
Advances in Computational Mathematics (2019) 45:2029–2045
https://doi.org/10.1007/s10444-019-09683-z

A shared memory parallel multi-mesh fast marching
method for re-distancing

Georgios Diamantopoulos1 ·Andreas Hössinger2 ·Siegfried Selberherr3 ·
Josef Weinbub1

Published online: 11 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
A common problem arising in expanding front simulations is to restore the signed
distance field property of a discretized domain (i.e., a mesh), by calculating the
minimum distance of mesh points to an interface. This problem is referred to as re-
distancing and a widely used method for its solution is the fast marching method
(FMM). In many cases, a particular high accuracy in specific regions around the
interface is required. There, meshes with a finer resolution are defined in the regions
of interest, enabling the problem to be solved locally with a higher accuracy. Addi-
tionally, this gives rise to coarse-grained parallelization, as such meshes can be
re-distanced in parallel. An efficient parallelization approach, however, has to deal
with interface-sharing meshes, load-balancing issues, and must offer reasonable par-
allel efficiency for narrow band and full band re-distancing. We present a parallel
multi-mesh FMM to tackle these challenges: Interface-sharing meshes are resolved
using a synchronized data exchanges strategy. Parallelization is introduced by apply-
ing a pool of tasks concept, implemented using OpenMP tasks. Meshes are processed
by OpenMP tasks as soon as threads become available, efficiently balancing out
the computational load of unequally sized meshes over the entire computation. Our
investigations cover parallel performance of full and narrow band re-distancing.
The resulting algorithm shows a good parallel efficiency, if the problem consists of
significantly more meshes than the available processor cores.

Keywords Fast marching method · Shared memory parallelism · Eikonal equation ·
Re-distancing

Mathematics Subject Classification (2010) 68W10 · 65Y05 · 65Y10 · 65Y20

Communicated by: Pavel Solin

� Georgios Diamantopoulos
diamantopoulos@iue.tuwien.ac.at

Extended author information available on the last page of the article.

Received: 29 September 2018 / Accepted: 8 March 2019 /

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-019-09683-z&domain=pdf
mailto: diamantopoulos@iue.tuwien.ac.at

2030 G. Diamantopoulos et al.

1 Introduction

In order to avoid computationally costly methods of analytically computing the min-
imum Euclidean distance of every mesh point to an interface, alternative, accelerated
methods are sought to reduce the computational effort and thus the computing time.
To that end, the problem of re-calculating the distance to an interface in order to
restore the signed distance field property in a domain can be treated as the simulation
of an expanding front with unit speed. This problem is arising in several applica-
tions of science and engineering, for example, in computational geometry, computer
vision, micro- and nanoelectronics, and computational fluid dynamics [10].

The expanding front problem can be mathematically formulated by the eikonal
equation which in Rn reads:

|∇φ(x)|F(x) = 1, x ∈ Ω \ Γ,

φ(x) = 0, x ∈ Γ ⊂ Ω . (1)

Ω is a domain in R
n, Γ the initial interface (boundary), φ(x) the unknown func-

tion, and F(x) a positive function which describes the speed with which the interface
information propagates in the domain. In case that F = 1, the solution φ(x) rep-
resents the minimum Euclidean distance between the point x and the interface Γ .
This case is generally referred to as re-distancing and is the main focus of this
work.

A popular and widely used method for the solution of the eikonal equation is
the fast marching method (FMM) [10]. The FMM is a non-iterative method based
on upwind differences, offering O(h) accuracy. A priority queue is used in order to
specify the order in which the nodes are visited, similar to Dijkstra’s algorithm for
the shortest path between nodes in a graph [5]. Due to the fact that the method is non-
iterative and relies on a single priority queue, parallelization is not straightforward,
as, for instance, parallel write access to the queue would have to be guarded from
race conditions basically nullifying any parallelization attempt.

