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Wigner equation for general electromagnetic fields: The Weyl-Stratonovich transform
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Gauge-invariant Wigner theories are formulated in terms of the kinetic momentum, which—being a physical
quantity—is conserved after a change of the gauge. These theories rely on a transform of the density matrix,
originally introduced by Stratonovich, which generalizes the Weyl transform by involving the vector potential.
We thus present an alternative derivation of the Weyl-Stratonovich transform, which bridges the concepts and
notions used by the different, available gauge-invariant approaches and thus links physically intuitive with formal
mathematical viewpoints. Furthermore, an explicit form of the Wigner equation, suitable for numerical analysis
and corresponding to general, inhomogeneous, and time-dependent electromagnetic conditions, is obtained. For
a constant magnetic field, the equation reduces to two models: in the case of a constant electric field, this
is the ballistic Boltzmann equation, where classical particles are driven by local forces. The second model,
derived for general electrostatic conditions, involves novel physics, where the magnetic field acts locally via
the Liouville operator, while the electrostatics is determined by the manifestly nonlocal Wigner potential. A
significant consequence of our work is the fact that now the constant magnetic field case can be treated with
existing numerical approaches developed for the standard, scalar potential Wigner theory. Therefore, in order
to demonstrate the feasibility of the approach, a stochastic method is applied to simulate a physically intuitive
evolution problem.

DOI: 10.1103/PhysRevB.99.014423

I. INTRODUCTION

The Wigner formulation of quantum mechanics [1] offers
certain heuristic and applicational advantages as compared
to other formal theories [2] and thus finds increased use
in recent years in many different fields [3]. Many classical
concepts and notions developed in the phase space are di-
rectly adopted or generalized by the Wigner formalism [4].
This establishes a unique correspondence between classical
and quantum mechanics, which enables a seamless transition
between purely quantum and classical descriptions [5]. In this
way the Wigner formalism is very convenient for analyzing
physical processes governed by the complicated interplay
between quantum-coherent phenomena and effects of deco-
herence which strive to impose classical behavior [6,7]; in
contrast to other quantum mechanical formalisms, which deal
with purely mathematical quantities, the Wigner function is a
physical quantity as it can be directly measured. This aspect
has become extremely important in recent times, where one
wants to actually visualize the presence of entanglement and
nonclassical behavior [8–10]. Entanglement has been called
the most important aspect of quantum mechanics [11]. As
there is no quantum operator that gives entanglement as an
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eigenvalue, so its existence has to be provided by visualiz-
ing the Wigner function from the experiments. Indeed, the
Wigner function, which has real values, but is not necessarily
positive definite as its classical counterpart and is thus called a
quasiprobability, can be presented as a linear combination of
probabilities, which can be measured and used to reconstruct
the Wigner function. In particular the latter can be written
in terms of expectation values of a displaced and/or rotated
parity operator and thus enables to visualize entanglement
within a quantum system [9,12].

The formulation of the Wigner theory is historically based
on operator quantum mechanics [13,14]. Due to the works
of Moyal and Groenewold, the Wigner formalism has been
established in the mid-twentieth century as an independent,
self-contained formulation of quantum mechanics in terms of
the Moyal bracket and the star-product [13–17], introduced
already at the level of the fundamental single particle in
potential problem. It has become common in most quantum
mechanical descriptions to introduce the electric field in a
scalar potential gauge. This makes it easy to show gauge
invariance. The formulation of the Schrödinger’s equation in
an arbitrary magnetic field is quite well known, beginning
already with Darwin and Fock [18–20]. The same holds
for the Wigner formalism, having already been reviewed by
Carruthers and Zachariasen [21]. In this way, the inclusion
of the magnetic field raises the problem of the choice of the
gauge.
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We recall the concept of gauge invariance. In classical
mechanics, the scalar and the vector potentials provide a
mathematically convenient way to describe the particle dy-
namics governed by the electric and the magnetic fields E
and B. The four potential components determine the six
components of E and B as follows:

B = ∇ × A; E = −∇φ − ∂A
∂t

. (1)

The values of B and E are invariant with respect to a general
gauge transform

A′ = A + ∇χ ; φ′ = φ − ∂χ

∂t
, (2)

where A and φ and their primed counterparts are the old and
new sets of vector and scalar potentials and χ can be freely
chosen within a certain class of functions.

In the Newtonian picture, transport is usually discussed
in terms of the Boltzmann equation. It is the force due to
the applied electric and magnetic fields that is important.
Quantum mechanics is different. The Schrödinger equation,
and any other quantum description, depends directly upon
the potentials themselves. While this may seem like a minor
difference, this is just not the case. In fact, Wigner himself
[1], actually, described the modifications to thermodynamics
due to the much more complicated dependence upon the
potentials in quantum mechanics. He was the first to introduce
an effective potential as a method to modify classical systems
to account for (weak) quantum effects. This is an important
approach highly utilized in todays semiconductor modeling
and simulation [14,22]. In the simplest case, quadratic poten-
tials do not give rise to modifications in the Wigner equation
of motion, as this reduces to the Boltzmann equation, but
stronger variations of the potential certainly give rise to much
more complicated terms.

The transform (2) provides equivalent formulations of a
given quantum mechanical problem, which, however, are
characterized by different theoretical and numerical pecu-
liarities. An emblematic example is related to Wannier-Stark
localized states [23] and accelerated Bloch states [24], which
provide two possible ways of describing electron transport
in superlattices governed by a homogeneous electric field.
The problem polarized the scientific society into two parts,
speculating about the correctness of the former or the latter
approach. Finally it has been shown that the two pictures are
equivalent and related to the choice of a vector (φ = 0) or a
scalar (A = 0) potential gauge [25,26].

In the following, we review related research, which con-
siders the Wigner equation in conjunction with (2). However,
most research works focus on the effect of the magnetic field,
so that the electromagnetic Wigner model is derived after a
choice of a concrete gauge for the potentials.

Levinson [27] observed that in the case of homogeneous
electric and magnetic fields the physical system has a trans-
lational symmetry. This should hold for the Wigner func-
tion fw and the density matrix ρ. However, for example,
〈p|ρ̂|p′〉 in representation p of the canonical momentum
p̂ = −ih̄∇, related to the kinetic momentum P = p − eA(r),
has off-diagonal elements. In contrast, the density matrix of
the kinetic momentum has diagonal elements only due to
the translational invariance, where 〈P|ρ̂|P〉 gives the kinetic

momentum distribution function. This imposes a relationship
between p and p′ and thus a conjunction between gauge trans-
form and translation operations. A gauge, where the constant
part of the electric field is described by a scalar potential and
the alternating, time-dependent part by a vector potential, has
been conveniently chosen for the analysis. Levinson claimed
the following relationship between the spatial variables of the
density matrix:

〈r + a|ρ̂|r′ + a〉 = e
ie
h̄
A(a)·(r−r′ )〈r|ρ̂|r′〉 . (3)

The Wigner transform of this equality gives rise to

fw(p, r) = fw(P) , (4)

together with the evolution equation for fw(P). An important
peculiarity is that the differential part of the derived Wigner
equation resembles the Liouville operator corresponding to
the case of the magnetic field.

Constant magnetic field forms of the Wigner function have
been further utilized in many studies. The entire microwave
field (E and B) were used in the Jaynes-Cummings model
[28]. The field is also considered in optics, especially with
squeezed states [29–31].

One of the first Wigner function simulations considering
the magnetic field in electron transport is due to Kluksdahl
etal. [32]. A Wigner equation is derived under constant mag-
netic field conditions and in a symmetric gauge to analyze the
magnetoconductance of a single barrier tunneling structure.
The equation is then solved with a finite difference approach
in a two-dimensional simulation domain x, y. The barrier is
assumed independent on the y coordinate, which simplifies
the numerical task. Notably, this is also one of the first com-
puter simulations of a two-dimensional Wigner function prob-
lem: as it will be further discussed, robust multi-dimensional
algorithms for phase space quantum electron transport have
only been developed recently [14].

