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Abstract 

Some of the most promising candidates for next-generation thermoelectrics are nanocomposites due to their low 
thermal conductivities that result from phonon scattering on the boundaries of the various material phases. 
However, in order to maximize the figure of merit ZT, it is important to understand the impact of such features on 
the thermoelectric power factor. In this work we consider the effect that nanoinclusions and voids have on the 
electronic and thermoelectric coefficients of two-dimensional geometries using the fully quantum mechanical 
Non-Equilibrium Green's Function method. This method combines in a unified approach the details of geometry, 
electron-phonon interactions, quantisation, tunnelling, and the ballistic to diffusive nature of transport. We show 
that as long as the barrier height is low nanoinclusions can have a positive impact on the Seebeck coefficient and 
the power factor is not severely impacted by a reduction in conductance. The power factor is also shown to be 
approximately independent of nanoinclusion and void density in the ballistic case. On the other hand, in the 
presence of phonon scattering voids degrade the power factor and their influence increases with density. 
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1. Introduction 

Thermoelectric materials convert directly between heat differences and potential differences. The 
performance of such materials is quantified by the dimensionless figure of merit: ZT = aS2Tl(Ke+ K1) where a is the 
electrical conductivity, Sis the Seebeck coefficient, Tis the temperature, Ke is the electron thermal conductivity, 
K1 is the lattice thermal conductivity, and crS2 is known as the power factor (PF). 

Traditionally, ZT has been approximately 1, although recently various materials have demonstrated ZT 
above 1, primarily by the reduction of the thermal conductivity [1]. There are many methods that exist to reduce 
K beyond bulk values, and one of the most common of these has been the use of nanoinclusions [2,3,4,5,6,7] as 
well as nanoporous materials, since these cause scattering of short wavelength phonons. While this impact on 
thermal conductivity is well studied [8,9,10,11], it is not so clear from previous results what impact there is on the 
power factor in such geometries. Results vary significantly from only small influence [12,13,14,15], to claims of 
large potential improvements [16,17,18,19]. In our previous work we have studied the impact ofnanoinclusions 
of finite barrier height [20]; we now extend that work and compare it to the influence of voids which can be 
considered as infinite potential barriers. 

In this work we use the fully quantum mechanical Non-Equilibrium Green's Function (NEGF) 
simulation method to calculate the electronic and thermoelectric transport properties of 2D geometries embedded 
with nanoinclusions and voids. We show that nanoinclusions can have a positive impact on the Seebeck 
coefficient, and that consequently the power factor is not severely degraded by reductions in the conductance. In 
the ballistic regime, we show that the power factor is independent of nanoinclusion/void density, while in the 
phonon scattering case increasing density has a detrimental effect on the power factor. 

Our simulation method is outlined in Section 2. In Section 3 we present and discuss our results before 
drawing our conclusions in Section 4. 

2. Approach 

To compute the electronic transport we have developed a 2D quantum transport simulator based on the 
Non-Equilibrium Green's Function (NEGF) formalism including electron-acoustic phonon scattering in the self 
consistent Born approximation [21,22]. The system is treated as a 2D channel within the effective mass 
approximation, using a uniform m•= mo throughout the channel, where mo is the rest mass of the electron. The 
nanoinclusions are modelled as potential barriers of cylindrical shape within the matrix material as shown in the 
schematic of Fig. 1, and the voids are modelled as "infinite" potential barriers where we set the potential to 10 
eV. The NEGF theory is described adequately in various places in the literature [21,22,23] so we do not include 
it here. Most work on NEGF in the literature is applied to 1D systems due to computational limitations, however 
in this work we expand the formalism to 2D systems of widths W = 30 nm and lengths L = 60 nm. The Recursive 
Green's Function (RGF) formalism is used to calculate the relevant elements of the Green's function, and the 
Sancho-Rubio algorithm to compute the self-energies of the contacts [24]. 

We model the effect of electron scattering with acoustic phonons by including a self-energy on the 
diagonal elements of the Hamiltonian. The convergence criteria for the ensuing self-consistent calculation is 
chosen to be current conservation, i.e. we consider convergence is achieved when the current is conserved along 
the length of the 

Fig. I. A schematic of a typical geometry we consider. V8 is the barrier height, d the nanoinclusion diameter, and Er the Fermi 
level. 

channel to within 1 %. The strength of the electron-phonon coupling is given by Do, which we consider uniform 
across the entire channel. 



. We assume room temperature T = 300 K throughout the paper. The value of Do is chosen such that the 
conductance of an L = 15 nm long pristine channel is found to be 50% of the ballistic value. This effectively 
amounts to fixing a mean-free-path of 15 nm for the system [25]; a value that is comparable to common 
semiconductors such as silicon [26,27,28]. Thus, with such a mean-free-path, the L = 60 nm channel length we 
consider is large enough to result in diffusive transport in the material we simulate. The conduction band is set at 
Ee= 0.00 eV and the Fermi level is placed at EF= 0.05 eV. 

