Crystalline Calcium Fluoride: A Record-Thin Insulator for Nanoscale 2D Electronics

Yu. Yu. Illarionov^{1,2}, A.G. Banshchikov², T. Knobloch¹, D.K. Polyushkin¹, S. Wachter¹, V.V. Fedorov², S.M. Suturin², M. Stöger-Pollach¹, T. Mueller¹, M.I. Vexler², N.S. Sokolov², and T. Grasser¹

¹TU Wien, Karlsplatz 13, 1040 Vienna, Austria ²Ioffe Institute, Polytechnicheskaya 26, 194021 St-Petersburg, Russia

Introduction: Two-dimensional (2D) electronics can enable FETs down to a few nanometers. However, these devices require scalable insulators which should form high-quality interfaces with 2D channels and maintain low gate leakage currents for sub-1 nm equivalent oxide thickness (EOT). Previously used amorphous oxides result in poor interfaces with 2D materials, while hBN has mediocre dielectric properties ($\varepsilon < 5$, $E_g = 6 \text{ eV}$) [1]. As a promising alternative, we suggest the use of the crystalline ionic insulator CaF_2 ($\varepsilon = 8.43$, $E_g = 12.1 \text{ eV}$) which forms van der Waals interfaces with 2D semiconductors [2]. At the moment, CaF_2 can be grown by molecular-beam epitaxy (MBE) down to a few nanometers thickness [3] and appears promising for chemical vapour deposition (CVD) [4] and atomic-layer deposition (ALD) [5]. Here we discuss our recent progress [3,6,7] on ultra-thin CaF_2 which presents a universal platform for 2D devices. In particular, we demonstrate nanoscale MoS_2 FETs with L = 50-60 nm and a record-thin $\sim 2 \text{ nm CaF}_2$ insulator (EOT $\sim 0.9 \text{ nm}$) which exhibits near-ideal subthreshold swing (SS).

Growth and structure of CaF_2 films: MBE of CaF_2 on Si(111) has been known for over three decades [8]. However, previously used high-temperature growth (up to 800° C), which targeted high crystallinity, results in the formation of triangular pinholes [9]. To address this problem, we have succeeded in growing CaF_2 at 250° C [6] after careful cleaning of Si(111) substrates [10]. This allowed us to obtain pinhole-free homogeneous CaF_2 films with 1-2 nm thickness. For instance, the atomic-force microscopy (AFM) image in Fig.1a shows that the surface of CaF_2 is flat with clearly visible atomic steps, and the transmission electron microscopy (TEM) images from Fig.1b,c confirm that the 2 nm thick CaF_2 film consists of triple F-Ca-F monolayers (1 ML = 0.315 nm, Fig.1c). Despite low-temperature MBE growth, reflection high energy electron diffraction (RHEED) patterns (Fig.2) contain distinct streaks which indicates high crystallinity of our CaF_2 films grown on atomically clean Si(111).

High-quality CaF₂ for device applications: An important advantage of CaF₂ is its inert (111) surface which forms well-defined interfaces with 2D materials [2] (Fig.3a). This is in contrast to amorphous oxides like HfO₂ which contain dangling bonds (Fig.3b). Also, CaF₂ has a reasonably high permittivity ($\varepsilon = 8.43$), an extremely wide bandgap ($E_g = 12.1 \,\text{eV}$) and forms high band offsets with Si and 2D semiconductors (Fig.3c). Thus, predicted leakage currents through CaF₂ are lower [11] than those through HfO₂, hBN and SiO₂ (Fig.3d), and fit the end-of-roadmap requirement.

To understand leakage mechanisms through CaF₂, we measured the I-V curves of Au/CaF₂/Si(111) diodes [3,6,12]. We found that the results can be reproduced with theoretical tunneling models considering thickness fluctuations [3] and transverse momentum conservation [12] (Fig.3e). The latter becomes important because of the (111) orientation and further suppresses tunneling through CaF₂ [12]. Next we analyzed the light emission of hot electrons which are injected through CaF₂ to p-Si under accumulation ($V_{Si} > 0$) and can be involved in recombination (RR), intra-band (IB) and intra-band direct (IB-d) radiative transitions (Fig.4a) [3,13]. We found that activation thresholds measured for different photon energies $\hbar\omega$ are close to their estimated values (Fig.4b) and concluded that carrier injection through CaF₂ is elastic, i.e. takes place without energy dissipations. This means that our CaF₂ layers are mostly defect-free and thus perfectly suited for device applications.

MoS₂ FETs with 2nm CaF₂: Fig.5 demonstrates the use of Si(111)/CaF₂ substrates for MoS₂ FETs [7]. Devices have been produced by transferring bilayer CVD-grown MoS₂ films onto CaF₂ and shaping Ti/Au electrodes with ebeam lithography. First we fabricated hundreds of large-area ($L = 400 - 800 \, \text{nm}$) MoS₂ FETs with 2nm thick CaF₂ [7] and confirmed the device structure using scanning electron microscopy (SEM, Fig.5a) and TEM (Fig.5b). Then we found that the best devices exhibit SS down to 90 mV/dec and record-high on/off current ratios up to 10^7 for 2 nm thick insulators (Fig.5c). Finally, we extended the source Ti/Au area and shaped nanoscale CaF₂/MoS₂ FETs with $L = 50 - 60 \, \text{nm}$ (Fig.6). These devices exhibit excellent drain current control by the gate bias V_G and near-ideal SS down to $60 \, \text{mV/dec}$, which slightly degrades at larger V_D where the device reaches the full on state.