Materdey and Seyler [33,34] consider a uniform magnetic
field and use a symmetric gauge to develop a Wigner theory
and applied it to calculate the quantum dielectric function
and to explore De-Haas–van Alphen oscillations and mag-
netic field localization. Two alternative definitions of the
Wigner function are introduced via alternative combinations
of the canonical momentum and the vector potential oper-
ators: P̂ = p̂ − eÂ and D̂ = p̂ + eÂ. In the first case, we
recognize the kinetic momentum operator P̂, while in the
second case, the Wigner function is expressed via the expec-
tation value in a given Schrödinger state |ψ〉 of the operator
Ŵ = e− i

2h̄
s·D̂∗

e
i

2h̄
s·D̂. The authors show that both P̂ and Ŵ are

invariant under a gauge transform and give a preference to
D̂. Nevertheless, the physical derivations are in terms of the
kinetic momentum P.

If a quantum phase space theory is developed in terms
of the canonical momentum p, then the dynamical functions
of the physical quantities are also obtained in terms of p;
hence the practical importance of the kinetic momentum. In
this way, generic physical quantities of the kinetic momentum,
expressed as functions of the canonical momentum, involve
the vector potential and hence depend on the chosen gauge.
Consequently, a change of the gauge requires to develop a
novel theory and in particular to recalculate the set of the
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dynamical functions. Therein lies the fundamental motivation
and need to develop a gauge-independent Wigner theory.

In a very recent work of Iafrate, Sokolov, and Krieger [35],
the Wigner theory for Bloch electrons in homogeneous elec-
tric and magnetic fields of arbitrary time dependence has been
developed. The electric field is treated in a vector potential
gauge and the magnetic field is in the symmetric gauge. In
this way, the basis is given by accelerated Bloch states. Next, a
change to a new set of variables gives rise to a gauge-invariant
Wigner function of position, kinetic momentum, and time.
The resulting equation for free electrons, which resembles the
classical Boltzmann counterpart, consistently depends only
on the forces B and E. The approach is then generalized for
arbitrary energy bands. Besides the theoretical value of the
paper, it also promotes the practical importance of a gauge-
invariant Wigner formalism in solids. We note that Maxwell’s
equations require an inhomogeneous electric field to give a
time varying magnetic field.

Alternative approaches are used to derive the gauge-
invariant formalism. A gauge-invariant Wigner approach un-
der general electromagnetic conditions was developed at a
high formal level of abstraction by Serimaa etal. [36], with a
further generalization to include radiation reactions [37]. The
derivation is based on the concept of a generating operator

T̂ (s, q) = e
i
h̄

(sP̂+qr̂) P̂ = p̂ − eÂ(r) , (5)

where the vector potential may contain also quantized degrees
of freedom. Then the gauge-independent Wigner operator
(GIWO) Ŵ (P, r), which is a function of the P, r variables,
is defined as a Fourier transform of (5)

Ŵ (P, r) = C

∫
ds

∫
dqe− i

h̄
(sP+qr)T̂ (s, q) , (6)

where C is a dimension-dependent normalization constant.
The equation of motion for GIWO is derived in terms of op-
erators Ê, B̂, where the functional dependence of electric and
magnetic vectors on the position is replaced by the operator
R̂ = r + ih̄τ∇P and where τ is a one-dimensional variable.
The gauge-independent Wigner function (GIWF) is defined
as the trace of the GIWO with the density operator

fw = Tr(Ŵ ρ̂ ) . (7)

Accordingly, the equation for the GIWF is obtained by the
trace of the GIWO equation, multiplied by the density oper-
ator. We note that the GIWF equation is formulated with the
help of the pseudodifferential operators Ê and B̂. That is, in
the Taylor expansion of the electromagnetic field functions,
the position argument is replaced by the operator R̂ which
contains ∇P. This gives rise to consecutive powers of P
derivatives acting on fw. This means that the derived equation
is implicit with respect to its mathematical appearance, in
particular, the order of the P derivatives depends on the
functional dependence on the position of the considered elec-
tromagnetic field. Equation (7) is an implicit expression for
fw, where functional dependence can be obtained only after
the action of differential operators in Ŵ on the density matrix.
Nevertheless, it is possible to find an explicit form of (7),
which connects the Wigner function to the position-dependent
density matrix [36]. A Baker-Campbell-Hausdorff (BCH) rep-
resentation of the operator T̂ was derived by Serimaa et al.,

which, after inserting in (7) and applying the trace operation,
gives rise to a Fourier type of transform of the density matrix,
where the argument of the exponent depends on both the
kinetic momentum and the vector potential. It generalizes the
Weyl transform of the standard, scalar potential Wigner theory
and is reduced to the latter if the vector pontential becomes
zero. The resulting expression, first obtained by Stratonovich
[38] and thus called Weyl-Stratonovich (WS) transform, will
be in the focus of this paper.

Levanda and Fleurov [39] also apply this transform to de-
rive “quantum analogs of Hamilton-Jacobi and the Boltzmann
kinetic equations.” They, however, associate the transform to
another work, which was published ten years after the paper
of Stratonovich. We note that the derived equations are again
implicitly formulated with the help of two operator functions.
The sinc function, denoted by j0(x), and the function j1(x) =
sin(x)/x2 − cos(x)/x, where the argument x is replaced by
the operator � = h̄ ∂

∂r
∂
∂P . As discussed, such formulations

have their theoretical value but lack practical applicability for
numerical implementations due to their implicit formulations.

Definition (6) has been already applied within the prag-
matic approach developed by Kubo [40] under the name
“quantum analog of a delta function in the phase space” and
denoted by �̂(p̂, r̂) (the canonical pair of operators). It es-
tablishes an one-to-one correspondence between the operator
D̂(p̂, r̂) and the dynamical functions Ds (p, r), corresponding
to a generic physical quantity D: Ds = CTr(D̂�̂). The dy-
namical functions are used to introduce the differential opera-
tors D̂s (p − i h̄

2 ∇r, r + i h̄
2 ∇p), called Wigner operators. They

have the property to recover the corresponding dynamical
function when acting on the unity function: D̂W · 1 = Ds .
Wigner operators are used to prove the relationship

Tr(D̂F̂ ) = C

∫
dp

∫
drDWFW · 1 = C

∫
dp

∫
drDsFs .

(8)

If F̂ is chosen to be the density operator, (8) can be applied
to calculate expectation values of physical observables as
phase space integrals with the corresponding Wigner function.
Furthermore, this result can be used to formulate a gauge-
independent expressions for the physical observables. Ac-
cording to Kubo [40]: “Now, a Wigner distribution function,
originally defined as a function of p and r, can be regarded as
a function of P and r simply by change of the independent
variables.” The Jacobian of the change of the variables, as
defined by the relationship between the canonical and kinetic
momentum, equals to 1. In this way, Kubo develops a “Wigner
representation of quantum mechanics . . .characterized by the
use of noncanonical variables.” The evolution equation for the
Wigner function in this representation derived under constant
magnetic field conditions is “. . .exactly the same as that in the
absence of a magnetic field” plus a term, which is the same as
the Lorentz force term in the classical Liouville equation.

The intuitive and physically founded approach suggested
by Stratonovich [38] in the year 1956 is based on the ex-
pressions for the spatially local mean values of products of
components of the canonical momentum (position represen-
tation). The search of a gauge-invariant Wigner function is
then equivalent to a search of an invariant formulation of the
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corresponding values of the kinetic momentum. The analysis
of the way the former modifies after a gauge transform (2)
A′ = A + ∇χ , ρ ′(r1, r2) = eiχ (r1 )−iχ (r2 )ρ(r1, r2) suggests a
change of the operator variables, which gives rise to expres-
sions for the local mean value of products of components of
the kinetic momentum. These expressions are used to define
the local characteristic function, which obeys a differential
equation and can be explicitly solved. The gauge-invariant
Wigner distribution is obtained after a Fourier transform of
the solution, thus giving the WS transform. However, the cor-
responding Wigner evolution equation is not stated explicitly.
This fact is fully understandable, having in mind that 60 years
ago there were neither powerful computers, nor numerical
methods with which to solve the equation.