Because of the non-straightforward parallelization of the FMM, alternative par-
allel methods have been developed. The most predominant of these methods is
the fast sweeping method (FSM) [14, 15] and the fast iterative method (FIM) [7].
Both methods support parallel processing. In particular, the FIM uses a block-based
domain decomposition and is not relying on a priority queue; hence, it supports single
instruction multiple data (SIMD), which is attractive for fine-grained parallelization
platforms, such as accelerators. The drawback of both methods, however, is that their
accuracy is lower than the FMMs due to their iterative nature. Another set of methods
is the family of two-scale methods [2]. The Heap-Cell method, for which the paral-
lel version is presented in [3], has a two-scale technique which combines the FMM
with FSM on different scales/resolutions. However, these methods are out of scope
for this work, as here we focus on applying the FMM on several meshes on the same
scale (i.e., offering the same resolution) without interpolating/restricting the solution
to the finer/coarser level.

A shared-memory parallel multi-mesh fast marching method... 2031

Several attempts to parallelize the FMM have been made. The parallel algorithms
provided in [1, 6] do not provide a scalable and generally applicable algorithm. How-
ever, the authors introduce the concept of domain decomposition into the FMM.
Recently, a promising parallel version of the FMM based on overlapping domain
decomposition has been introduced [13]. This approach provides a scalable algorithm
for distributed memory applications. In our previous contributions, a shared memory
variant of the algorithm has been developed [11, 12] and an extended evaluation of
the developed method based on various problem cases has been presented [4].

This work is related to a mesh refinement workflow where the eikonal equation
is solved on a Cartesian hierarchical mesh data structure, such as in feature-scale
topography simulations based on solving the level set equation for etching or deposi-
tion processes in microelectronics [8]. The Cartesian mesh hierarchy allows to use an
efficient finite difference scheme for solving the level set problem while also being
able to cover geometrically challenging problems due to local mesh refinement: The
mesh hierarchy is composed of a base mesh covering the entire simulation domain as
well as additional refinement levels: Each refinement level contains a set of locally
defined meshes (with the same higher resolution compared to the base mesh) around
certain areas with increased accuracy demands (e.g., corners). The meshes do not
overlap but neighboring meshes can potentially share an interface which is creating
dependencies during re-distancing.

We present a parallel multi-mesh FMM which is capable of re-distancing an arbi-
trary number of meshes with the same resolution in parallel (referring to the locally
defined meshes of a refinement level, as previously discussed). A synchronized data
exchange is introduced in order to resolve dependencies among neighboring meshes.
Despite the fact that there are re-distancing methods available, where different reso-
lutions can be processed by the same algorithm in parallel [2, 3], there is no available
re-distancing method which can process several neighboring meshes of the same
resolution simultaneously. However, as previously indicated, such an algorithm is
particularly important to adaptive mesh refinement approaches, where several meshes
with a certain resolution are defined on specific regions of interest, giving rise to a
coarse-grained parallelization approach. We focus on introducing the re-distancing
algorithm, as such, we do not cover mesh generation aspects, which are out of scope
of this work. Moreover, the aspect of correcting the solution in the coarser meshes
(after computing the solution in the finer ones) is not covered in this work.

The proposed algorithm is implemented in C++ using OpenMP Tasks as the core
mechanism for parallelization. We evaluate the method with test cases based on prob-
lems arising from the field of micro- and nanoelectronics fabrication simulations and
for various mesh configurations. The results include full-band re-distancing, where
the solution is calculated in the whole domain, as well as narrow-band re-distancing
scenarios, where the solution is calculated only for a certain number of cells away
from the interface.

The paper is organized as follows: In Section 2, the proposed parallel algorithm is
presented based on a short overview of the original, serial algorithm to set the stage.
The parallel performance of the implementation is analyzed in Section 3.

2032 G. Diamantopoulos et al.

2 Amulti-mesh fast marchingmethod

In this section, the serial FMM and the proposed algorithm for multiple meshes are
explained.

2.1 The serial fast marchingmethod

First, the originally presented FMM [10] (an extended description is available [13])
is summarized. The approximation of the gradient term of the eikonal equation (see
Eq. 1) is based on a first-order Godunov-type finite difference scheme [9]. The
discretized version is given by:

⎡
⎢⎢⎢⎢⎣

max
(
D−x

i,j,kφ, −D+x
i,j,kφ, 0

)2 +
max

(
D

−y
i,j,kφ, −D

+y
i,j,kφ, 0

)2 +
max

(
D−z

i,j,kφ, −D+z
i,j,kφ, 0

)2

⎤
⎥⎥⎥⎥⎦

1/2

= 1

Fi,j,k

(2)

D−
i,j,k and D+

i,j,k are the first order backward and forward difference operators,
respectively, calculated in the cell centers. We consider a cell to be an element of the
structured mesh, described by the spatial indices (i, j, k), which refer to the mesh
coordinates of the cell center. The method has O(h) accuracy [10].