3. Results 

Once the calibration of our channel is completed we proceed to consider geometries which include 
circular nanoinclusions of different barrier heights, VB, voids, different NI/void densities, and different NI/void 
diameters. The channel width was kept at W = 30 nm, and the length at L = 60 nm in all cases. 

We first consider the ballistic (coherent) scattering regime. The thermoelectric coefficients G, Sand PF, 
are shown in Fig. 2 versus barrier height VB for four simulated geometries as shown in the insets of Fig. 2c. The 
four simulated geometries are: i) a 2x4 array (green lines), ii) a 4x4 array (black lines), iii) a 6x4 array (blue lines), 
and iv) an 8x4 array (red lines), and the Fermi level is placed at EF= 0.05 eV (dashed-red line in Fig. 2c). Figure 
2a shows that, as expected, G decreases both with increasing VB, and with increasing NI/void density. Increasing 
NI/void density leads to an increase in the Seebeck (shown in Fig. 2b) although in the void case the situation 
becomes more complicated as coherent resonance effects come into play. The result of the improvement in Sis 
that the power factor (shown in Fig. 2c) increases from the pristine channel value at a barrier height VB= 0.05 eV, 
before falling again. 

The second investigation we perform is on the influences of: i) the nanoinclusion barrier height, VB 
(including voids - with effective infinite barrier height) and ii) the density of nanoinclusion/voids, on the 
thermoelectric coefficients in the acoustic phonon scattering regime. Fig. 3 shows the thermoelectric coefficients 
conductance G, Seebeck coefficient S, and power factor GS2 versus VB for four different geometries of increasing 
density. The four simulated geometries are again: i) a 2x4 array (green lines), ii) a 4x4 array (black lines), iii) a 
6x4 array (blue lines), and iv) an 8x4 array (red lines). The Fermi level is placed at EF= 0.05 eV (dashed-red line 
in Fig. 3c). From Fig. 3a we can see that, as before, as the barrier height is increased G falls, while G also falls as 
the density of the nanoinclusions/voids is increased. S shows an initial increase as low energy carriers are filtered 
out before falling and saturating at an in-between value. Since the Seebeck coefficient Sex:< E - Ep > (i.e. Sis 
proportional to the average energy of the current flow) this saturation appears to suggest that after VB~ 2kBTabove 
EF, electrons of all energies contributing to the current are affected relatively equally and we show this later. The 
continued decrease in G however ( comparing VB = 0.1 e V to the voids in Fig. 3a) indicates that there is a further 
reduction in flow, but that this occurs relatively evenly across the energy range. Fig. 3c shows the results of these 
effects on the power factor. The initial introduction of a barrier has a reasonably limited effect on the power factor 
(only a 15% reduction even at the largest NI density) while a further increase of 2kBTin the barrier height produces 
a more significant reduction (a further 26% at the largest NI density). Interestingly this fall is larger than that from 
VB~ 0.1 eV to voids (a further 17% at the 
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Fig. 2. The thermoelectric coefficients of an L = 60 nm channel with EF= 0.05 eV (dashed-red line) and ballistic transport conditions versus 
nanoinclusion barrier height, V8• (a) The conductance. (b) The Seebeck coefficient. (c) The power factor defined as Gs1. Hexagonal arrays 
of four different nanoinclusion and void densities are considered as shown in the inset of (c): 2x4 array (green lines), 4x4 array (black lines), 

6x4 array (blue lines), and 8x4 array (red lines). 
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Fig. 3. The thermoelectric coefficients of an L = 60 nm channel with EF= 0.05 eV (dashed-red line) and acoustic phonon scattering transport 
conditions versus nanoinclusion barrier height, V8. (a) The conductance. (b) The Seebeck coefficient. (c) The power factor defined as GS1-. 
Hexagonal arrays of four different nanoinclusion and void densities are considered as shown in the inset of Fig. 2c: 2x4 an·ay (green lines), 

4x4 array (black lines), 6x4 array (blue lines), and 8x4 array (red lines). 

largest NI density) reflecting the fact that the majority of the electron flow occurs within 2kBT of EF, Due to the 
detrimental impact of the NI/voids on G, the PF also degrades as the NI/void density is increased, and there is no 
increase at Vs= 0.05 eV as was seen in the ballistic case. 

The next investigation we perform is to illustrate the effects that density and void diameter have on the 
thermoelectric coefficients. Fig. 4 shows the thermoelectric coefficients G, Sand PF, versus void density for two 
void diameters: i) d = 3 nm (red lines), and ii) d = l.5 nm (black lines). An example geometry for each void 
diameter is shown in the inset of Fig. 4c. The Fermi level is placed at EF= 0.05 eV, and acoustic phonon scattering 
is included. As expected, an increase in the void density reduces G and increases S. At higher densities resonances 
and interference effects have an additional detrimental impact on G for the small diameter (since the average 
distance between the voids becomes smaller than the mean-free-path) and produce an equivalent increase in S. 
The overall effect on the PF is a reduction as expected from Fig. 3. What is important to note, however, is that 
this reduction is independent of the void diameter, even at higher densities where quantum effects become 
important. 