In this work, we show that the formal [36], the pragmatic
[40], and the intuitive [38] approaches can be bridged with
the help of a first-order differential equation, associating
canonical transformations with a change of the variables. The
equation links the density matrix to the characteristic function
of the local mean values of products of kinetic momentum
components. The solution of the equation, obtained as a
product of an exponential function of the vector potential
with the density matrix, which is the characteristic function,
is then Fourier-transformed to obtain the kinetic momentum-
dependent Wigner function from the density matrix: the WS
transform. The Wigner equation is then derived from the
evolution equation for the position-dependent density matrix
formulated by using scalar and vector potentials, correspond-
ing to general, inhomogeneous, and time-dependent electro-
magnetic conditions. The WS transform is then applied to
involve the kinetic momentum. The equation has an explicit
mathematical structure in the sense that the differential and
integral operations are fixed and independent from the electric
and magnetic fields, which appear as regular functions of
the position. Two cases corresponding to constant magnetic
field are considered; in particular, the usual validation that
the equation reduces to the Boltzmann counterpart under
homogeneous conditions is presented. The work concludes
with discussing numerical aspects based on simulations of
the evolution of an initial Wigner function governed by a
magnetic field.

II. ELECTROMAGNETIC POTENTIALS
IN THE WIGNER PICTURE

We consider the evolution of a charged particle driven
by electric and magnetic fields described by a fixed set of
vector and scalar potentials A(r) and φ(r) = V (r)/e. The
time dependence of A is not written explicitly. From a
classical point of view the particle evolution is governed
by forces. Electromagnetic potentials are introduced as a
mathematical construct, which simplifies the calculations and
have no physical significance [41]. Quantum descriptions
explicitly depend on the potentials via the Hamiltonian. As
previously mentioned, a gauge transform can entirely change
the theoretical formulation in terms of physical descriptors.
However, consistently, a gauge transform preserves the values
of the physical averages and thus the physical picture. This
means that theoretical formulations related to different gauges
are related by unitary transforms.

We begin with the operator picture, which provides the
historical way to introduce the Wigner function, and we recall
that an operator Ĝ can be used to formulate a unitary mapping
of the algebra of quantum operators b̂ into itself by

b̂(α) = e−iαĜb̂eiαĜ , (9)

with the corresponding equation of motion:

˙̂b(α) = db̂(α)

dα
= i[b̂(α), Ĝ]− . (10)

This is a first-order differential equation with a solution
uniquely determined by the initial condition b̂i . Alternative
ways to formulate exponential transforms involving the op-
erator Ĝ in the space of the state functions (which give
rise to similar first-order differential equations) are given in
Appendix A. The logical steps of our derivations are unified
via considerations of such kind of transforms, which will be
frequently referred to. In the next section, we consecutively
introduce the concepts and notions needed for the derivation
of the exponential transform expressed in terms of the chosen
gauge.

A. Gauge and transform of pure states

We consider a single particle in the electric potential,
B = 0. The Hamiltonian in an arbitrary gauge A, φ is

H = 1

2m
(p̂ − eA(r))2 + V (r) , (11)

where p̂ = −ih̄∇ is the canonical momentum operator. H

governs the evolution of the state ψ ′ via the Schrödinger
equation:(

h̄2

2m

(
i∇ + e

h̄
A(r)

)2

+ V (r)

)
ψ ′ = ih̄

∂ψ ′

∂t
. (12)

We seek a transform that changes the state ψ ′ to a state ψ

in a picture, where the kinetic operator in the inner brackets
obtains a simple form. In accordance with (9), the solution
ψ ′ is sought by the mapping ψ ′(r, t ) = eiαG(r)ψ (r, t ) . This
gives rise to the equation(

i∇+ e

h̄
A(r)

)
ψ ′ =−(α∇G(r))ψ ′(r, t )+ieiαG(r)∇ψ (r, t )

+ e

h̄
A(r)ψ ′(r, t ) = ieiαG(r)∇ψ (r, t ).

(13)

This expression is simplified under the condition

α∇G(r) = e

h̄
A(r) , (14)

which effectively removes the vector potential from the op-
erator. We see that α can be associated to G or equivalently
set to 1. The approach gives rise to a Schrödinger equation
with a potential (V (r) + h̄∂G(r)

∂t
). Hence, provided that the

solution of (14) exists, which is the case for zero magnetic
field, the mapping corresponds to a change of the gauge from
the initial set of vector and scalar potentials A, φ to the set 0,
and φ + h̄∂G(r)

e∂t
. The major conclusion—after a generalization

for B �= 0—is that quantum physics is invariant under gauge
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transforms. However, here, we draw two additional conclu-
sions from Eqs. (13) and (14). It follows that the argument B
of the Wigner function obtained by the Fourier transform eiBs

of ψ∗(r + s/2)ψ (r − s/2) is the kinetic momentum. Second,
the differential equation (13), which has been used to intro-
duce ψ , actually determines the argument of the exponential
transform via (14). We also imposed the constrain α = 1, as
the latter can be associated to G. In what follows, we apply the
same scheme to derive the transform which links the density
matrix to the Wigner function of the kinetic momentum.

B. Gauge and transform of mixed states

Here, we merely formulate the problem for the general
case of mixed states. The evolution equation for the density
operator ρih̄ ∂

∂t
ρ = [H, ρ]− in a coordinate representation, is

written for the chosen set of potentials A, V in the center of
mass coordinates x = r′+r′′

2 , s = r′ − r′′ as follows:

1

2mih̄

{∑
l

2

[
ih̄

∂

∂xl

+ eAl

(
x + s

2

)
− eAl

(
x − s

2

)]

×
[
ih̄

∂

∂sl

+ e

2
Al

(
x − s

2

)
+ e

2
Al

(
x + s

2

)]

+ 2m

[
V

(
x + s

2

)
− V

(
x − s

2

)]}
ρ

(
x + s

2
, x − s

2

)

= ∂ρ
(
x + s

2 , x − s
2

)
∂t

. (15)

The equation is now ready for a Fourier transform with respect
to the s variable, in order to introduce the Wigner phase space
representation.

The magnetic field involves novel terms via the depen-
dence of the vector potential on s. From a formal point of
view, an equation for fW can be readily obtained. Indeed,
after multiplying (15) by eisp/h̄ and integrating over s, we can
expand the functions Al and V on s around x. After that, in
the obtained Taylor expansions, we can replace s by ih̄ ∂

∂p
and associate the integration to the product of the exponent
and the density matrix. In this way, we obtain an equation
for the Wigner function in terms of gauge-dependent pseu-
dodifferential operators determined by the chosen vector and
scalar potentials. However, as already discussed, this way has
definite drawbacks. First of all, any novel choice of the gauge
gives rise to a novel mathematical appearance, which affects
the differential operations and their order. Second, dynamical
functions of the kinetic momentum, corresponding to generic
quantities, such as velocity and energy, obtain a novel form
with the novel gauge. Thus we have a gauge-specific Wigner
function, Wigner equation, and physical quantities. Neverthe-
less, the operator form of the equation can be convenient for
physical analysis, presented in Appendix B.

We, therefore, continue according to Sec. II A by for-
mally seeking a transformation, to simplify the differential
part of (15). It will appear that these entirely mathematical
considerations have a deep physical meaning which links
the characteristic function of the kinetic momentum with the
Wigner equation.

C. Derivation of the transform

We are looking for an Ansatz for ρ, which simplifies (15).
The basic obstacle to follow the standard way by directly
applying a Fourier transform with respect to s are the brackets
with the vector potential components, which also depend on
s. In the spirit of Sec. II A, we seek to replace these operators
with the derivatives of another quantity �α. We follow Sec. II A
and seek a transform of the density matrix:

ρ

(
x + s

2
, x − s

2
, �α

)

= e− i
h̄
�α·
[
ih̄∇s + e

2
A

(
x − s

2

)
+ e

2
A

(
x + s

2

)]

× ρ

(
x + s

2
, x − s

2

)
. (16)

We maintain the dependence of both s and �α and will
impose a relevant constrain after gaining experience about
the properties of (16). In the best case, we expect that this
approach will give a set of three derivatives ∂ρ

∂αl
, which to

replace the operators [ih̄ ∂
∂sl

+ e
2Al (x − s

2 ) + e
2Al (x + s

2 )] in
(15) as in the considered example with the gauge transform.
This will give a convenient form for applying the Fourier
transform and introducing the Wigner picture. We also need
to explore the meaning of the momentum variable introduced
by the Fourier transform. Is it related to the kinetic or to the
canonical momentum?

