
Parallelized Level-Set Velocity Extension Algorithm
for Nanopatterning Applications

Michael Quell
Christian Doppler Laboratory

for High Performance TCAD

Institute for Microelectronics, TU Wien

Wien, Austria
quell@iue.tuwien.ac.at

Siegfried Selberherr
Institute for Microelectronics, TU Wien

Wien, Austria
selberherr@tuwien.ac.at

Alexander Toifl
Christian Doppler Laboratory

for High Performance TCAD

Institute for Microelectronics, TU Wien

Wien, Austria
toifl@iue.tuwien.ac.at

Josef Weinbub
Christian Doppler Laboratory

for High Performance TCAD

Institute for Microelectronics,TU Wien

Wien, Austria
weinbub@iue.tuwien.ac.at

Andreas Hössinger
Silvaco Europe Ltd.

Cambridge, United Kingdom
andreas.hoessinger@silvaco.com

Abstract—We present a parallelized algorithm for accelerating

the velocity extension calculations in a level-set method, which

is essential for surface velocity based topography simulations,

such as etching or deposition simulations for nanopatterning

applications. The proposed algorithm improves the prevailing

fast marching method by optimizing the heap data structure

and efficiently reordering the calculations. We implemented the

algorithm into Silvaco’s Victory Process simulator, which is

utilized for evaluating our algorithm with a three-dimensional

simulation of an ion beam etching process used for spin-transfer

torque magnetoresistive random access memory devices. Our

results show a significant serial speed-up by a factor of at least

1.4 and a total speed-up by a factor of up to 8 using 8 threads

for the velocity extension.

I. INTRODUCTION

Modern semiconductor devices are progressively employing
non-planar geometries, e.g., high-aspect ratio pillars, cavities
or fins. The thus necessary fabrication processes are based on
complex patterning techniques on the nanoscale, essentially
requiring high control over geometry parameters. For exam-
ple, the devices proposed in the field of emerging memory
techologies [1] particularly demand optimized nanopatterning
to enable a small feature size and high density memory
cells in order to replace conventional complementary metal-
oxide semiconductor (CMOS)-based random access memory
(RAM) [2], [3].

Process simulations employing the level-set method [4],
[5], [6] enable highly robust and accurate simulations of the
temporal evolution of the wafer surface during such fabrication
processes of semiconductor devices. The level-set method
naturally handles topological changes in three dimensions and
allows for the simulation of a variety of processing techniques
via a general velocity function.

A level-set topography simulation involves several steps
which are summarized in Fig. 1(a). Starting with the con-
struction of the level-set function from the initial geometry,
the surface (front) velocity has to be calculated according to
a process-specific physical model. Subsequently, the surface
velocity is extended to the computational domain (velocity
extension), which allows to move the surface according to
the velocity by employing a time integration scheme for the
level-set field. After the time stepping the level-set field is
converted to an explicit mesh, which enables the visualization
of the resulting surface.

The velocity extension step, which has to be performed
in every time step, significantly contributes to the overall
runtime. In this work we present a shared-memory parallelized
velocity extension algorithm which considerably reduces the
simulation runtime. The proposed algorithm was implemented
into Silvaco’s Victory Process simulator [7], which we uti-
lize here to test our algorithm by simulating an ion beam
etching (IBE) step required for the production of spin-transfer
torque magnetoresistive RAM (STT-MRAM) devices [8].

II. VELOCITY EXTENSION

The level-set method implicitly represents the wafer sur-
face � as the zero level-set of the function �(⇥x, t) and the
time evolution is determined by the level-set equation

⇤�

⇤t
+ V |��| = 0. (1)

V is a velocity field which is defined on the entire computa-
tional domain, modeling the motion of the surface. However,
most process-specific physical models only provide the surface
velocity Vsurface on �. In order to solve (1), Vsurface has to
be extended to the entire computational domain. We employ

978-1-7281-0940-4/19/$31.00 c⇥2019 IEEE

335

Construct
level-set function

� � �

Compute
Vsurface

Velocity
extension (2)
Vsurface � V

Advect �
solving (1)