The discretized equation (Eq. 2) shows an upwind structure which is the key ele-
ment of the FMM algorithm, because the solution at a certain mesh point φi,j,k

depends only on the neighboring cells with a smaller value. In the FMM algorithm,
the upwind structure is preserved, because the algorithm starts from the interface
Γ and progresses outwards, visiting the cell with the smallest value in each step.
The cell with the next minimum value is provided by a priority queue. In order
to specify the upwind order with which the cells are processed, three status flags
are used. Initially all cells which are not on the interface Γ are marked with the
flag FAR and their value is set to infinity. Interface cells are marked as KNOWN and
are initialized to a known value. In the initialization of the FMM, the cells neigh-
boring to the interface cells are marked as BAND, their solution is calculated by
solving Eq. 2, and they are added to the priority queue. The algorithm’s inherent
loop proceeds as follows: In each loop iteration, the cell with the minimum value is
removed from the heap, its value is fixed, and it is marked as KNOWN. The neigh-
bors of this cell, which at this point are not marked as KNOWN, are evaluated by
solving Eq. 2, they are marked as BAND, and they are added to the priority queue.
In case that a cell has already been marked as BAND its value and position in the
queue are updated. The loop continues until all cells are marked as KNOWN, namely
until the priority queue is empty. In case that the solution is to be calculated solely
within a narrow band around the interface Γ , the loop terminates when the absolute
value of the minimum element in the priority queue is larger than the narrow band
width.

A shared-memory parallel multi-mesh fast marching method... 2033

2.2 Themulti-mesh fast marchingmethod

The original FMM, as presented in Section 2.1, relies on a global priority queue;
hence, a parallelization of the algorithm is not straightforward. However, a very
promising approach for a parallel FMM has been presented for distributed memory
systems in [13] and for shared memory systems in [12]. This approach serves as the
basis for the multi-mesh FMM described in this section. The concept behind paral-
lelizing the FMM on a single mesh (which is based on domain decomposition) is here
re-applied, only that no domain decomposition step is required as the neighboring
meshes represent the decomposed domains.

The difference between the problem which is solved by the method presented
in [12] and [13] and the problem which is solved by the method presented here is
illustrated in Fig. 1. In Fig. 1a, there is onemesh defined in the whole domain; in order
to parallelize this problem, a domain decomposition is introduced and the solution

Fig. 1 Exemplary single trench problem with a one mesh and domain decomposition into four partitions,
each processed by on thread, and b three meshes around the trench each undertaken one OpenMP task

2034 G. Diamantopoulos et al.

in each partition is computed by a separate parallel unit, e.g., a thread. Figure 1b
shows an exemplary adaptive mesh refinement scenario: Three finer meshes, offering
the same resolution, are defined around the interface on specific regions of interest.
The solution in each mesh is computed by, in this case, a separate task. What is
common in both cases is that the dependences among the partitions in the first case
and the interface-sharing dependences among neighboring meshes in the second case
are resolved using the synchronized data exchange approach introduced in [13].

Before starting the multi-mesh FMM algorithm, two steps are necessary. The first
is to introduce a ghost layer for each mesh. In this way, overlapping areas between
meshes are potentially introduced, if the meshes are close to each other. Later on,
during the execution of the algorithm, the data in the overlapping areas is exchanged
in order to resolve dependencies among meshes. The second step is the detection and
initialization of the interface cells. This step is required in order to provide the initial
condition of Eq. 1 on the interface Γ .