In the following, we explore the properties of (16), which
is an implicit relation, since the corresponding function of
x, s, �α can be obtained only after expanding the exponent and
applying the consecutive powers of the operators on ρ. To
introduce an approach for evaluating implicit (or operator)
functions of the type of (16), we first examine the one-
dimensional version of the task.

1. One-dimensional problem

The operator function

ρ

(
x + s

2
, x − s

2
, α

)
= e− i

h̄
α[ih̄ ∂

∂s
+ e

2 A(x− s
2 )+ e

2 A(x+ s
2 )]

× ρ

(
x + s

2
, x − s

2

)
(17)

obeys the differential equation

ih̄
∂

∂α
ρ

(
x + s

2
, x − s

2
, α

)

=
[
ih̄

∂

∂s
+ e

2
A

(
x − s

2

)
+ e

2
A

(
x + s

2

)]

× ρ

(
x + s

2
, x − s

2
, α

)
. (18)

As shown in Appendix C, equation (18) has an explicit
solution with respect to the involved variables:

ρ

(
x + s

2
, x − s

2
, α

)
= e− i

h̄

∫ 1
0 αdτ [ e

2 A(x− s+ατ
2 )+ e

2 A(x+ s+ατ
2 )]

× ρ

(
x + s + α

2
, x − s + α

2

)
.

(19)
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This solution obeys the same initial condition suggested by
(17) ρ(x + s

2 , x − s
2 , α = 0) = ρ(x + s

2 , x − s
2 ) and hence

(17) and (19) coincide.
These considerations suggest a way to explicitly evaluate

the functional dependence of such operator-defined functions.
From a given operator function we first obtain the correspond-
ing differential equation and then find a solution which obeys
the same initial condition. We summarize the used approach
which will be further needed for our analysis. Both, (17) and
(19) satisfy the differential equation (18). Here the argument
is α, all other variables are treated as parameters, in particular
the right-hand side contains ρ and the first derivative of ρ

with respect to s where all arguments, except α, are fixed as
parameters. Thus this equation can be formally regarded as
an ordinary first-order differential equation where the initial
condition determines the solution. The same logic will be
pursued for the general three-dimensional case.

2. Multidimensional problem

It is very tempting to interpret the exponent of (16) as three
consecutive transformations of type (17) for the components
of �α. Unfortunately, this fails since the operators in the argu-
ments do not commute: the BCH formula for the product of
two exponential operators

eÂeB̂ = eÂ+B̂+[Â,B̂]−+··· , (20)

where · · · denotes nested commutators of Â and B̂, indi-
cates that the product of the exponents results in an expo-
nent of the sum of the operators only if the commutator
is zero. Furthermore, as suggested by (20), in the general
case, the partial derivatives of the operator Ĉ = eα1Â+α2B̂ ,
which is of the form of the exponential operator in (16),
differ from the derivatives of D̂ = eα1Âeα2B̂ . Their calculation
is straightforward and gives rise to equations of the desired
type ∂D̂/∂α1 = ÂD̂, as suggested by (19). Ĉ = D̂ only when
the operators Â and B̂ commute. Hence (16) introduces an
equation of the type of (C3) only if the increment δ�α is
along a fixed direction �α0. In this case, �α = β �α0 and the
increment is determined by δβ, which actually reduces the
gradient into the one-dimensional β derivative. This makes
the two operators Â = β �α0 · (ih̄∇s + e

2 A(· − ·) + e
2 A(· + ·))

and B̂ = β+δβ

β
Â proportional and thus commutative. Then,

according to the BCH formula, the β derivative can be easily
computed, giving rise to the equation:

ih̄
∑

l

αl

∂ρ

∂αl

(x, s, �α)

=
{∑

l

αl

[
Al

(
x − s

2

)
+ Al

(
x + s

2

)
+ ih̄

∂

∂sl

]}

× ρ(x, s, �α) . (21)

As it will be shown in the next section, (21) is the actual
relationship or the demanded transform: it appears as a basic
entity in the transition from canonical to kinetic momentum
representation, necessary for evaluating the physical averages.

3. Characteristic function

The expectation value of the canonical momentum operator
p̂ is given by

p = Tr(p̂ρ̂) =
∫

dr′dr′′〈r′′p̂|r′〉〈r′|ρ̂|r′′〉 , (22)

where ρ̂ is the density operator corresponding to Eq. (15).
This equation can be rewritten with the help of the operator
equality

〈r′′|p̂|r′〉 = δ(r′ − r′′)(−ih̄)∇r′ = δ(r′ − r′′)(+ih̄)∇r′′ ,

(23)

which is obtained from the definition of an adjoint operator
Â∗: 〈r′|Â∗|r′′〉 = (〈r′′|Â|r′〉)∗. The mean value (22) of the
canonical momentum is then

p =
∫

dr′dr′′ 1
2
δ(r′ − r′′)(−ih̄)(∇r′ − ∇r′′ )〈r′|ρ̂|r′′〉

=
∫

dxdsδ(s)(−ih̄)∇sρ

(
x + s

2
, x − s

2

)
. (24)

With the help of this result we can evaluate also the ex-
pectation value of the kinetic momentum, whose operator in
position representation is given by

P̂(r)|r〉 = (p̂ − eA)|r〉 = −(ih̄∇r + eA(r))|r〉 .

The expectation value is expressed in phase space coordinates
as follows:

P =
∫

dr′dr′′ 1
2
δ(r′ − r′′)(−ih̄(∇r′ − ∇r′′ ) − eA(r′)

− eA(r′′))〈r′|ρ̂|r′′〉

= −
∫

dxdsδ(s)

[
ih̄∇s + e

2
A

(
x + s

2

)
+ e

2
A

(
x − s

2

)]

× ρ

(
x + s

2
, x − s

2

)
=

∫
dxP(x) . (25)

The definition of the density P(x) stems from the last two lines
of (25). This result is easily generalized for P(x)n. Thus, after
a multiplication by �α, it holds(

i

h̄
�α · P(x)

)n

=
{
− i

h̄
�α ·

[
ih̄∇s + e

2
A

(
x + s

2

)

+ e

2
A

(
x − s

2

)]}n

ρ

(
x + s

2
, x − s

2

)
|s=0 .

(26)

The notation |s=0 means that the exponential operator first
acts on the density matrix and then s is set to zero in the
resulting expression. This result invokes the concept of the
characteristic function from the probability theory: if the value
of the quantity Q

n
is given by the first integral

Q
n =

∫
dQQnf (Q) it follows Q

n = dn

indαn
κ (α)|α=0 .

(27)
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Here, f (Q) plays the role of a distribution function and κ (α)
is the characteristic function defined by

κ (α) =
∫

dQeiαQf (Q) =
∑

n

1

n!
(iα)nQ

n = eiαQ,

f (Q) = 1

2π

∫
dQe−iαQκ (α) . (28)

This notion is generalized for the multivariate case

κ (α, x) =
∫

dQeiαQf (Q, x) =
∑

n

(iα)n

n!
Q

n
(x)=eiαQ(x),

f (Q, x) = 1

2π

∫
dQe−iαQκ (α, x) (29)

and then applied in conjunction with (26) to give

κ (�α, x) = e
i
h̄
�α·P(x) = e− i

h̄
�α·[ih̄∇s+ e

2 A(x+ s
2 )+ e

2 A(x− s
2 )]

× ρ

(
x + s

2
, x − s

2

)∣∣∣∣
s=0

. (30)

We conclude that Eq. (16) provides the characteristic function
κ and thus is of physical importance for the computation of the
averaged quantities in the limit s = 0. The latter discriminates
s from �α in the result and thus is the constrain needed to
consider the transform as a change of variables. Moreover, as

previously discussed, methods are available to evaluate such
operator functions.

In what follows, we first utilize our experience in obtain-
ing (19) to calculate the explicit form of the characteristic
function from (16). Then, we obtain the differential equation
corresponding to this equation. Finally, we obtain a gauge-
independent formulation of the Wigner function.