Extract final
surface � � �

R
ep

ea
tf

or
ev

er
y

tim
e

st
ep

(a) (b)

Fig. 1: (a) Flow diagram of the computational tasks in a level-
set simulation. (b) Velocity extension according to (2) yields
for every grid point the velocity of the closest surface point.
Thus the velocity along the orange arrows is constant.

the signed-distance property preserving approach, which is
characterized by constant velocity values along the surface
normals [9]. This is shown for selected grid points in Fig. 1(b).
The associated partial differential equation

�� ·�V = 0, and V
��
�
= Vsurface (2)

is typically solved with the fast marching method (FMM) [4].
As a prerequisite for the FMM the velocity is set on the
grid points in direct proximity to the surface [9]. The surface
divides the set of grid points into two subsets, allowing for
the subsequent independent application of the FMM for both
sides.

The FMM processes the grid points in ascending order
by their level-set value, enabling the usage of an upwind
difference scheme to approximate the gradients in (2). Thus,
only information from grid points which are closer to the
surface is utilized, resulting in a one pass algorithm. In
particular, the processing of a grid point consists of two
tasks: (a) calculate the velocity and (b) insert all unprocessed
neighbors into the minimum heap. To track the processing
order of the grid points, a global minimum heap data structure
sorted by the level-set values is used. Consequently, the FMM
is an inherently serial algorithm.

III. PARALLELIZED VELOCITY EXTENSION

Our proposed algorithm overcomes the limitation of the
FMM by executing a modified FMM for every grid point in
direct proximity to the surface. We refer to the execution of
the modified FMM based on one of those grid points and
the corresponding minimum heap (from the modified FMM)
as a run. The runs are processed one after another, which

5

4

1

2

3

4

56

1

2 1 2 3

45678

91011

67

378

89

1213

10

9

141516

Fig. 2: Processing order of the grid points for one side of the
surface by the proposed algorithm employing three threads
(red, green, and blue). Grid points with a white number next
to the interface are the grid points which constitute the runs.
Filled arrows show successful updates of the neighbor, while
bare arrows show that the neighboring grid point either had an
unprocessed upwind neighbor or has been already processed
by another thread.

effectively reorders the calculations and yields a speed-up by
reducing the effective heap sizes.

The introduction of the non-global minimum heaps creates
cases in which grid points have unprocessed upwind neigh-
bors. These cases need special treatment: We remove grid
points which have an unprocessed upwind neighbor from the
current minimum heap without processing it. Nevertheless, it
is ensured that all grid points are processed, because once
the formerly unprocessed upwind neighbor is processed (by a
different run) the removed grid point is visited again, allowing
for the application of the upwind scheme.

In summary, some of the grid points are visited several times
by our algorithm (depending on the number of upwind neigh-
bors). However, the velocity is calculated only once, using
the same upwind neighbors as in the FMM. Consequently,
we ensure that calculated extended velocities are identical
compared to the FMM.

The runs enable an efficient approach to parallelize the
velocity extension algorithm, because they are dynamically
assigned to different threads in parallel. Once the currently
assigned run is completed (i.e., its minimum heap is empty) a
new unprocessed run is assigned. The dynamic assignment
of the runs to the threads is necessary as the associated
computational load varies strongly between them. Fig. 2 shows
the processing order of the grid points for an exemplary surface
topology. One side of the surface is processed by three threads.

Each thread is assigned a run (in Fig. 2, a grid point with a
white number) and creates its own minimum heap containing

336

20
0
n
m

10 nm40 nm
10 nm

A B
Mask
Seed1
MTJ
Seed2
Bulk

(a) (b)

Fig. 3: Initial wafer topography consisting of the magnetic
tunnel junction (MTJ) and the associated seed layers deposited
on the substrate: (a) prior to the IBE process and (b) final pillar
topography for the STT-MRAM device.

only this grid point. Then the thread processes its minimum
heap analogously to the traditional FMM implementation with
the previously described modification, while taking care of
unprocessed upstream grid points. Once the minimum heap
is empty, a new run is assigned. The blue thread in Fig. 2
demonstrates the varying load: The first and second run, (blue
grid point 1 and 2) only processes a single grid point, while
the third run (blue grid point 3) processes 14 grid points in
total.

