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Abstract—Numerical simulation is an important tool used in
various fields of computational science and engineering. The
models to be solved by simulation are predominantly based on
equations which require the discretization of a spatial domain.
The accuracy of the simulation results is heavily influenced by
the properties of the underlying spatial discretization, the mesh.
Thus, adapting a mesh to meet certain criteria is an integral
step to achieve a desired accuracy and high computational per-
formance. With the trend of more and more cores on a compute
node, it is essential to efficiently exploit this available on-node
parallelism of modern multi-core systems. Our work introduces a
flexible shared-memory parallelized mesh adaptation framework.
We show the integrability of available serial mesh adaptation
algorithms and applicability to multi-region meshes. The first
step of the framework is the partitioning of the initial mesh,
where all the resulting partitions are subsequently assigned to
independent sets using graph coloring algorithms. These sets
are then processed in parallel using two different adaptation
algorithms: A template-based algorithm and a Delaunay-based
algorithm provided by the TetGen software. We perform bench-
marks using a cube geometry with different mesh resolutions as
well as a model of a microelectronic transistor device structure
to demonstrate the scalability of our approach and investigate
the resulting element quality. The obtained speedups for this
inherently memory-bound problem and for constant problem
sizes range between 4.6 and 8.6 using 16 threads.

Index Terms—shared-memory, parallel meshing, flexible mesh
adaptation, unstructured meshes

I. INTRODUCTION

The use of unstructured meshes together with finite element
or finite volume discretization methods is a popular approach
for numerically solving partial differential equations in a
wide variety of applications [1]-[3]. To obtain highly accurate
solutions it is often necessary to globally or locally adapt the
initial mesh by mesh refinement and by improving the element
quality. Due to the potentially high number of mesh elements,
the adaptation process can pose a severe computational bot-
tleneck. This is especially the case if (i) the mesh adaptation
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step has to be conducted several times in order to obtain a
proper mesh resolution in certain regions of interest, or (ii),
the mesh has to be adapted after each solution step to properly
capture the evolved solution-critical quantity distributions.
This is a typical challenge found in semiconductor device
simulations [4]: Fig. la shows an exemplary multi-material
mesh of a double gate fin field-effect transistor (FinFET).

In the past, a lot of effort has been put into developing
methods and algorithms to alleviate the bottleneck of mesh
adaptation resulting in several parallelization approaches for
distributed-memory computing [5]-[8].

However, the wide availability of on-node parallelism makes
shared-memory approaches inherently attractive. Additionally,
the number of applications requiring fast and accurate sim-
ulation results without having access to high-performance,
distributed-memory computer clusters is increasing, e.g., med-
ical analysis and treatments [10], [11].

Recently, mesh adaptation approaches emerged taking ad-
vantage of the available shared-memory parallelization on
modern compute nodes [12], [13]. Commonly, these methods
use fine-grained parallelism, where the implementation of the
algorithms has to be carefully tailored to the shared-memory
environment. Hence, it becomes rather challenging to integrate
new algorithms or to adopt existing and well tested serial
algorithms for utilization with these frameworks. Contrary to
those approaches, we follow a coarse-grained parallelization
approach offering the possibility to use available highly-tuned
serial mesh adaptation algorithms in parallel.

This work is an extension of our previously pre-
sented and partly OpenMP shared-memory parallelized mesh-
ing framework for tetrahedral meshes [14]. In this ini-
tial work, the framework is capable of partitioning an
input mesh into several sub-partitions which are sub-
sequently distributed into independent sets using graph
coloring techniques followed by a parallel refinement.



(a)

(b

Fig. 1: (a) Tetrahedral mesh of an exemplary multi-material
geometry of a double gate FinFET used in semiconductor de-
vice simulations. The different colors denote different material
regions. (b) Example of possible independent sets of partitions
denoted by the different colors. The mesh is partitioned using
mt-METIS [17] and the partitions are colored using a greedy
graph coloring algorithm.

These independent sets of partitions are not connected and
can therefore safely be processed in parallel (see Fig. 1b).
Here, we present an extension of our initial approach by adding
parallel partitioning and coloring algorithms. Furthermore, two
different mesh adaptation approaches have been included:
A template-based approach [13], [15] and a Delaunay-based
approach provided by TetGen [16]. Additionally, we include
several algorithms improving the mesh element quality, e.g.,
vertex smoothing. The high degree of integrability shows the
flexibility of our framework, as available tools can be added
to the framework. We compare the different algorithms with
respect to their scaling capabilities and the resulting tetrahedral
mesh quality using various tetrahedral volume meshes.