In the trivial case where meshes are independent of each other (i.e., they do not
share an interface), the FMM can be applied independently with a local priority queue
in each mesh. However, in the case of neighboring meshes, there are dependencies
among neighbors, as the solutions of the neighboring meshes influence each other,
requiring an inter-mesh communication. In order to resolve dependencies and at the
same time achieve parallel processing of the meshes, the proposed solution is the
following (cf. Algorithm 1): The FMM algorithm is independently applied to each
mesh, then the solutions within overlapping halo regions towards the neighboring
meshes are communicated in a synchronized data exchange step. The communicated
solutions are evaluated and those that preserve the upwind principle of the FMM are
integrated into the solution. In cases where neighboring solutions are accepted for
integration into the local solution of a particular mesh, this mesh has to repeat the
FMM algorithm to fully integrate the neighbor solution into the local one. The loop
continues until no new solutions are integrated after data exchange.

The multi-mesh FMM algorithm, as described in Algorithm 1, works as fol-
lows: In the beginning, all meshes are initialized, namely the neighbors of the
interface cells are identified, evaluated and added to the heap (lines 1–5). This
process can be independently performed in each mesh; hence, it can be executed
by independent tasks. However, a task-wait (i.e., synchronization) clause is nec-
essary before starting the fast marching loop (line 6) in order to make sure that
all meshes are properly initialized. The next step is the fast marching loop (lines
6–26). Before discussing the loop details, the concept of active meshes has to be
introduced. A mesh is considered active, when its priority queue is not empty and
the minimum element is within the narrow band. For every active mesh, a sep-
arate task is spawned. The task consists of three functions: In the first function,
march narrow band, the FMM loop as explained in Section 2.1 is performed.
In the second function, collect overlapping data, the updated values in
the regions which overlap with neighboring meshes are collected (i.e., detected and
added to an output buffer) by each mesh independently. Finally, in the third func-
tion, exchange overlapping data, the collected solutions are communicated
to the corresponding neighboring meshes. The communicated solutions are not inte-
grated yet into the data of the neighboring meshes, but they are placed in a dedicated,

A shared-memory parallel multi-mesh fast marching method... 2035

mesh-exclusive buffer (which thus does not require guarding from race conditions)
and they are evaluated at a later stage of the algorithm. In order to ensure that all com-
munication is completed before moving to the next step, a task-wait clause is used
again for synchronization (line 17). The next step is the conditional integration of the
overlapping data (lines 21–25). This is performed by new tasks (where a separate task
is spawned for every mesh): In the function integrate overlapping data,
all received solutions are evaluated and the cell value is updated, if the received (by
the neighbor) value is smaller than the current value. It is important that all meshes
(and not only the active ones) perform this step, because even inactive meshes might
receive relevant update data from their active neighbors. All cells with updated val-
ues are placed in the priority queue of their meshes and the loop is restarted. The loop
terminates in case that all meshes are inactive.

Algorithm 1Multi-Mesh FMM.

1: for every mesh do � Parallel region
2: Create Task:
3: initialize FMM
4: End Task
5: end for � Task-wait
6: while 1 do
7: ActiveMeshes ← 0 � Shared variable
8: for every mesh do � Parallel region
9: ifMesh is Active then
10: ActiveMeshes ← ActiveMeshes + 1
11: Create Task:
12: march narrow band
13: collect overlapping data
14: exchange overlapping data
15: End Task
16: end if
17: end for � Task-wait
18: if ActiveMeshes = 0 then � Algorithm finished
19: Break Loop
20: end if
21: for every mesh do � Parallel region
22: Create Task:
23: integrate overlapping data
24: End Task
25: end for � Task-wait
26: end while

The entire algorithm uses an implicit pool of tasks to enable load balancing, as
meshes potentially have different sizes and thus represent different computational
loads. For each mesh, a separate task is created and is executed as soon as a thread
becomes available. In this way, threads do not stay idle. Hence, the computational

2036 G. Diamantopoulos et al.

load of unequally sized meshes can be balanced out (to some degree), creating an
efficient strategy for the solution of problems with varying mesh sizes.

3 Parallel performance results and analyses

This section evaluates the performance of the introduced parallel multi-mesh FMM.
It is important to note that regarding the knowledge of the authors there is no other
algorithm available allowing for re-distancing of several meshes (which potentially
share an interface) with the same resolution in parallel. Therefore, a comparison is
not possible. However, a detailed analysis of the algorithm’s performance is provided,
allowing to judge the algorithm’s principal capabilities.