The proposed algorithm does not use explicit synchroniza-
tion during the processing of the runs. This is a trade-off
between the cost of the explicit synchronization and avoiding
redundant operations, i.e., computing the velocity of a grid
point more than once. It is not an issue if the velocity for a
grid point is computed more than once, because the algorithm
always enforces the usage of the same upwind neighbors for
all threads. Thus, for any grid point the computational result is
the same for every thread. The redundant operations may occur
along the border of two regions processed by different threads
(cf. bare arrows pointing to a differently colored grid point
in Fig. 2). Nevertheless, the accuracy of the final extended
velocity field does not depend on the choice between explicit
and not explicit synchronization, as both threads use the same
upwind neighbors.

IV. RESULTS AND DISCUSSION

We employ the proposed algorithm for simulating an IBE
process which is essential for the fabrication of STT-MRAM

Vmin Vmax

A B

(a) (b)

Fig. 4: Extended velocity field in the plane containing points
A and B in Fig. 3 (a) prior to and (b) after the IBE process.
The velocity is constant along the surface normals as imposed
by (2). The white line depicts the wafer surface.

devices. The considered structure consists of a magnetic tunnel
junction (MTJ) and the associated seed layers which have been
deposited on a substrate. IBE allows to fabricate an array of
MTJ pillars (shown in Fig. 3a and Fig. 3b). We apply the
proposed velocity extension algorithm to the IBE step. The
extended velocity fields for the initial and final surface are
shown in Fig. 4(a) and Fig. 4(b) for a vertical plane slicing
the computational domain diagonally (containing Points A and
B in Fig. 3(a). The velocity is constant along the surface
normals. Furthermore, the corners, where the velocity abruptly
changes and consequently the solution is discontinuous, are
well resolved.

We assessed the implementation of the algorithm (for imple-
mentation details see [11]) on a compute node of the Vienna
Scientific Cluster 3 (two Intel Xeon E5-2650v2 Ivy Bridge
EP processors, 64 GB main memory) [10], by comparing the
runtimes for a single velocity extension step. The code uses
C++11 and was compiled with gcc-7.3 with -O3 optimization.

Fig. 5 shows that the serial runtime for the velocity exten-
sion is reduced by a factor of 1.4 (1.5) for a grid resolution of
2 nm (0.5 nm). The runtime reduction is mainly caused by the
splitting of the global heap into smaller heaps, resulting in less
time-consuming sorting operations. The cost of visiting grid
points twice is negligible, because the velocity is calculated
only once.

Furthermore, we evaluated the parallelized algorithm (im-
plemented with OpenMP 4.5), which has a parallel efficiency
of approximately 60% (66%) for 8 threads and thus results

337

FM
M

N
ew

A
lg

.
1

th
re

ad
N

ew
A

lg
.

8
th

re
ad

s0.00

0.05

0.10

0.15

0.20

0.25

R
un

tim
e

[s
]

x
1.

4
x

4.
7 x

6.
6

2nm

FM
M

N
ew

A
lg

.
1

th
re

ad
N

ew
A

lg
.

8
th

re
ad

s 0

5

10

15

20

x
1.

5
x

5.
3

x
8.

0

0.5nm

Fig. 5: Runtime of the velocity extension for a single time-
step measured on a compute node of the Vienna Scientific
Cluster 3. The proposed algorithm is compared to the original
algorithm (FMM) for a spatial resolution of 2 nm and 0.5 nm.

in a parallel speed-up of 4.7 (5.3). Each of the 8 threads is
assigned to a separate core. In our implementation, the grid
points are accessed using OpenMP atomic operations, which is
required to enforce a consistent view of the memory between
the threads.

Avoiding explicit synchronization leads to less than
1% (0.1%) of the grid points processed twice (see Section III).
The lower percentage of the redundantly processed grid points
in the higher resolution simulation (i.e. the 0.5 nm case) is
caused by a square-cube law of grid points on the borders
between threads and total processed grid points. The grid
points on the borders between threads scale by a power of
two and the total processed grid points by a power of three,
therefore, their ratio decreases with increasing size.