This paper is organized as follows: Section II describes the
building blocks of our approach and presents the implemented
algorithms. Section III reports the parallel performance and
achieved mesh qualities using different example geometries.

II. FLEXIBLE MESH ADAPTATION FRAMEWORK

Our parallel mesh adaptation framework is comprised of
multiple steps, where all computationally expensive parts are
shared-memory parallelized. The full framework is depicted in
Fig. 2, where the aforementioned computationally demanding
steps are colored in purple. The initial mesh is partitioned
into a user-defined number of partitions (Fig. 2a), which are
subsequently colored to obtain independent sets of partitions
(Fig. 2b). An exemplary coloring of partitions is shown in
Fig. 1b. This enables the integration of different partitioning
and coloring algorithms into the framework, as discussed in
detail in the following subsection.

Based on these independent sets of partitions, any serial
mesh adaptation algorithm can be integrated into the frame-
work (Fig. 2¢), and therefore executed in parallel, as no edges
or facets are shared between the individual partitions of a set.
The processing order of the independent set has implications
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on the adaptation process on the partition boundary: If the
boundary has already been adapted during the processing of a
neighboring partition, the adaptation is limited to the interior.

After the parallel processing of a set of partitions, the mesh
adaptations on the partition interfaces are communicated to
all affected neighboring partitions, yielding potentially non-
conforming mesh partitions. Therefore, prior to the processing
of a subsequent set of partitions, all non-conformities are
resolved during a healing step (Fig. 2d). Subsection II-B
describes the adaptation and healing process in detail, and
shows the integration of two serial mesh adaptation algorithms
into our framework.

A. Partitioning and Coloring

The first step in our mesh adaptation approach is the par-
titioning of the initial input mesh into a user-defined number
of contiguous mesh partitions. To achieve this task we use
mt-METIS [17], a multi-threaded version of the graph par-
titioning software METIS [18]. It converts the mesh into a
graph and subsequently applies graph partitioning methods
to create the desired number of mesh partitions. The parti-
tioning software assigns each partition a dedicated identifier
(Partition ID). Subsequently, the adjacency information of
the partitions is created which is later used during the mesh
healing and adaptation step.

In order to apply a serial adaptation algorithm on each
partition in parallel, several graph coloring algorithms are
used to create independent sets of the previously created mesh
partitions [19]. The different colors used by the graph coloring
algorithms are represented using unique numbers (Color ID).
The coloring algorithms range from a serial greedy coloring
approach to shared-memory parallel graph coloring algorithms
as presented by Catalyiirek et al. [20] and algorithms creating
balanced colorings as shown by Lu et al. [21]. One advantage
of balanced coloring populations is the implicit load-balancing,
which is especially advantageous in situations where the
number of partitions is in the same order as the number of
active threads.

Within our framework it is also possible to consider
multi-material meshes. The material regions are used as initial
input to the subsequent partitioning and coloring steps. Hence,
the material interfaces are preserved throughout the adaptation
process (see Fig. 1a).

B. Mesh Adaptation and Healing

The coloring process is followed by the parallel mesh adap-
tion procedure. Each independent set of partitions, identified
by a common Color ID, is processed in parallel. A dedicated
mesh data structure is maintained for each partition. To keep
a valid link between the initial mesh vertex indices (global
indices) and the mesh vertex indices in the partitions (local
indices), we store their connection using unordered associative
containers.

Furthermore, a linear data array (outbox) stores the informa-
tion regarding vertex insertions on the interface of neighboring
partitions (see Fig. 3). If a vertex is inserted on such an
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Fig. 2: Diagram of the fully shared-memory parallelized mesh
adaptation framework depicting the single modules, with the
exchangeable blocks shown in purple enabling, for example,
the integration of different serial meshing algorithms. Since the
color identifiers (Color IDs) are denoted using unique integers,
the loop starts with Color ID 0.

interface edge or facet, the inserting partition writes the
Partition ID of the involved neighbor, the two global indices
of the vertices comprising the corresponding edge, as well as
the own local vertex index of the newly inserted vertex into its
own outbox. This information is accessed by the neighboring
partitions during the subsequent step of mesh healing.