Conclusions: We fabricated high-quality crystalline 1-2 nm CaF_2 films and successfully used them for MoS_2 FETs with record-thin gate insulators. For the first time we demonstrated MoS_2 FETs with simultaneously sub-1 nm EOT insulators and sub-100 nm channel length and found that these devices can exhibit near-ideal SS. Our results suggest that $Si(111)/CaF_2$ substrates provide a universal platform for future 2D nanoelectronics, which has enormous potential due to the possibility of direct growth of 2D semiconductors on CaF_2 [14].

[1] G. Cassabois *et al.*, Nat. Photon. **10**, 262 (2016). [2] A. Koma *et al.*, Appl. Surf. Sci. **41**, 451 (1990). [3] Y. Illarionov *et al.*, J. Appl. Phys. **115**, 223706 (2014). [4] A. Purdy *et al.*, Inorg. Chem. **28**, 2799 (1989). [5] T. Pilvi *et al.*, Chem. Mater. **19**, 3387 (2007). [6] M. Vexler *et al.*, J. Appl. Phys. **105**, 083716 (2009). [7] Y. Illarionov *et al.*, Nat. Electron. **2**, 230 (2019). [8] R. Farrow *et al.*, J. Vac. Sci. Techn. **19**, 415 (1981). [9] S. Watanabe *et al.*, Jpn. J. Appl. Phys. **44**, 2637 (2005). [10] A. Ishizaka *et al.*, J. Electrochem. Soc. **133**, 666 (1986). [11] Y. Illarionov *et al.*, Tech. Phys. Lett. **36**, 404 (2010). [12] Y. Illarionov *et al.*, Microelectron. Eng. **88**, 1291 (2011). [13] Y. Illarionov *et al.*, Thin Solid Films **545**, 580 (2013). [14] S. Vishwanath *et al.*, J. Cryst. Growth **482**, 61 (2018).

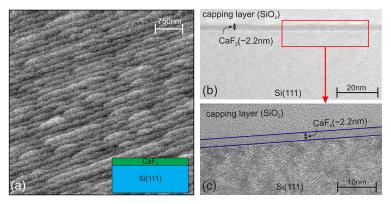


Fig. 1: (a) Typical surface relief of our ultra-thin CaF_2 films grown by MBE on Si(111) at 250°C. Low (b) and high (c) resolution TEM images of the $CaF_2(2\,\text{nm})/\text{Si}(111)$ samples confirm the nominal thickness of CaF_2 of about 2 nm. Atomic layers of CaF_2 are visible in (c).



Fig. 2: RHEED patterns of the Si(111) surface showing the 7×7 superstructure (a) and a 2 nm thick CaF₂ grown on Si(111) at 250°C (b). Distinct reflections confirm the high crystalline quality of CaF₂.

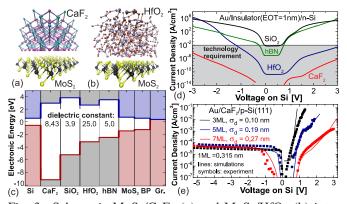


Fig. 3: Schematic MoS_2/CaF_2 (a) and MoS_2/HfO_2 (b) interfaces. (c) Band diagram showing the relative matching of CaF_2 and other insulators to 2D semiconductors. (d) Theoretical leakage currents through the tunnel diodes with these insulators for $EOT = 1 \, \text{nm}$. CaF_2 is expected to satisfy the technology requirements. (e) Leakage currents through $Au/CaF_2(3-7\,ML)/p$ -Si(111) structures can be well fitted with the tunnel model considering transverse momentum conservation and thickness fluctuations measured with AFM.

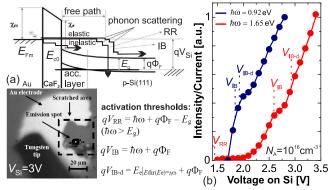


Fig. 4: (a) Band diagram of $Au/CaF_2/p$ -Si structure explaining the origin of injection-related light emission in accummulated p-Si (top), photon emission spot overlaid on the optical image of scratched Au electrode and the formulas used to estimate RR, IB and IB-d activation thresholds (bottom). (b) Voltage dependences of the intensity of light emission measured for two different photon energies. Activation thresholds are close to estimated values (marked), which confirms elastic electron injection through CaF_2 .

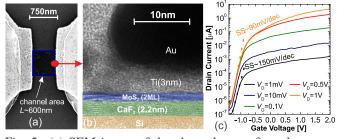


Fig. 5: (a) SEM image of the channel area of our large-area CaF_2/MoS_2 FET. (b) TEM image obtained near Ti/Au electrode confirms the device structure with bilayer CVD-MoS₂ on top of ~2 nm thick CaF_2 . (c) The best devices exhibits an on/off current ratio up to 10^7 and SS down to $90\,\text{mV/dec}$.

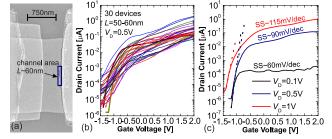


Fig. 6: (a) SEM image of our nanoscale CaF_2/MoS_2 FET. The channel length is about 60 nm. (b) I_D - V_G characteristics of 30 nanoscale CaF_2/MoS_2 FETs. (c) The best device (same as used for SEM in (a)) exhibit SS down to 60 mV/dec and an on/off current ratio up to 10^5 .