D. The Weyl-Stratonovich transform

In complete analogy with the transition from (17) to (19),
we associate to (16) the following expression:

ρ

(
x + s

2
, x − s

2
, �α

)
= e− i

h̄
�α·∫ 1

0 dτ [ e
2 A(x− s+�ατ

2 )+ e
2 A(x+ s+�ατ

2 )]

× ρ

(
x + s + �α

2
, x − s + �α

2

)
. (31)

Now, we need to show that this expression is equivalent to
(16), that is, that both quantities satisfy a common differential
equation under the same initial condition. Besides, also the
condition for relevance of the derivatives of (16) must be
satisfied, namely,

α1 = βα0
1 ; α2 = βα0

2 ; α3 = βα0
3 . (32)

In this way, the components of the unit vector are not vari-
ables, but play the role of parameters. The arguments of
ρ then become x, s, �α = β �α0. Accordingly, we consider the
following expression:

ρ(x, s, β, �α0) = e
− i

h̄
e
2

∑
l

∫ β

0 dτα0
l {Al (x1− s1+α0

1 τ

2 ,x2− s2+α0
2 τ

2 ,x3− s3+α0
3 τ

2 )+Al (x1+ s1+α0
1 τ

2 ,x2+ s2+α0
2 τ

2 ,x3+ s3+α0
3 τ

2 )}
ρ

(
x + s + β �α0

2
, x − s + β �α0

2

)
.

(33)

As shown in Appendix D, this expression obeys the differ-
ential equation (21) under the same initial condition as the
expression (16). Then the characteristic function κ (�α, x) =
e

i
h̄
�α·P(x) = ρ(x, 0, �α) can be written as

κ (�α, x) = e− i
h̄

e
2 �α·∫ 1

−1 dτA(x+ �ατ
2 )ρ

(
x + �α

2
, x − �α

2

)
. (34)

According to (29), the inverse Fourier transform of κ cor-
responds to the distribution function f . Consequently, the
definition of the Wigner function in terms of the kinetic mo-
mentum is the inverse Fourier transform of (34). By replacing
�α by the standard notation s, it is obtained:

fw(P, x) =
∫

ds
(2πh̄)3

e− i
h̄

s·Pe− i
h̄

e
2 s·∫ 1

−1 dτA(x+ sτ
2 )

× ρ

(
x + s

2
, x − s

2

)
. (35)

E. Section summary

We conclude the first part of the paper by giving an
overview of the logical structure of the presented approach.

The exponential operator relation (16) has been introduced
merely to simplify the mathematical aspects of the Fourier
transformation of (15) in analogy with the gauge transform
of the wave function of Sec. II A. From the perspective of
canonical transforms, which in Hamilton mechanics give rise
to a change of variables, the relation introduces a novel
variable �α. The constrain needed for the replacement of s
by �α is to be further specified within the effort to separate
the vector potential from the terms containing derivatives
on the new variable. However, since the components of the
momentum operator are noncommutative, the BCH formula
does not allow independent separation of these components
and they can be unified only via Eq. (21) instead. It appears
that this equation is entirely sufficient for the desired change
of variables. First, it is shown that the characteristic function
of the kinetic momentum (30) has the form of (16) under the
constrain s = 0. It follows that (30) satisfies the differential
equation (21). Then, following Stratonovich, an explicit solu-
tion of the equation is found under the same initial condition,
namely function (34), which after a Fourier transform gives
rise to the WS transform (35). Serimaa etal. elaborated ba-
sically the same logical structure working entirely with the
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involved exponential operators: the generating operator (5)
is a counterpart of the characteristic function. The Fourier
transform is the GIWO (6), giving the Wigner function via
(7). Finally, the BCH representations of the generating oper-
ator T̂ = ei(sP̂+qr̂)/h̄ are derived with the help of the explicit
solution of a first-order differential equation, obtained from
the β derivative of the operator T̂ (β ) = eiβ(sP̂+qr̂)/h̄.

In our approach, we follow the idea to reduce the math-
ematical complexity rather than to formulate an alternative
gauge-invariant theory. By following this line, it appears that
many concepts utilized before, such as a change of variables,
the characteristic function and BCH relations may be com-
bined to present the derivation of the transformation (35) from
another perspective. This transformation gives rise to a gauge-
invariant equation, which is derived in the next section entirely

in terms of regular functions and without any involvement of
pseudodifferential operators.

III. THE WIGNER EQUATION

The equation of motion of the function (35) is obtained
from (15) by firstly multiplying by the exponent factor
e− i

h̄
s·(· ·) in (35) and then integrating over s. The idea is

to associate the exponential factor to ρ in order to recover
the definition (35). This involves lengthy calculations, so that
the consecutive terms are considered separately. Details about
their evaluation is given in Appendix E.

We first consider the term with the differential operators in
the first two rows of (15):

D = 1

2mih̄

1

(2πh̄)3

∫
dse− i

h̄
s·(P+ e

2

∫ 1
−1 dτA(x+ sτ

2 ))

{∑
l

2

[
ih̄

∂

∂xl

+ eAl

(
x + s

2

)
− eAl

(
x − s

2

)]

×
[
ih̄

∂

∂sl

+ e

2
Al

(
x − s

2

)
+ e

2
Al

(
x + s

2

)]}
ρ

(
x + s

2
, x − s

2

)
. (36)

We shift the exponent to the right after the first parentheses in the square bracket by using the equality

e
− i

h̄
s·(· ·)[

ih̄
∂

∂xl

+ eAl

(
x + s

2

)
− eAl

(
x − s

2

)]
=

{
ih̄

∂

∂xl

− e

2

∫ 1

−1
dτ

[
s × B

(
x + sτ

2

)]
l

}
e− i

h̄
s·(· ·) (37)

derived in Appendix E 1.
Next, we move the exponent to the right of the second bracket of (36) with the help of expression

e− i
h̄

s·[P+ e
2

∫ 1
−1 dτA(x+ sτ

2 )]

[
ih̄

∂

∂sl

+ e

2
Al

(
x + s

2

)
+ e

2
Al

(
x − s

2

)]
=

{
ih̄

∂

∂sl

− Pl − e

2

∫ 1

−1
dτ

τ

2

[
s × B

(
x + sτ

2

)]
l

}

× e− i
h̄

s·[P+ e
2

∫ 1
−1 dτA(x+ sτ

2 )] (38)

derived in Appendix E 2. In this way, term D (36) becomes

D = 1

2mih̄

1

(2πh̄)3

∫
ds

(∑
l

2

{
ih̄

∂

∂xl

− e

2

∫ 1

−1
dτ

[
s × B

(
x + sτ

2

)]
l

}{
−Pl − e

2

∫ 1

−1
dτ

τ

2

[
s × B

(
x + sτ

2

)]
l

})

× e− i
h̄

s·[P+ e
2

∫ 1
−1 dτA(x+ sτ

2 )]ρ

(
x + s

2
, x − s

2

)
. (39)

Note that the operator ih̄ ∂
∂sl

in the second bracket of (38) has been canceled by the integration over s since ρ vanishes if the
arguments approach infinity. Thus D becomes

D =
∫

ds
(2πh̄)3

(
− P

m
· ∂

∂x
+

{
− ∂

∂x
· e

2m

∫ 1

−1
dτ

τ

2

[
s × B

(
x + sτ

2

)]
+ e

2ih̄

∫ 1

−1
dτ

P
m

·
[

s × B
(

x + sτ
2

)]

− e

2ih̄

e

2

∫ 1

−1

∫ 1

−1
dτdη

[
s × B

(
x + sη

2

)]
·
[

s × B
(

x + sτ
2

)]
τ

2

})
e− i

h̄
s·[P+ e

2

∫ 1
−1 dτA(x+ sτ

2 )]ρ

(
x + s

2
, x − s

2

)
. (40)

We denote by (sB)F (P, x, τ ) the Fourier transform of [s × B(x + sη
2 )]. With the help of Appendix E 3 this gives

D =
{
− P

m
· ∂

∂x
+

∫
dP′

[
− ∂

∂x
· e

2m

∫ 1

−1
dτ

τ

2
(sB)F (P′, x, τ ) + e

2ih̄

∫ 1

−1
dτ

P
m

· (sB)F (P′, x, τ )

− e

2ih̄

e

2

∫ 1

−1

∫ 1

−1
dτdη

∫
dP′′(sB)F (P′, x, η) · (sB)F (P′ − P′′, x, τ )

τ

2

]}
fW (P − P′, x). (41)

We note that the gradient in the first term in the square brackets acts on the product of the rest of this term with fW .
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Next in turn is the term with the scalar potential in the third row of (15):