We limit the adaptation of the partition interfaces to those
partitions which have a smaller Color ID than all their neigh-
boring partitions owning the same edge or facet. This prevents
the partition interfaces from being adapted by more than one
partition and leads to a homogeneous refinement across the
partition interfaces.

In order to check if an edge is part of an interface to a
neighboring partition, we store the associated Partition IDs of
each vertex. Therefore, an edge may be mistakenly marked as
an interface edge, as shown in Fig. 4. The owning partition
still records the corresponding data (Partition ID of the neigh-
boring partition, the two global vertex indices of the edge,
and the local index of the added vertex) in its outbox. A
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Fig. 3: Schematic showing our refinement and healing pro-
cedure using a so-called outbox for each partition. In the
first step, the left partition refines its elements including
the interface (green edges) to its neighbor (purple vertices
and edges). Afterwards, the healing procedure integrates the
inserted vertices (purple vertices) into its own partition (dashed
purple edges) and subsequently refines the affected elements
to sustain conformity.

I\I

Fig. 4: The green triangles are part of two different partitions
as well as the two purple vertices; the gray triangles are
only part of a single partition. Since we store only to which
partitions the vertices belong and do not store any explicit edge
or facet data, it can happen that an edge is mistakenly marked
as part of an interface to a neighboring partition (purple edge).

subsequently processed neighboring partition (from the next
Color ID) inserts this vertex marked wrongly as an interface
vertex. To resolve this issue, a check for dangling vertices
after the healing procedure is conducted, which removes all
mistakenly inserted vertices. This approach circumvents the
adaption of the data structures and algorithms which do not
store edges or facets explicitly, while simultaneously requiring
negligible overhead, as the detection of dangling vertices is
computationally trivial.

We provide two different options for mesh refinement.
A basic mesh element subdivision scheme [15], which has
been successfully implemented in the shared-memory paral-
lel software PRAgMaTIc by Rokos et al. [13]. It operates
by subdividing an edge into two edges by vertex inser-
tion, if an edge exceeds a user-prescribed maximum length
threshold. Each mesh element is subsequently refined based
on the number and position of the subdivided edges using
predefined templates. Higher mesh resolutions are achieved
by iterating several times over all mesh elements, since
an element can only be refined once in a single iteration.



In our framework, we use a serial version of this template-
based refinement algorithm, but apply it in parallel to all
partitions with identical Color ID to achieve parallelism.

As an alternative mesh refinement algorithm, we integrate
the serial Delaunay-based mesh generator TetGen [16] into
our framework via the provided application programming
interface. TetGen is, up to now, not able to perform anisotropic
mesh refinement, i.e., refinement depending on the direction
of the relevant mesh edge [16]. Therefore, it can be beneficial
to apply a template-based approach, since it is able to conduct
anisotropic mesh adaptation [13]. The template-based mesh
refinement requires additional quality improvement steps after
the element subdivision. To achieve this, we use the element
swapping and smoothing operations provided by PRAgMaTIc
in our coarse-grained parallel approach. To ensure proper
element quality with the Delaunay-based approach, we use
the available quality optimization options included in TetGen
during the refinement process.

However, to conduct the mesh refinement operations using
the Delaunay-based approach on the interior of the partitions,
it is necessary to first use the template-based element subdivi-
sion schemes for refining the boundary elements. This is due to
the fact that our mesh healing data structures and procedures
depend on the template-based refinement schemes and data
structures. After the healing is successfully completed, we
restrict the Delaunay approach to perform its mesh adaptation
routines only in the interior of the mesh partition.

After a set of independent partitions is processed, each
partition in the subsequently processed set heals its interface
elements in order to sustain a conformal mesh (see Fig. 3).
To detect interface adaptations, a partition checks all the
outboxes, if vertices have been inserted into the interface from
its neighboring partitions with a Color ID smaller than its
own. The new interface vertices are accessible using the global
indices stored in the outbox combined with the Partition ID of
the originating partition and the local vertex index inside the
originating partition.

After all outboxes have been processed, the template-based
element subdivision schemes are used to heal the interface
mesh elements. Afterwards, the parallel mesh refinement
algorithm continues, either using the template-based or the
Delaunay-based adaptation algorithm (see Fig. 2c).

