order correlations of non-Markovian 

weak quantum measurements. The general third-order correlator is introduced in the time 

domain. We identify and discuss the underlying physical processes before we provide the 

complete correlation function in the frequency domain, which is the relevant quantity in many 

experiments carried out e.g. in the measurement of current fluctuations. We find a more 

complex behavior than in second-order correlations with four types of system operator orders 

which we denote third cumulant, noise susceptibility I and II and second-order susceptibility, 

see Fig. 1. We introduce a convenient diagrammatic description which we illustrate by an 

example of measuring the third-order current correlations of the tunnel current through a barrier. 
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Fig. 1: Correlations of the measured system operators �̂�, �̂� and �̂� in a third-order measurement with the times a > b > c. (0) 

Overview of the interactions. The detector variables that are coupled to the system are denoted with �̂�𝑎, �̂�𝑏, and �̂�𝑐. The red 

arrows indicate response functions within a subsystem which act only forward in time. The black lines indicate the weak 

coupling between system and detectors of strength. The occurring third-order correlation are depicted in (a) - (d) and will 

discussed in the talk. The dashed boxes frame the paths which are connected to the three measured output variables of the 

detectors �̂�𝑎, �̂�𝑏, and �̂�𝑐. 
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In the transition-metal di-chalcogenides, it is known that, in the presence of the spin-orbit 

interaction, the doubly degenerate conduction band minima and the valence band maxima are 

split.  In this, the pseudo-spin valley of the two valleys couples to the electron spin to produce 

a reversal of the normal band spin-splitting at the two degenerate extrema K and K’ points [1].  

We have earlier reported that this leads to a 2  2 tensor form of the Wigner function for the 

pseudo-spins of the carriers.  In the absence of an electric field, all four elements of the tensor 

are equivalent.  However, when an electric field is applied, the opposite spin-splitting of the 

two valleys (we deal with the conduction band) leads to a Berry curvature [2] which induces 

the two spins to move to opposite sides of the sample and leads to a spin Hall effect. In this 

situation, the off-diagonal elements of the Wigner function develop an oscillatory behavior 

reflecting the entanglement of the two carriers.  In the absence of knowledge about the detailed 

physics of the sample, the carriers must be defined via a Bohm-type singlet wave function.  This 

entanglement can possibly be used in EPR-type of on-chip devices for spin processing. 
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Fig.1: Brillouin zone and energy minima, showing how the spin-splitting is reversed between adjacent minimum points.. 

 
Fig. 2: The total of the four terms of the Wigner function at three various (arbitrary) times.  On the left is the joint Wigner 

function at the intial time the field is applied.  At the center is a later time where the two diagonal terms have moved apart and 

the central peak arises from the sum of the two diagonal terms (which are complex conjugates). At the right, the two diagonal 

terms have moved further apart and the entanglement is fully formed and evident (the second time is twice that of the center 

image).  The color schemes are actually similar, and the blue of the right panel indicates the decrease in amplitude of the 

Wigner functions at this later time—the peak in the left panel is some 4 times the separated peacks in the right panel. 
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Along with the numerical solution of the Wigner Transport Equation (WTE) several 

numerical difficulties arise [1]. Conventional finite difference approaches applied onto the 

WTE are based on so-called upwind difference schemes (UDS) [2] leading to an inadequate 

inclusion of coherent effects [1]. As a result, the diffusion effects are overestimated [3]. In 

addition, the inflow boundary conditions are not linked with the drift operator contradicting the 

non-local character of quantum mechanics [1]. As a consequence, the numerical solution of the 

WTE suffers from inherent errors. To overcome these limitations an approach based on the 

formulation of an exponential operator (EO) has been proposed recently [1]. 

When deriving the classical WTE in center-mass coordinates, χ and ξ [2], it is conventionally 

presumed that an additional term arising from the partial integration of the diffusion operator 

in real space is equal to zero. This particular term is related to the boundary values of the 

statistical density matrix with respect to the ξ-direction. For the corresponding analytical 

investigations, an infinite computational domain is presumed, but for numerical calculations a 

finite computational domain has to be supposed. Hence, the omission of this term leads to 

conceptual errors imposing Dirichlet boundary conditions according to a zero valued statistical 

density matrix. Unfortunately, no analytical expression or approximation can be derived for this 

term, which can be incorporated within the algorithm for the numerical solution of the WTE. 