P = 1

(2πh̄)3

∫
ds
ih̄

e− i
h̄

s·[P+ e
2

∫ 1
−1 dτA(x+ sτ

2 )]

[
V

(
x + s

2

)
− V

(
x − s

2

)]
ρ

(
x + s

2
, x − s

2

)
=

∫
dP′Vw(P′, x)fw(P − P′, x),

(42)

where we immediately recognize the Wigner potential.
The last term T is the s integral of the product of the right-hand side of (15) and the exponent factor. T can be expressed in

terms of ∂fw(P, x)/∂t by taking the time derivative of (35):

T = 1

(2πh̄)3

∫
dse− i

h̄
s·[P+ e

2

∫ 1
−1 dτA(x+ sτ

2 )] ∂ρ
(
x + s

2 , x − s
2

)
∂t

= ∂

∂t
fw(P, x) − e

2(2πh̄)3ih̄

∫ 1

−1
dτ

∫
ds s · ∂A

(
x + sτ

2

)
∂t

× e− i
h̄

s·[P+ e
2

∫ 1
−1 dτA(x+ sτ

2 )]ρ

(
x + s

2
, x − s

2

)
. (43)

Observing that the vector potential does not appear as an
explicit variable in the expressions for D and P , we follow
the idea to eliminate it from the equation under derivation:
the second equation in (1) can be used to express the time
derivative of the vector potential via the electric field and the
gradient of the scalar potential:

−∂A
(
x + sτ

2

)
∂t

= E
(

x + sτ
2

)
+ ∂

∂x
φ

(
x + sτ

2

)
. (44)

Furthermore, the τ integral in the term with the scalar poten-
tial can be evaluated as follows:

e

2(2πh̄)3ih̄

∫ 1

−1
dτ s · ∂

∂x
φ

(
x + sτ

2

)

= 1

(2πh̄)3ih̄

∫ 1

−1
dτ

∂

∂τ
V

(
x + sτ

2

)

= 1

(2πh̄)3ih̄

[
V

(
x + s

2

)
− V

(
x − s

2

)]
. (45)

Thus the contribution of the gradient of the scalar potential to
(43) is equal to the Wigner potential term P . The two terms
cancel each other on both sides of Eq. (15). The contribution
of the electric field E to T can be evaluated according to
Appendix E 3 to

T = ∂

∂t
fw(P, x) + e

2ih̄

∫
dP′

∫ 1

−1
dτ (s · E)F (P′, x, τ )

× fw(P − P′, x) ,

where (s · E)F (P′, x, τ ) is the Fourier transform of the func-
tion s · E(x + sτ

2 ). In this way, we can obtain a closed differ-
ential equation for fw, namely,

D = T . (46)

This equation has the important property to be independent
from the choice of the set of the electromagnetic potentials.
Indeed, all operators now depend on the kinetic momentum
P, the position x, and the time via the electric and magnetic
fields E and B.

In the next section, we consider two cases of constant
magnetic field and discuss related physical aspects.

A. Constant magnetic field

1. Homogeneous electromagnetic conditions

The derived equation is first verified against the emblem-
atic test involving homogeneous electromagnetic conditions.
The expression for D considerably simplifies in the case of
a homogeneous magnetic field. For convenience, we con-
sider (41). The first term in the square brackets completely
disappears since B is a constant and the integration over τ

can be performed directly. The same holds for the last term
where the integrand is an odd function of τ . The equality
a · (b × c) = b · (c × a) can be applied to the only surviving
term in the square brackets to obtain

∫
ds

ie

h̄(2πh̄)3

P
m

× B · se− i
h̄

s·[P+ e
2

∫ 1
−1 dτA(x+ sτ

2 )]

× ρ

(
x + s

2
, x − s

2

)
= e

P
m

× B · ∂

∂P
fW (P, x) . (47)

The term on the right-hand side of equation (46) can be easily
evaluated in the case of constant field E. Finally, we obtain

[
∂

∂t
+ P

m
· ∂

∂x
+ e

(
E + P

m
× B

)
· ∂

∂P

]
fw(P, x) = 0 .

(48)

Equation (48) recovers equation (30) from the paper of Iafrate
et al. [35] and is identical to the classical evolution equation
for a ballistic particle driven by electromagnetic forces.

Now, (48) is easily recognized as the equivalent of the
Boltzmann equation. However, the quadratic terms in the
vector potential have disappeared, as have the higher-order
terms of the Wigner potential. The quadratic terms in the
vector potential are well known to lead to Landau quantization
by introducing harmonic oscillator effects and it is well known
that the Wigner equation of motion does not incorporate
these quadratic quantization terms. In that sense, any such
quantization has to be put in via the adjoint equation, and
the Wigner function then becomes a sum over the various
occupied eigenfunctions, each individually transformed on its
own. Thus each eigenstate of the quantized system satisfies
(48), and the result for the final Wigner function is then a sum
over these individual results.
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2. General electric conditions

We assume that the electric field has a general spatial
dependence. As the magnetic field remains homogeneous,
all considerations of the previous section remain valid; in
particular Eq. (47). Furthermore, under an arbitrary gauge the
vector potential is time-independent as the magnetic field is,
and we can conveniently refer to Eq. (43) where only the time
derivative of the Wigner function remains. As the second term
on the right of this equation becomes zero, the considerations
after the equation show that the Wigner potential term P ,
Eq. (42), survives so that the following equation is readily
obtained: [

∂

∂t
+ P

m
· ∂

∂x
+ e

P
m

× B · ∂

∂P

]
fw(P, x)

=
∫

dP′Vw(P − P′, x)fw(P′, x) , (49)

where the Wigner potential

Vw(P, x) = 1

(2πh̄)3

∫
ds
ih̄

e− i
h̄

s·P
[
V

(
x + s

2

)
−V

(
x − s

2

)]

is linked to the electric force via Eqs. (44) and (45). The
left-hand side is the Liouville operator, which describes the
acceleration of a particle over Newtonian trajectory. The force
is now given by the magnetic field, which manifests its local
character. If B is set to zero, we recognize the standard scalar
potential Wigner equation. The latter provides a full quantum
description of the processes governed by the electric potential
like tunneling and interference [42]. In particular, while the
physical picture related to (48) is governed by the local elec-
tromagnetic forces, here the effects of the potential are widely
nonlocal. It affects the physical behavior at places where the
electric force is practically zero [43]. Now, the interplay of the
magnetic field with these effects can be conveniently studied
in the phase space. On the left-hand side of Eq. (49), B is
still local in space and this gives the opportunity to study the
interplay by comparison with the solutions of the classical
equation (48) and the zero magnetic field version of (49). As
we discuss in the next section, the case of a constant magnetic
field is fully approachable by the existing numerical models
developed in terms of phase space particles.

The remaining terms of (40) are enabled in the case of
a general spatial dependence of B. We expect that they will
introduce nonlocality in the action of the magnetic field as
suggested by the spatial derivative in the first term and the
spatial convolution structure of the integrals in the last term
in the square brackets of D. The effects carried by these
terms are not yet explored; their explicit formulation in phase
space terms (40) is the first step in this direction, which paves
the way for development of numerical approaches which can
handle general electromagnetic conditions.