The serial and parallel speed-up combined yield a total
runtime reduction of the velocity extension step by a factor
of 6.6 (8.0) for 8 threads, which demonstrates the excellent
performance of our approach. Our algorithm results in the
same velocity field as the reference FMM implementation,
which we confirm by the L�-Norm (maximum over the
velocity value differences for all grid points) yielding 0.

V. SUMMARY

We have presented a parallelized velocity extension al-
gorithm improving on the serial fast marching method, by

efficiently reordering the calculations. This is achieved by
replacing the global heap data structure associated with the
fast marching method with many non-global minimum heaps
(e.g., unprocessed upwind neighbors) The efficient velocity
algorithm enables level-set topography simulation of complex
three-dimensional non-planar geometries as they commonly
appear in nanopatterning applications. We demonstrate the
capability of the proposed algorithm with the velocity exten-
sion step in an ion beam etching process of a spin-transfer
torque magnetoresistive memory device. Our implementation
does not show any difference in the resulting velocity field
compared to the reference fast marching method. Furthermore,
we have investigated the serial and parallel speed-up, where
the combined speed-up is in the range from 6.6 to 8.0 for 8
threads.

ACKNOWLEDGMENT

The financial support by the Austrian Federal Ministry for

Digital and Economic Affairs and the National Foundation

for Research, Technology and Development is gratefully ac-
knowledged. The computational results presented have been
achieved using the Vienna Scientific Cluster (VSC).

REFERENCES

[1] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, and S. N.
Piramanayagam, “Spintronics Based Random Access Memory: A
Review,” Materials Today, vol. 20, no. 9, pp. 530–548, 2017.

[2] D. Apalkov, B. Dieny, and J. M. Slaughter, “Magnetoresistive Random
Access Memory,” Proceedings of the IEEE, vol. 104, no. 10,
pp. 1796–1830, 2016.

[3] V. D. Nguyen, P. Sabon, J. Chatterjee, L. Tille, P. V. Coelho,
S. Auffret, R. Sousa, L. Prejbeanu, E. Gautier, L. Vila, and B. Dieny,
“Novel Approach for Nano-Patterning Magnetic Tunnel Junctions
Stacks at Narrow Pitch: A Route Towards High Density STT-MRAM
Applications,” in IEEE International Electron Devices Meeting

(IEDM) , pp. 38.5.1–38.5.4, 2017.
[4] J. A. Sethian, “A Fast Marching Level Set Method for Monotonically

Advancing Fronts.” Proceedings of the National Academy of Sciences,
vol. 93, pp. 1591–1595, 1996.

[5] J. A. Sethian, “Evolution, Implementation, and Application of Level
Set and Fast Marching Methods for Advancing Fronts,” Journal of

Computational Physics, vol. 169, no. 2, pp. 503–555, 2001.
[6] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit

Surfaces, Springer, 2011.
[7] “Silvaco Victory Process,” https://www.silvaco.com/products/tcad.html,

(accessed March 27, 2019).
[8] M. Gajek, J. J. Nowak, J. Z. Sun, P. L. Trouilloud, E. J. OSullivan,

D. W. Abraham, M. C. Gaidis, G. Hu, S. Brown, Y. Zhu, R. P.
Robertazzi, W. J. Gallagher, and D. C. Worledge, “Spin Torque
Switching of 20nm Magnetic Tunnel Junctions with Perpendicular
Anisotropy,” Applied Physics Letters, vol. 100, no. 13,
p. 132408, 2012.

[9] D. Adalsteinsson and J. A. Sethian, “The Fast Construction of
Extension Velocities in Level Set Methods,” Journal of Computational

Physics, vol. 148, no. 1, pp. 2–22, 1999.
[10] “Vienna Scientific Cluster 3,”

http://vsc.ac.at/systems/vsc-3/, (accessed June 18, 2019).
[11] M. Quell, P. Manstetten, A. Hössinger, S. Selberherr, and J. Weinbub,

“Parallelized Construction of Extension Velocities for the Level-Set
Method,” in International Conference on Parallel Processing and

Applied Mathematics (PPAM), Springer LNCS, 2019.

338