To overcome these limitations, an approach based on the formulation of a complex absorbing 

potential is proposed for the numerical solution of the WTE, which is already utilized in a 

similar manner for the numerical solution of the Schrödinger equation [4]. The main idea behind 

the approach is the introduction of a local absorber within the real space, which prevents 

artificial reflections caused by the finiteness of the computational domain with respect to the ξ-

direction due to the Dirichlet boundary conditions. Within the local absorbers an additional 

damping term is present leading to a decaying statistical density to a negligible value close to 

zero near the boundary. As a consequence, conceptual errors can be effectively avoided, because 

the omission of the boundary term is now justified. 

The approach is validated by means of a simply structured resonant tunneling diode. From 

the results obtained, it can be concluded that the complex absorbing potential offers major 

improvements with regard to the numerical solution of the WTE. 
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(a)                                                       (b) 

Fig.1: Wigner functions for the resonant tunneling diode in the transient non-equilibrium situation with an applied 

external bias after 2500fs. The resonant tunneling diode is initially in the thermal equilibrium state. At the time t=0fs a 

constant bias according to -0.11V is applied driving the device into a non-equilibrium state. The time evolution of the 

Wigner function utilizing the complex absorbing potential is shown in (a), whereas the classical solution of the WTE is 

shown in (b). A Low-Storage-Runge-Kutta scheme of 4th order approximates the time domain propagator. In comparison, 

an artificial interference pattern caused by the inadequate inclusion of the boundaries with regard to the ξ-direction can 

be observed from (b). Along with the application of the complex absorbing potential this unphysical interference pattern 

can be effectively avoided as can be seen from (a).  

  
(a)                                                     (b) 

Fig.2: Transient evolution of the current density j depicted in (a) and of the carrier density shown in (b) for the biased 

resonant tunneling diode, which are calculated from the corresponding Wigner functions. In addition, the stationary 

solutions are shown (𝑡 → ∞). As can be observed, the current density as well as the carrier density convergence exactly 

towards the stationary reference solution. 
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The Wigner function f(q,k) is defined on phase space. Two actions in orthogonal directions of 

the phase space, diffusion in q space and transition in k space, are described by the Wigner 

transport equation (WTE) with its kinetic and potential terms [1]. For the finite-difference-

based analysis of the WTE, we have to introduce two numerical parameters Δq and Δk (mesh 

spacings in phase space). A smaller Δq (Δk) enhances the numerical accuracy of the kinetic 

(potential) term [2,3]. Δk cannot be made smaller than π/L where L denotes the device length 

[4], setting the maximum degree of numerical accuracy of the potential term. With this fixed 

degree of numerical accuracy of the potential term, increasing indefinitely the degree of 

numerical accuracy of the kinetic term leads to unphysical simulation results [2,3]. To avoid 

them, we need to seek a balance between these two degrees of numerical accuracy. That is, we 

cannot pursue a satisfactorily high accuracy in solving the finite-difference-based or discrete 

WTE. Instead, we have to be satisfied with an optimum solution. 

The kinetic term of the WTE is proportional to the differentiation of f(q,k) with respect to q. 

There are several differencing schemes (DSs) developed for this differentiation. In [2,3], we 

have found the optimum solution of the discrete WTE with the first-order DS (FDS) from the 

perspective of accuracy balancing. However, it is probable that the use of higher-order DSs 

such as the second-order DS (SDS) and the third-order DS (TDS) results in different optimum 

solutions. In this work, we demonstrate that in the simulation of resonant tunneling diodes 

(RTDs; see Fig. 1), we cannot find appropriate optimum solutions with SDS (Figs. 2 and 3) or 

TDS (Figs. 4 and 5), in contrast to a converging optimum solution obtained with FDS (Fig. 6) 

[2]. This poses the possibility that higher-order DSs are not always a better option than the FDS. 
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Fig. 1: The RTD model used in the simulation. Fig. 4: I–V characteristics of the RTD with TDS and Δk = 

Δk0. 

  
Fig. 2: I–V characteristics of the RTD with SDS and Δk = 

Δk0 = 0.067 nm−1. The optimum result with FDS (Δq = Δq0 

= 0.25 nm) is also shown for comparison. 

Fig. 5: The same as Fig. 4 with Δk = Δk0/2. 

  
Fig. 3: The same as Fig. 2 with Δk = Δk0/2. The optimum 

result with FDS (Δq = Δq0/2) is also shown. 

Fig. 6: Optimum results with FDS. They converge with 

decreasing Δk. This characteristic cannot be observed with 

SDS and TDS. 
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