IV. COMPUTATIONAL ASPECTS

The basic similarities between the concepts and notions of
classical mechanics and quantum mechanics in phase space
motivated the development of particle methods for solving
the Wigner equation almost three decades ago [44]. Different
particle approaches have been developed since then [2,4,5],

which focus mainly on the electrostatic problem in a scalar
potential gauge. In particular, the concept of signed particles,
which has matured for already 15 years [45], is based on
the application of stochastic approaches for solving integral
equations to different integral forms of the Wigner equa-
tion. The concept is not a single, unique particle model, but
comprises a set of particle attributes which can be combined
and modified to develop suitable algorithms, specific for the
physical aspects of the analyzed problem. Some of these
attributes are, however, fundamental and give rise to a heuris-
tic picture of quantum mechanics in terms of particles: first
derived from the Wigner theory, the signed particle concept
can be postulated to derive back the Wigner formalism [46].
Basic attributes are particle sign, particle generation, and
particle annihilation. In a signed particle approach pointlike
particles are enabled with classical features, such as drift
over Newtonian (field-less) trajectories but carry the quantum
information by their positive or negative sign. The mean value
of a generic physical quantity A, represented by a phase
space function, is evaluated by the sum

∑
n sign(n)An for

all particles n in a desired region, where sign(n) is the sign
of the nth particle and An the corresponding value of the
physical quantity. During the evolution each particle generates
couples of one positive and one negative particle, according to
rules dictated by the Wigner potential, and propagate in space
by distinct but fixed momentum (no acceleration). Particles
with opposite sign which meet in the phase space annihilate
each-other since they have a common probabilistic future
but opposite contribution to the physical averages. These
concepts, developed to solve the electrostatic version (B =0)
of Eq. (49), have been successfully applied recently to many
problems. In particular in a proof of concept simulation,
showing that the Newton second law can be reproduced by
generation/annihilation of unaccelerated signed particles [47]
and for two- and three-dimensional problems [43,48]. This
shows that a signed particle approach is a promising platform
for numerical models for solving the Wigner equation for
general electromagnetic conditions. Indeed, it is a method
enabling simulations of multi-dimensional problems as posed
by the inclusion of the magnetic field. The mathematical
structure of the terms in the square brackets in (40) are
similar to the Wigner potential term on the right-hand side of
(49). This suggests that nonlocal effects due to the magnetic
field are introduced if the latter is inhomogeneous, as it is
in the case of the electric counterpart. This also indicates
that a numerical incorporation of these terms should be in
conjunction with their convolution structure as in the case
of a gauge transform of the scalar potential Wigner equation
[41]. Furthermore, such transform can be used to modify the
Wigner potential in a way which is more convenient with
respect to computational efficiency [41]. However, the numer-
ical aspects of such a generalization are beyond the scope
of this work: most importantly, the available signed particle
approach is fully capable to simulate the interplay between
constant magnetic and general spatially dependent electric
fields posed by Eq. (49). One of the advantages of the phase
space description is that it allows to conveniently compare
classical and quantum behavior. The former is provided by
the solution of Eq. (48), where local forces govern the particle
evolution. The latter is introduced by the Wigner potential in
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FIG. 1. Classical density corresponding to 6 T (left) and −6 T (right) magnetic field.

(49). We solve the two equations for an initial condition given
by a Wigner state corresponding to a minimum uncertainty
Gaussian wave packet [4], admissible for both problems. It
is non-negative so that it can be interpreted as a probability
distribution and it obeys the uncertainty relations. We adopt
the physical problem considered in Ref. [32], describing
processes of tunneling through a barrier under the action of
a constant magnetic field normal to the xy plane of the evo-
lution. The 0.3 eV high, 1-nm-thick barrier is homogeneous
along the x direction of the simulation domain with a length
of 40 nm. The corresponding length along the y direction
is 60 nm, with a coherence length of Lc = 60 nm in both
directions. The mean kinetic energy of the initial state is 0.1
eV with a standard deviation σx = σy = 3 nm, corresponding
to an equilibrium distribution at 300 K. The effective mass is
assumed to be meff = 0.19 me with me being the mass of a
free electron. The same state is injected periodically from the

boundary until a stationary distribution of the electron density
is obtained. This corresponds to a time integration of the
density n(x, y, t ), corresponding to the evolution of a single
state.

Figure 1 shows the classical density described by Eq. (48)
for a magnetic field of ±6 T. The local Lorentz force is
changed either by switching the direction of the magnetic
field, which causes a switch in the beam bending, or by the
reflection from the potential barrier which causes 99% of the
particles to return on the same path. Only 1% of the particles
from the high energetic tail of the initial condition surmount
the barrier, so that the upper half of the simulation domain
is practically empty. The expected specular symmetry of the
±6 T results is confirmed by the numerical results.

Figure 2, left, shows the quantum density under zero
magnetic field conditions. The quantum solution reflects the
symmetry of the physical task, which indicates the stability of

FIG. 2. Quantum density corresponding to 0 T (left) and −6 T magnetic field (right).
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the simulation approach. The tunneling is well demonstrated
by the pronounced density in the upper half of the domain. We
note the nonlocal action of the Wigner potential which affects
the density before the barrier. Furthermore, the wave character
of the density is a manifestation of the coherent evolution.
The application of a 6-T magnetic field lifts the symmetry of
the task. The action of the Wigner potential is still nonlocal.
However, now the coherence is affected by the magnetic field:
the density in the upper half is bent according to the influence
of the magnetic field.

V. CONCLUSIONS

The derivation of (35), which aimed at mathematical sim-
plification, underlines the internal relationship between the
concepts used by other approaches used to formulate a gauge-
invariant Wigner theory. The approach highlights the interplay
between physical and mathematical aspects of the latter. The
main outcome is not only the WS transform (known since
six decades) but also that when the latter is applied to (15),
the differential part will be simplified and that the variable
P in the solution of the equation corresponds to the kinetic
momentum, which is a gauge-independent quantity. Indeed,
the derived equation (46) does not involve electromagnetic
potentials, but depends only on the electric and the magnetic
fields, which is a manifestation of gauge invariance. Further-
more, the equation has an explicit mathematical structure in
the sense that the differential and integral operations are fixed
and independent on the electric and magnetic fields: the latter
appear as regular functions of the position and time for very
general electromagnetic conditions. This is very important
for future applications of the equation, which will rely on
numerical approaches for finding the solution. The derived
equation passed the usual test under homogeneous conditions,
when it reduces to the classical ballistic Boltzmann equation
for particles governed by the local electromagnetic forces.
Equation (49) is also newly derived: the action of the con-
stant magnetic field is local, however, the Wigner potential
description is fully quantum and accounts for phenomena
such as nonlocality, tunneling, and interference. The interplay
of these phenomena with the magnetic force can be readily
analyzed with the help of the existing numerical approaches,

as illustrated by the presented simulations and discussions. It
is important to note that the electric potential is decoupled
from the gauge related to the constant magnetic field and thus
plays a role of a gauge-invariant quantity determined by the
electric potential. Very interesting are the terms in D, which
have zero contribution to (49). Their structure resembles the
structure of the Wigner potential term and hence they accom-
plish the full quantum description of the effects caused by the
magnetic field. These terms require inhomogeneous magnetic
conditions. Thus the study of the involved quantum effects
deeply relies on the future development of the numerical
approaches for the general electromagnetic conditions.
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APPENDIX A

Alternative relations involving exponent of operators Ĝ

acting in the functional space {c} can be formulated:

c(α) = eiĜαc; ċ(α) = iĜc(α);

c(α) = ei
∫ α

0 G(τ )dτ c; ċ(α) = iĜ(α)c(α)

c(α) = ei
∫ α

−α
G(τ )dτ c; ċ(α) = i(Ĝ(α) + Ĝ(−α))c(α).

(A1)

These alternative definitions of c(α), give rise to first-order
differential equations having solutions, uniquely determined
by the initial condition.

APPENDIX B

The following equalities can be proved with the help of
the properties of the translation operator eip̂·s/2h̄ where p̂ =
−ih̄∂/∂x so that

1

2

∂

∂x
·
[

A
(

x + s
2

)
+ A

(
x − s

2

)]
= ∂

∂x
·
[

cos

(
p̂ · s
2h̄

)
A(x)

]
,

1

i

[
A

(
x + s

2

)
− A

(
x − s

2

)]
· ∂

∂s
= 2

[
sin

(
p̂ · s
2h̄

)
A(x)

]
· ∂

∂s
,

1

4
[A2

(
x + s

2

)
− A2

(
x − s

2

)
] =

[
sin

(
p̂ · s
2h̄

)
A(x)

]
·
[

cos

(
p̂ · s
2h̄

)
A(x)

]
.