III. EVALUATION

In order to evaluate the performance and the resulting mesh
quality of our framework we use two different resolutions of
a three-dimensional cube mesh as shown in Fig. 1b. We refer
to the two cube meshes as small and big, consisting of 6000
and 93750 tetrahedral elements, respectively. Additionally, we
perform tests with a geometry taken from a semiconduc-
tor device simulation problem, i.e., a double gate FinFET
(see Fig. la) [4]. The FinFET mesh initially consists of
837584 mesh cells. We compare the two aforementioned
mesh adaptation algorithms: The template-based algorithm and
TetGen. The number of partitions is set to 1024 for all cases
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and the coloring is performed using both an unbalanced and
a balanced greedy approach [19].

A. Benchmark Platform

We use a single node on the Vienna Scientific Cluster
(VSC-3)! for our benchmarks, which is equipped with two
Intel Xeon ES-2650v2 Ivy Bridge EP processors running with
a clock frequency of 2.6 GHz and a total of 256 GB of
main memory. The benchmarks are compiled using Intel’s
C++ compiler version 17.0.4 and optimization level —03.
The threads are pinned using the provided thread-core affinity
GOMP_CPU_AFFINITY variable, to avoid migration of
OpenMP threads.

B. Adaptation Parameters

We perform the benchmarks for the template-based refine-
ment algorithm using two iterations, with a length threshold
of 25% of the initial edge length for the small and big
cube meshes. For the Delaunay-based algorithm we apply
a volume constraint to the small cube of 1% of the initial
element volume for two iterations. The big cube mesh is
adapted applying the same relative constraints. Additionally,
the FinFET is also investigated using a single iteration of the
template-based refinement algorithm with a length threshold
of 25% applied to the original edge length. The Delaunay-
based approach is used with a volume constraint of 13% of
the element volume.

C. Fartition Coloring

Fig. 5 depicts the number of partitions for each Color ID.
The presented data indicates that the application of a greedy
coloring for the partitions yields less partitions in higher
Color IDs. Therefore, it is possible that the number of threads
exceeds the number of partitions as the number of colors
increases, leaving threads without work and affecting potential
speedup. Nevertheless, the data in Fig. 6 proves that for the
given test meshes the coloring has almost no effect, yielding
similar runtime and speedup results. The reason for this
behavior is that the highest Color IDs still offer a significant
workload for the maximum number of threads we used in this
study.

D. Strong Scaling Analysis

We assess the strong scalability of the presented frame-
work by increasing the number of threads up to 16 physical
cores, while keeping the problem size constant. The obtained
speedups for our set of meshes using 1024 partitions are
depicted in Fig. 6.

The small cube is refined using two iterations, yielding an
increase in tetrahedral mesh elements from 6000 to about
315000. With 16 threads the maximum speedups obtained
for the small cube mesh are 4.6 using the template-based
approach and 7.8 using the Delaunay-based approach. Our
study shows that for this small problem size the template-based

Uhttps://vsc.ac.at
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Fig. 5: The population of the different Color IDs obtained with
both a balanced and an unbalanced greedy coloring approach
for all test meshes.

mesh refinement algorithm delivers faster execution times than
the Delaunay-based workflow.

The data for the small cube indicate that for smaller problem
sizes the overhead introduced by our coarse-grain framework
has significant influence on the overall performance: The
runtime of the original serial TetGen software (1.29 seconds)
is only outperformed when using more than eight threads.

Interestingly, for the small cube mesh we observe a su-
perlinear speedup applying the Delaunay algorithm with two
threads. The reason for this behavior is that this algorithm
usually has a complexity of O(nlogn): A decomposition into
N partitions yields a theoretical acceleration of

n log n 1
1_logN7
log n

n n
~ log &

(€]

with the right side being larger than 1. Therefore, a decompo-
sition into IV parts could give a speedup larger than N. How-
ever, as non-perfect load balancing or different geometrical
complexity of the partitions strongly influence the workload,
superlinear speedup is rarely observed [22].

For the big cube and the FinFET the number of resulting
tetrahedral mesh elements is increased from 93750 to about
5500000, and from 837584 to about 6600000 elements, re-
spectively. Two iterations are used for the big cube mesh,
whereas for the FinFET only one iteration is used, due to the
fact that a second iteration is not supported with the current
implementation of the TetGen software. The speedups for the
big cube mesh using 16 threads peak at 5.2 and 8.6 for the
template and Delaunay approach, respectively. Regarding the
FinFET, maximum speedups of 5.1 for the template-based
and 6.8 for the Delaunay-based approach are obtained. The
runtime of the serial original TetGen software (FinFET: 32.2 s,
big cube: 21.6 s) is already outperformed using two threads
(26.3 s) and four threads (14.8 s) for the FinFET and big cube
mesh, respectively. The template-based workflow is slower
for the big cube and the FinFET mesh, since more time is
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needed for swapping and smoothing operations compared to
the Delaunay-based approach.

