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Abstract—A drift-diffusion approach to coupled spin and 

charge transport has been commonly applied to determine 

the spin-transfer torque acting on the magnetization in 

metallic valves. This approach, however, is not suitable to 

describe the predominant tunnel transport in magnetic 

tunnel junctions. Here we demonstrate that by introducing a 

magnetization dependent resistivity and adjusting the spin 

diffusion coefficient one can successfully apply the 

generalized spin-charge drift-diffusion approach also for 

magnetic tunnel junctions. As a unique set of equations is 

used for the entire structure this paves the way to develop an 

efficient finite element based approach to describe the 

magnetization dynamics in emerging spin-transfer torque 

memories.  
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Spin-transfer torque magnetic RAM (STT-MRAM) is 

an emerging [1-6] non-volatile memory which possesses a 

simple structure and is compatible with CMOS 

technology. In contrast to flash memory, STT-MRAM is 

fast and has a high endurance. It makes it particularly 

suitable for stand-alone as well as embedded applications, 

for example, in Systems-on-Chip, where STT-MRAM is 

poised to replace slow SRAM and flash memories.  

Accurate design of STT-MRAM demands a solution 

of the Landau-Lifshitz-Gilbert equation describing the 

magnetization m subject to the spin-transfer torque. The 

torque TS is created by a nonequilibrium spin 

accumulation S acting on the magnetization via the 

exchange interaction and can be expressed as  𝐓𝐒 = − 𝐷𝑒𝜆𝐽2 𝐦 × 𝐒 − 𝐷𝑒𝜆𝜑2 𝐦 × (𝐦 × 𝐒),   (1) 
where λJ, λφ, are scattering lengths and De is the electron 

diffusion constant. S is created, when a current passes 

through the structure. In order to obtain S, coupled spin 

and charge transport must be resolved.  

This task is performed by solving the spin and charge 

drift-diffusion equations in a spin valve, where the two 

ferromagnetic layers are separated by a metal [7], [8]. 

However, the cell of an STT-MRAM represents a 

magnetic tunnel junction (MTJ), a sandwich of two 

ferromagnets separated by a tunnel barrier. The tunnel 

barrier ensures a high tunnel magnetoresistance ratio 

(TMR) related to the large difference in the resistances RP 

and RAP in the parallel/anti-parallel MTJ configuration.  

 TMR = 
RAP-RP

RP
. (2) 

The tunnel resistance defines the current through an 

MTJ as it is much larger than the resistances of the 

ferromagnetic layers. For non-uniform relative 

magnetization, characteristic to switching (Fig.1), the 

resistance and the current through an MTJ depends 

strongly on the position. As Ohm’s law must hold, the 

physical origin resulting in the electrical resistivity is not 

important. We assume it to be due to charge drift-

diffusion in the middle layer. We then model the tunnel 

barrier as a (poor) conductor whose (large) resistivity 

depends on the relative orientation of the magnetization. 

This results in highly non-uniform current density (Fig.2), 

provided the voltage at the contacts is fixed. 

It is not sufficient to match the electrical 

characteristics to correctly model the properties of a 

tunnel barrier. The spin accumulation density must be 

preserved in case of electrons tunneling through an ideal 

barrier without spin flips. Provided the current density JC 

is known, the spin accumulation and the spin current 

density JS are found as [8], [9]: 
 𝐉𝐒 = 𝜇𝐵𝑒 𝛽𝜎 (𝐉𝑪 + 𝛽𝐷𝐷𝑆 𝑒𝜇𝐵 [(𝛁𝐒)𝐦]) ⊗ 𝐦 − 𝐷𝑆𝛁𝐒      (3) 𝜕𝐒𝜕𝑡 = −𝛁𝐉𝐒 − 𝐷𝑆 ( 𝐒𝜆𝑠𝑓2 + 𝐒 × 𝐦𝜆𝐽2 + 𝐦 × (𝐒 × 𝐦)𝜆𝜑2 )          (4) 

 

μB is the Bohr magneton, e is the electron charge, βσ and 

βD are polarization parameters, DS is the spin diffusion 

constant, λsf is the spin-flip length, and ⊗ stands for the 

tensor product. To preserve the spin accumulation 

through the middle layer, one must neglect the spin 

relaxation by setting all scattering lengths to infinity. 

However, this is not sufficient. In Fig.3 we show the spin 

accumulation computed via the finite element approach. 

In order to match the spin accumulation throughout the 

tunnel barrier within the spin drift-diffusion approach, the 

spin diffusion coefficient in the middle region must be 

set large compared to the electron diffusion coefficient in 

the ferromagnetic layers. With S known, we compute the 

torques acting on both ferromagnetic layers, which are 

reported in Fig.4. Finally, Fig.5 shows the dependence of 

the torque acting on the free layer on the choice of the 
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spin diffusion coefficient. Provided that the value of the 

latter is large enough, the torque is independent of it. 

We conclude that the generalized spin-charge drift-

diffusion approach presented here can be successfully 

applied to determine the spin accumulation and torques 

acting in an MTJ structure. 
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Figure 1. MTJ structure with non-uniform magnetization 

configuration. The structure is composed of reference layer 

(RL), tunnel barrier (TB), free layer (FL), and two non-

magnetic contacts (NM). 

 

Figure 2. Current density through the MTJ. The current is 

redistributed towards the region of highest conductivity. 

 

Figure 5. Magnitude of the torque in the FL as a function of 

the spin diffusion coefficient in TB. At high values of the 

coefficient, the torque does not depend on it. 

 

Figure 3. Spin accumulation across the tunneling layer. The 

magnetization lies along x in the FL and along z in the RL. 

The dashed lines are computed using the same value for DS 

in TB and De in the FL and the RL, while solid lines  use a 

very high value of DS, which renders S constant across TB. 

 

Figure 4. Shape of the torque computed from the spin 
accumulation. The spin drift-diffusion approach permits to 
compute the torques acting on both layers, FL and RL. 
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