Note that the sine and cosine operators act only inside the square brackets. It is finally obtained

1

m

[
ih̄

∂

∂x
+ eA

(
x + s

2

)
− eA

(
x − s

2

)]
·
[
ih̄

∂

∂s
+ e

2
A

(
x − s

2

)
+ e

2
A

(
x + s

2

)]

= e

h̄m

{
∂

∂x
· ∂

∂s
+ 1

i

∂

∂x
· [cos(p̂ · s/2h̄)A(x)] + 2[sin(p̂ · s/2h̄)A(x)] · ∂

∂s

− 2ie

h̄
[sin(p̂ · s/2h̄)A(x)] · [cos(p̂ · s/2h̄)A(x)]

}
. (B1)

Here, p̂ is the canonical momentum operator, so that we recognize in the sine and cosine terms operations of translation.
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The first two terms with the curly brackets correspond to the term in the Schrödinger equation, which gives a gauge rotation
of the electric field relative to the current direction. The last term is what is left from the A2 contribution to the Schrödinger
equation, which can be added to V and thus is responsible for, e.g., Landau quantization. Quantization is lost in (15), which
can be seen already in the zero magnetic field case. In particular, if we consider a quadratic scalar potential and zero vector
potential gauge, and then transform to the gauge where the scalar potential is zero, from (1) it follows that the last term in (B1)
is zero. Thus the evolution equation for the density matrix cannot contain all relevant physics. In this sense, one cannot expect
that the latter will reappear in the unitary equivalent Wigner equation: this physics has to arise from the corresponding adjoint
equation and must be incorporated in the initial condition. To conclude, Eq. (15) and the corresponding Wigner counterpart
are evolution equations where the initial condition determines the solution. Physical solutions correspond to physically relevant
initial conditions which introduce the relevant physics in the evolution problem.

APPENDIX C

Equation (18) can be rewritten as(
∂

∂α
− ∂

∂s

)
ρ

(
x + s

2
, x − s

2
, α

)
= − i

h̄

[
e

2
A

(
x − s

2

)
+ e

2
A

(
x + s

2

)]
ρ

(
x + s

2
, x − s

2
, α

)
. (C1)

We first note that if the right-hand side tends to zero with A → 0, the two partial derivatives compensate each other according
to the relation (

∂

∂α
− ∂

∂s

)
f (s + α) = 0 , (C2)

which suggest the particular appearance of s and α as the sum s + α in the argument of the function f . Furthermore, the structure
of this equation resembles the equations in the second row in (A1). Thus we seek a solution of the form:

ρ

(
x + s

2
, x − s

2
, α

)
= e− i

h̄

∫ α

0 Ĝ(x,s,τ )dτ ρ

(
x + s + α

2
, x − s + α

2

)
, (C3)

where Ĝ as suggested by (C1) gives rise to the expression

ρ

(
x + s

2
, x − s

2
, α

)
= e− i

h̄

∫ α

0 dτ [ e
2 A(x− s+τ

2 )+ e
2 A(x+ s+τ

2 )]ρ

(
x + s + α

2
, x − s + α

2

)
. (C4)

To prove that this is the solution of (C1), we first take the α derivative, then the s derivative and subtract.
The equality

∫ α

0 dτ ∂
∂s

F (s + τ ) = F (s + α) − F (s) can be used to assist the calculations of the proof. Finally, (C4) obeys the
initial condition:

ρ

(
x + s

2
, x − s

2
, α = 0

)
= ρ

(
x + s

2
, x − s

2

)
.

APPENDIX D

The β derivative of Eq. (33) can be shortly written as

ih̄
∂ρ

∂β
(x, s, β, �α0) = e

− i
h̄

e
2

∑
l

∫ β

0 dτα0
l (· ·)

{∑
l

α0
l

[
A1

(
x − s + β �α0

2

)
+ A1

(
x + s + β �α0

2

)]

+ ih̄
∂

∂β

}
ρ

(
x + s + β �α0

2
, x − s + β �α0

2

)
, (D1)

where two dots correspond to the term in the brackets of the exponential factor in (33). Here, we first replace ih̄ ∂
∂β

by ih̄
∑

l α
0
l

∂
∂sl

and then move the exponent to the right of the operator in the brackets in order to recover ρ(x, s, β, �α0), which gives rise to (21).

APPENDIX E

1.

We use the identity

e− i
h̄

s·[P+ e
2

∫ 1
−1 dτA(x+ sτ

2 )]

[
ih̄

∂

∂xl

+ eAl

(
x + s

2

)
− eAl

(
x − s

2

)]

=
⎡
⎣ih̄

∂

∂xl

− e

2

∫ 1

−1
dτ

∑
j

sj

∂Aj

∂xl

(
x + sτ

2

)
+ e

∫ 1

−1
dτ

∂Al

∂τ

(
x + sτ

2

)⎤
⎦e− i

h̄
s·[P+ e

2

∫ 1
−1 dτA(x+ sτ

2 )] .
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The last integral in the brackets can be rewritten as

e

∫ 1

−1
dτ

∂Al

∂τ

(
x + sτ

2

)
=

∫ 1

−1
dτ

e

2

∑
j

sj

∂Al

xj

(
x + sτ

2

)

and unified with the previous term to give ∫ 1

−1
dτ

e

2

∑
j

sj

(
∂Al

xj

− ∂Aj

xl

)(
x + sτ

2

)
.

The term in the brackets gives the components of the magnetic field

Bk =
∑
ij

εijk

∂

∂xi

Aj

written with the help of the Levi-Civita tensor εijk . Due to the importance of this term, we write explicitly the components of
Im = ∑

j sj ( ∂Al

xj
− ∂Aj

xl
).

l j sB Im

1 2 s2(−B3)

1 3 s3B2 s3B2 − s2B3 = −(s × B)1 = I1

2 1 s1B3

2 3 s3(−B1) s1B3 − s3B1 = −(s × B)2 = I2

3 1 s1(−B2)

3 2 s2B1 s2B1 − s1B2 = −(s × B)3 = I3

In particular, we conclude that m = l.

2.

We use

e− i
h̄

s·[P+ e
2

∫ 1
−1 dτA(x+ sτ

2 )]

[
ih̄

∂

∂sl

+ e

2
Al

(
x + s

2

)
+ e

2
Al

(
x − s

2

)]

=
[
ih̄

∂

∂sl

− Pl − e

2

∫ 1

−1
dτAl

(
x + sτ

2

)
− e

2

∫ 1

−1
dτ

τ

2

∑
j

sj

∂Aj

∂xl

(
x + sτ

2

)
+ e

2
Al

(
x + s

2

)
+ e

2
Al

(
x − s

2

)]

× e− i
h̄

s·[P+ e
2

∫ 1
−1 dτA(x+ sτ

2 )] . (E1)

The third term on the right may be rewritten by using integration by parts:

e

2

∫ 1

−1
dτ

[
∂

∂τ
τ

]
Al

(
x + sτ

2

)
= e

2

∫ 1

−1
dτ

∂

∂τ

[
τAl

(
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2

)]
− e

2

∫ 1

−1
dτ

τ

2

∑
j

sj

∂Al

(
x + sτ

2

)
∂xj

. (E2)

Inserted back in (E1), the first integral on the right cancels the last two quantities in the curly brackets. Furthermore, the term
containing the magnetic field can be easily identified in the expression

e− i
h̄

s·[P+ e
2

∫ 1
−1 dτA(x+ sτ

2 )]

[
ih̄

∂

∂sl

+ e

2
Al

(
x + s

2

)
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2
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(
x − s

2
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=
⎡
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∂
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2

∫ 1

−1
dτ

τ

2

∑
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(
∂Al
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− ∂Aj
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)(
x + sτ

2

)⎤
⎦e− i

h̄
s·[P+ e

2

∫ 1
−1 dτA(x+ sτ

2 )] . (E3)

Indeed, we already know that the sum over j gives Il = −(s × B)l .
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3.

We consider integrals of the type

F (H ) =
∫

dsH(P, x, s)
e− i

h̄
s·[P+ e

2

∫ 1
−1 dτA(x+ sτ

2 )]

(2πh̄)3
ρ

(
x + s

2
, x − s

2

)
, (E4)

F (H ) =
∫

ds′
[∫

ds
∫

dP′ 1

(2πh̄)3
e− i

h̄
(s−s′ )·P′

]
H (P, x, s)

e− i
h̄

s′·[P+ e
2

∫ 1
−1 dτA(x+ s′τ

2 )]

(2πh̄)3
ρ ′

(
x + s′

2
, x − s′

2

)

=
∫

dP′
[∫

ds
1

(2πh̄)3
e− i

h̄
s·P′

H (P, x, s)

]
fw(P − P′, x) =

∫
dP′HF (P, x, P′)fw(P − P′, x),

where due to the δ function in the curly brackets, the integral is now separated into integrals on s and s′. According to the
expression in the square brackets, HF is the Fourier transform of H . We note that the function H can depend implicitly on other
variables.
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