Fig. 2 Three-Trenches test case. a 12 meshes—one in each corner. b 24 meshes—two in each corner

A shared-memory parallel multi-mesh fast marching method... 2037

Fig. 3 Single-Trench test case with four meshes: a outlines, b solutions; red and blue areas with increasing
intensity denote two sides of increasing minimum distance towards the interface

3.1 Test cases

For the evaluation of the parallel performance of the parallel multi-mesh FMM, test
cases inspired by problems from microelectronics engineering are chosen, but of
course the algorithm can be applied to arbitrary re-distancing problems. The first test
case in Fig. 2 is an interface with three trenches, offering 12 meshes (one in each cor-
ner) with a grid resolution of 0.00125 in each direction (see Fig. 2a) and 24 meshes
(two in each corner) with a resolution of 0.0003125 (see Fig. 2b) in the domain
Ω = [−1, 1]×[−1, 1]×[−1, 0.5] (referred to as Three-Trenches). For the 12 meshes
case, the meshes residing on the upper corners of the interface are by 16, 7% bigger
than those on the lower corner. For the 24 meshes case, the mesh pair is differently
sized, as can be seen in Fig. 2b: on the upper corners, they differ by 33.3% and on the
lower corners by 50%. The second test case, shown in Fig. 3, is an interface with one
trench and four meshes (one in each corner) with resolution 0.00125 in each direc-
tion in the domain Ω = [−1, 1]×[−1, 1]×[−1, 0.5] (referred to as Single-Trench).
Here, all meshes have exactly the same size. The third test case is a complex interface
visualized in Fig. 4, (referred to as Quad-Holes). In this test case, multiple meshes
are defined and they are clustered around the four structures of interest on the inter-
face. In Fig. 4a, 48 meshes of various sizes are defined with resolution 0.005 and in
Fig. 4b, 303 meshes with resolution 0.00125. Moreover, this test case is additionally
evaluated for 489 meshes with resolution 0.00125 and 2389 meshes with resolution
0.0003125 in each direction, in the domain Ω = [−1, 1]× [−1, 1]× [−1, 0.5]. In all
test cases, the performance is benchmarked for full band re-distancing (i.e., computa-
tion for the whole domain) as well as for narrow-band re-distancing (i.e., computation
for a certain number of cells away from the interface). These test cases offer a com-
bination of different problem sizes, enabling an evaluation of the performance for
load-balanced and load-imbalanced scenarios.

3.2 Benchmarking platform

Benchmarking results have been produced on a single node of the Vienna Scientific
Cluster 3 (VSC-3).1 The node has two sockets, each equipped with an 8-core Intel
Xeon E5-2650v2 Ivy Bridge-EP processor, running at 2.6 GHz with 20 MB of L3

1http://vsc.ac.at

http://vsc.ac.at

2038 G. Diamantopoulos et al.

Fig. 4 Quad-Holes test case: a 48 meshes, b 303 meshes

cache. The node offers 16 physical and 32 logical cores which are accompanied by
64 GB of DDR3 memory. The benchmark implementation of the multi-mesh FMM
is based on GNU/Linux and C++ (Intel C++ compiler version 18.0).

3.3 Results and analysis

3.3.1 Full-band re-distancing

The runtime and parallel speedup for full-band re-distancing for the Three-Trenches
case (cf. Fig. 2) is presented in Fig. 5. For up to six threads, the parallel efficiency in
both cases is around 50%. Beyond that, saturation effects start to severely limit the
efficiency, more so for the case with 12 meshes. This is in particular visible for more
than 12 threads: Increasing thread under-utilization (i.e., more threads available than
meshes to be processed) leads to degradation of the speedup.

Fig. 5 Runtime (a) and parallel speedup (b) for the Three-Trenches test case with 12 and 24 meshes (cf.
Fig. 2)

A shared-memory parallel multi-mesh fast marching method... 2039

In order to explain the suboptimal parallel performance of the Three-Trenches test
case, a simple test case offering four equally sized meshes, i.e., Single-Trench (cf.
Fig. 3), is investigated using four threads only, thereby providing a simplified picture
which is more amenable for analysis. The performance results are illustrated in Fig. 6.
In this case, the expected performance should offer a nearly linear speedup, because
the workload is equally distributed among threads. However, as can be seen in Fig. 6a
and b, the performance scaling is sub-linear, already for two threads. This can be
explained by the average runtime per mesh, i.e., average time per task (excluding
synchronization), which is illustrated with the red (bottom) line in Fig. 6a. Here the
average runtime is increasing as the number of threads is increasing. This shows the
impact of shared computing resources, in particular the memory subsystem, on the
overall scalability.