For all three investigated test meshes the speedup using up
to eight threads is strongly limited by memory bandwidth [8].
Additionally, for higher thread counts the performance is
heavily influenced by effects occurring due to non-uniform
memory access (NUMA).

E. Mesh Quality

In order to investigate the influence of the constrained
interface element adaptation process on the resulting element
quality of the adapted meshes, we use two different quality
metrics [23]. The first metric is the edge ratio which is defined

as
Lmax

Lmin ’
where L denotes the maximum and minimum edge length
of a tetrahedron. A ratio of 1 denotes optimal tetrahedral
element quality, i.e., an equilateral tetrahedron. As second
quality metric we use the minimum dihedral angle present
in a tetrahedral element, where an angle of about 70.53°
represents the optimal element quality. Fig. 7 shows the
resulting element qualities obtained for our meshes. The blue
bars depict the element quality resulting from the template-
based algorithm, the green bars show the quality obtained
applying the Delaunay-based algorithm in our framework, and
the pink bars denote the element quality obtained with the
original serial TetGen software.

The template-based algorithm splits only elements already
present in the mesh by inserting vertices on their edges
and subsequently aims to improve the elements by applying
smoothing and swapping operations. On the contrary, the
Delaunay-based mesh refinement approach has more freedom
in choosing the ideal position for inserting new vertices, since
it is not limited to the element edges for vertex insertion. Thus,
the resulting element quality of the template-based approach
is inferior compared to its competitor. We have observed this
behavior in all three investigated meshes (see Fig. 7). The
quality results with respect to the edge ratio show that the
additional freedom of the Delaunay approach results in lower
edge ratios for all investigated test meshes compared to the
template approach. The same holds for the minimum dihedral
angle distributions. The depicted accumulations of elements
with similar minimum dihedral angles of 35.3°, 45.0°, 54.7°,
and 60.0° in both cube meshes result from the minimum
dihedral angle distribution in the initial meshes peaking at the
mentioned angles. These peaks are preserved in our framework
due to the constrained boundary adaptation.

For the small cube mesh the original serial TetGen software
yields a better distribution of minimal dihedral angles and
edge ratios, showing that, if the number of elements in the
partitions is too small, the resulting element quality using our
parallel framework is limited. The element qualities obtained
for the other two meshes evaluated in this study using the
presented parallelization framework are similar to the original
serial TetGen software, proving that the constraints for the
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mesh adaptation on interface elements has little effect on the
resulting mesh quality.

IV. SUMMARY

We present a flexible shared-memory parallel mesh adap-
tation approach, capable of applying available serial mesh
adaptation algorithms in parallel. We evaluate the approach by
using two different mesh adaptation approaches and test ge-
ometries, a cube and a FinFET, and analyze the resulting mesh
element quality with respect to its edge ratio and minimum
dihedral angle. Additionally, a strong scaling analysis shows
the parallel performance. The maximum speedup achieved for
this inherently memory-bound problem is 8.6 for 16 threads
using the Delaunay-based approach. Additionally, our parallel
workflow is able to significantly outperform the original serial
TetGen software for big test meshes.

Additionally, our investigations show that the Delaunay-
based meshing technique included in TetGen produces higher
quality meshes than a template-based approach and that the
Delaunay-based approach is able to outperform the template-
based approach regarding performance in some cases. How-
ever, for anisotropic mesh adaptation the template-based so-
lution is attractive. Possible future extensions could focus on
investigating other mesh healing and domain decomposition
approaches.
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Fig. 6: Strong scaling results for the two cube geometries after two iterations using 1024 partitions and for the FinFET geometry
after a single mesh adaptation iteration also using 1024 partitions. Dotted lines show the data from the balanced coloring prior
to the application of the adaptation algorithms. Additionally, the left column shows the serial runtime of TetGen (TetGen Orig.).
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Fig. 7: Resulting mesh qualities for the small and big cube meshes after two refinement iterations using 1024 partitions and
for the FinFET after one refinement iteration also using 1024 partitions. The left column depicts the edge ratios and the right
column the minimum dihedral angles occurring in the tetrahedrons.
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