Finally, to better understand the electronic transport through the geometries we have considered we show 
in Fig. 5 the transmission and the current as they vary in energy. In Fig. 5a we show the transmission for four 
different scattering cases: i) the pristine channel in the coherent ballistic regime (blue 'staircase' line), ii) the 
pristine channel with acoustic phonon scattering (red line), iii) a channel with an 8x4 array of d = 3 nm voids in 
the coherent ballistic regime (light blue line), iv) a channel with an 8x4 array of d = 3 nm voids and acoustic 
phonon scattering (light red line). The ballistic transmission of the pristine channel shows the expected staircase 
shape, with an increment every time a new subband is reached in energy. When voids are inserted into the 
geometry the transmission is reduced significantly as well as showing resonance features. Those resonances are 
smoothened out when phonon scattering is included, and the transmission is reduced even more when voids are 
added in addition to phonon scattering. 

In Fig. 5b we plot the energy-weighted current in the transport direction versus energy for two acoustic 
phonon scattering different cases: i) a channel with an 8x4 array of d = 3 nm nanoinclusions with barrier height 
Vs= 0.1 eV (black line), ii) a channel with an 8x4 array of d = 3 nm voids (blue line). It can be seen that changing 
from nanoinclusions of barrier height Vs= 0.1 eV to voids affects electrons of all energies similarly (including 
those with 
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Fig. 4. The thermoelectric coefficients of an L = 60 nm channel with EF= 0.05 eV and acoustic phonon scattering transport conditions versus 
void density. (a) The conductance. (b) The Seebeck coefficient. (c) The power factor defined as GS1-. Two different diameters of voids are 
considered: i) d = 3 nm (red lines), ii) d = l .5 nm (black lines). An example geometry for each void diameter is shown in the inset of (c). 
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Fig. 5. (a) The transmission versus energy for an L = 60 nm channel in four different cases: i) a pristine channel under ballistic conditions 
(blue line), ii) a pristine channel under acoustic phonon scattering conditions (red line), iii) a channel with an 8x4 hexagonal array of voids 
under ballistic conditions (light-blue line), iv) a channel with an 8x4 hexagonal array of voids under acoustic phonon scattering conditions 
(light-red line). (b) The energy-weighted current flow in the transport direction versus energy under acoustic phonon scattering conditions 
for two cases: i) a channel with an 8x4 hexagonal array of nanoinclusions of barrier height V8 = 0.1 eV (black line), ii) a channel with an 

8x4 hexagonal array of voids (blue line). 

energies below VB= 0.1 e V). This explains the lack of any change in S as we go from nanoinclusions of barrier 
height VB= 0.1 eV to voids as shown in Fig. 3b. Because all electron energies are affected to a similar degree, the 
average energy of the current flow does not change and hence, since Sex< E - EF >, neither does S. 

At this point, we would like to comment on the possible consequence of our results for the figure of merit 
ZT. While we have not performed thermal conductivity calculations on the structures we consider (this will require 
elaborate Molecular Dynamics (MD) or Monte Carlo (MC) simulations), we now qualitatively combine our power 
factor results with thermal conductivity results found in the literature. In Ref. [29], Dunham et al. claim from 
experiments and MC simulations that small void diameters (-4 nm) in Si channels, similar to those we consider, 
can result in thermal conductivity reductions of an order of magnitude compared to the bulk. In another work, Lee 
et al. showed from MD simulations that small diameter voids can produce reductions from the bulk value of Si by 
up to two orders of magnitude [30]. Likewise, MD simulations of nanoporous SiGe have shown thermal 
conductivity reductions of over an order of magnitude [31]. If we combine this with the halving of the power 
factor shown in Fig. 4c, we can extract a rough estimate of at least 5x increase in ZT. In the case of nano inclusions, 
one would expect that the thermal conductivity reduction is not as strong compared to the case of nanovoids, 
however, in a number of examples where nanoinclusions are formed within matrix materials it is still found that 
thermal conductivity can be reduced by an order of magnitude [32, 33]. Since in this case we see little change in 
the power factor (see Fig. 3c ), we would expect that ZT could see up to an order of magnitude improvement. 

4. Conclusions 

Using the fully quantum mechanical Non-Equilibrium Green's Function method, we calculated the 
electronic and thermoelectric coefficients of 2D channels embedded with nanoinclusions and voids. We found 
that while nanoinclusions and voids can have a positive impact on the Seebeck coefficient, the overall effect on 
the power factor is limited. We show that the power factor is resilient to variations in nanoinclusion/void density 
at all barrier heights in the ballistic regime, while under acoustic phonon scattering, the power factor is resilient 
to variable nanoinclusion/void density only at low barrier heights. We also show that the effect of voids on the 
power factor is dependent primarily on void density, and independent of void diameter. 
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