The performance for the Quad-Holes case is visualized in Fig. 7 for 48 and 303
meshes, and in Fig. 8 for 489 and 2389 meshes. As can be seen for all cases, the per-
formance for up to 8 threads is quite good (efficiency around 88%). For the 48 meshes
case (Fig. 7), the speedup drops beyond 8 threads. The reason for this performance
drop is that there are 8 meshes for which the FMM requires more than 10 millisec-
onds (for each mesh). For all other meshes, the FMM runtime is around 1 millisecond
or less, which causes a massive load imbalance. In this case, 8 threads will be busy
with executing the FMM for the big meshes and the other threads will become idle
as soon as the small meshes are processed. In all other cases, the performance is scal-
able (efficiency around 75% or more) even for up to 16 threads. Beyond 8 threads
(where the second socket of the dual-socket compute platform is utilized), scaling
continues to be very good (up to 79% efficiency for 16 threads and the 2389 meshes
case), although non-unified memory access (NUMA) effects limit further speedup
improvements. For all cases where the parallel efficiency is high (i.e., around 75% or
more) the problem consists of many more meshes—at least 10 times more—than the
compute cores/threads available (see Fig. 4b) with various sizes. Due to the fact that
the number of meshes (hence the number of tasks) is much larger than the number of

Fig. 6 Overall runtime and average runtime per mesh (a), parallel speedup (b) for the Single-Trench test
case with 4 meshes (cf. Fig. 3)

2040 G. Diamantopoulos et al.

Fig. 7 Runtime (a) and parallel speedup (b) for theQuad-Holes test casewith 48 and 303meshes (cf. Fig. 4)

threads, the threads do not stay idle (except only at synchronization points), because
a new task is assigned to them as soon as they become available.

The here applied pool of tasks concept has an inherent advantage over a single
mesh decomposition approach [4]: It inherently offers load balancing. Using a pool
of tasks (and the dynamic thread scheduling it provides) allows the parallel multi-
mesh FMM to reach a parallel efficiency of up to 79% for 16 threads and even higher
for 8 threads, regardless of the shape and location of the interface that is used as
initial condition. By comparison, the domain decomposition approach used in [4],
uses a static workload distribution where each thread is responsible for one part of the
domain without the option of re-distributing the work in case that one or more threads
become idle. The parallel performance of a static domain decomposition approach
relies heavily on the shape and location of the interface and whether this can be evenly
distributed among the available threads. In case of an uneven thread distribution of
the interface and domain (which is to be expected in realistic application cases), the
result is an unbalanced workload which ultimately limits parallel efficiency.

Fig. 8 Runtime (a) and parallel speedup (b) for the Quad-Holes test case with 489 and 2389 meshes

A shared-memory parallel multi-mesh fast marching method... 2041

3.3.2 Narrow-band re-distancing

The runtime and parallel speedup for narrow-band re-distancing is shown in Fig. 9
for the Three-Trenches test case and in Figs. 10 and 11 for the Quad-Holes test cases.
In these figures, the performance benchmarks for a narrow band of 5 and 10 cells
away from the interface as well as for full-band re-distancing is illustrated.

In case of narrow-band re-distancing, the solution is calculated for a part of
the domain only (within a specific distance towards the interface); therefore, the
workload is smaller compared to the full-band re-distancing where the solution is cal-
culated for the whole domain. For this reason, in all cases, the runtime for a narrow
band of 5 cells is the lowest since the workload here is the minimum compared to
the other two cases. For the 10 cells narrow band, in Figs. 10 and 11, the runtime
lies between the runtime for the 5 cells narrow band and the runtime for the full
band because the workload in this case is larger than for the 5 cells case but smaller
than the full band. In Fig. 9, on the other hand, the runtime for the 10 cells narrow

Fig. 9 Parallel performance for the Three-Trenches test case for full-band re-distancing (cf. Fig. 5) as well
as 10 cells and 5 cells narrow band re-distancing. Runtime (a) and speedup (b) with 12 meshes, runtime
(c) and speedup (d) with 24 meshes (cf. Fig. 2)

2042 G. Diamantopoulos et al.

Fig. 10 Parallel performance for the Quad-Holes test case for full-band re-distancing (cf. Fig. 7) as well
as 10 cells and 5 cells narrow band re-distancing. Runtime (a) and speedup (b) with 48 meshes, runtime
(c) and speedup (d) with 303 meshes (cf. Fig. 4)

band and the full band are almost the same. The reason for that is that the size of the
meshes is approximately the same as the narrow band width. For the 12 meshes case
(cf. Fig. 2a), the number of cells in the x-direction is 24 for the meshes on the upper
corners and 20 for the meshes on the lower corners and in the z-direction there are
20 cells for every mesh. For the 24 meshes case (cf. Fig. 2b), there are 12–24 cells in
the x-direction and 12–24 cells in z-direction. Therefore, in case that a 10 cells nar-
row band is used (10 cells away from the interface in each direction, hence 20 cells
in total), the solution is computed almost in the whole domain. For this reason, the
runtime for full band re-distancing and a 10 cells narrow-band re-distancing is almost
the same.

In terms of parallel efficiency, the results for the narrow-band re-distancing are, in
most cases, not significantly different to that of the full-band computation. Despite
the fact that the runtimes are lower, the serial version has a smaller runtime too;
hence, the parallel speedup is not higher for the narrow-band re-distancing. A case

A shared-memory parallel multi-mesh fast marching method... 2043

Fig. 11 Parallel performance for the Quad-Holes test case for full-band re-distancing (cf. Fig. 8) as well
as 10 cells and 5 cells narrow band re-distancing. Runtime (a) and speedup (b) with 489 meshes, runtime
(c) and speedup (d) with 2389 meshes

where the situation is different is the Quad-Holes test case with 48 meshes, which
is illustrated in Fig. 10a and b, the parallel efficiency for narrow-band re-distancing
is lower compared to the full-band computation for up to 8 threads but is better—
although constant—for larger thread numbers: As mentioned above, in this case,
there are 8 meshes for which the full-band FMM has a runtime approximately ten
times higher than the other meshes. In case of narrow-band re-distancing though, the
runtime for those meshes is smaller (due to the fact that the solution is calculated only
for a part of the domain). Therefore, the load-imbalance observed in the full-band
computation is moderate for the narrow-band computation.

4 Summary

A parallel multi-mesh FMM algorithm which uses tasking in a shared memory
environment for parallelization has been introduced. The proposed method shows a

2044 G. Diamantopoulos et al.

highly scalable performance for cases where there are many more (at least 10 times
more) meshes available than compute cores/threads, favoring our approach’s inher-
ent load-balancing capabilities via the applied pool of tasks concept. On the other
hand, the performance for a smaller number of meshes with larger size is limited and
becomes suboptimal for cases where the workload is not evenly distributed among
the meshes.

Acknowledgements The financial support by the Austrian Federal Ministry for Digital and Economic
Affairs and the National Foundation for Research, Technology and Development is gratefully acknowl-
edged. The computational results presented have been achieved using the Vienna Scientific Cluster
(VSC).

References

1. Breuß, M., Cristiani, E., Gwosdek, P., Vogel, O.: An adaptive domain-decomposition technique for
parallelization of the fast marching method. Appl. Math. Comput. 218(1), 32–44 (2011). https://doi.
org/10.1016/j.amc.2011.05.041

2. Chacon, A., Vladimirsky, A.: Fast two-scale methods for Eikonal equations. SIAM J. Sci. Comput.
34(2), A547–A578 (2012). https://doi.org/10.1137/10080909X

3. Chacon, A., Vladimirsky, A.: A parallel two-scale method for Eikonal equations. SIAM J. Sci.
Comput. 37(1), A156–A180 (2015). https://doi.org/10.1137/12088197X

4. Diamantopoulos, G., Weinbub, J., Hössinger, A., Selberherr, S.: Evaluation of the shared-memory
parallel fast marching method for re-distancing problems. In: Proceedings of the 17th International
Conference on Computational Science and Its Applications (ICCSA), pp. 1–8. https://doi.org/10.1109/
ICCSA.2017.7999648 (2017)

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271
(1959). https://doi.org/10.1007/BF01386390

6. Herrmann, M.: A domain decomposition parallelization of the fast marching method. In: Anual
Research Briefs, pp. 213–225. Center for Turbulence Research, Stanford University (2003)

7. Jeong, W.K., Whitaker, R.T.: A fast iterative method for Eikonal equations. SIAM J. Sci. Comput.
30(5), 2512–2534 (2008). https://doi.org/10.1137/060670298

8. Manstetten, P.: Efficient Flux Calculations for Topography Simulation. Ph.D. thesis, TUWien (2018).
http://www.iue.tuwien.ac.at/phd/manstetten/

9. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal.
29(3), 867–884 (1992). https://doi.org/10.1137/0729053

10. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational
Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 2nd edn. Cambridge University
Press (1999)

11. Weinbub, J., Hössinger, A.: Comparison of the parallel fast marching method, the fast iterative
method, and the parallel semi-ordered fast iterative method. Procedia Comput. Sci. 80, 2271–2275
(2016). https://doi.org/10.1016/j.procs.2016.05.408

12. Weinbub, J., Hössinger, A.: Shared-memory parallelization of the fast marching method using an over-
lapping domain-decomposition approach. In: Proceedings of the 24th High Performance Computing
Symposium, pp. 18:1–18:8. https://doi.org/10.22360/SpringSim.2016.HPC.052 (2016)

13. Yang, J., Stern, F.: A highly scalable massively parallel fast marching method for the Eikonal equation.
J. Comput. Phys. 332, 333–362 (2017). https://doi.org/10.1016/j.jcp.2016.12.012

14. Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2005).
https://doi.org/10.1090/S0025-5718-04-01678-3

15. Zhao, H.: Parallel implementations of the fast sweeping method. J. Comput. Math. 25(4), 421–429
(2007). https://www.jstor.org/stable/43693378

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1016/j.amc.2011.05.041
https://doi.org/10.1016/j.amc.2011.05.041
https://doi.org/10.1137/10080909X
https://doi.org/10.1137/12088197X
https://doi.org/10.1109/ICCSA.2017.7999648
https://doi.org/10.1109/ICCSA.2017.7999648
https://doi.org/10.1007/BF01386390
https://doi.org/10.1137/060670298
http://www.iue.tuwien.ac.at/phd/manstetten/
https://doi.org/10.1137/0729053
https://doi.org/10.1016/j.procs.2016.05.408
https://doi.org/10.22360/SpringSim.2016.HPC.052
https://doi.org/10.1016/j.jcp.2016.12.012
https://doi.org/10.1090/S0025-5718-04-01678-3
https://www.jstor.org/stable/43693378

A shared-memory parallel multi-mesh fast marching method... 2045

Affiliations

Georgios Diamantopoulos1 ·Andreas Hössinger2 ·Siegfried Selberherr3 ·
Josef Weinbub1

Andreas Hössinger
andreas.hoessinger@silvaco.com

Siegfried Selberherr
selberherr@iue.tuwien.ac.at

Josef Weinbub
weinbub@iue.tuwien.ac.at

1 Christian Doppler Laboratory for High Performance TCAD, Institute for Microelectronics,
TU Wien, Vienna, Austria

2 Silvaco Europe Ltd., St Ives, Cambridgeshire, UK
3 Institute for Microelectronics, TU Wien, Vienna, Austria

mailto: andreas.hoessinger@silvaco.com
mailto: selberherr@iue.tuwien.ac.at
mailto: weinbub@iue.tuwien.ac.at

	A shared-memory parallel multi-mesh fast marching method...
	Abstract
	Introduction
	A multi-mesh fast marching method
	The serial fast marching method
	The multi-mesh fast marching method

	Parallel performance results and analyses
	Test cases
	Benchmarking platform
	Results and analysis
	Full-band re-distancing
	Narrow-band re-distancing

	Summary
	References
	Affiliations

