annealing damage, especially in the non-implanted quadrant. We have also noticed a conspicuous current scaling with the dose in this sample, indicating that active acceptors are contributing to the current transport. We will also investigate the impact of different contact metals on the contact resistance, and analyze the temperature-dependent Hall measurement to verify transport mechanisms.

12:45 PM C06

(Student) Growth and Characterization of GaN p-i-n Rectifiers Using IonImplantation Isolation Marzieh Bakhtiary-Noodeh, Chuan-Wei Tsou, Minkyu Cho, Mi-Hee Ji, Shyh-Chiang Shen, Theeradetch Detchprohm and Russell Dupuis; Georgia Institute of Technology, United States

Gallium nitride (GaN) devices are appropriate candidates for high-voltage applications because of their wide bandgap $(\sim 3.4 \mathrm{eV})$ and high breakdown electric-field ($\sim 3.3 \mathrm{MV} / \mathrm{cm}$) characteristics. Proper device isolation and field termination are keys to suppressing the leakage current in the fabrication of vertical GaN power devices. Mesa etching is one of the major challenges in the fabrication of these devices, that usually leads to sidewall leakage currents and premature reverse-bias breakdown. Vertical GaN rectifiers using nitrogen-ion implantation as a mean of device isolation, have shown large blocking voltages (BV) and high drive currents and this technique could become an effective approach for the manufacture of high-performance vertical GaN devices. In this study, GaN-based rectifiers were grown by metalorganic chemical vapor deposition (MOCVD) on bulk GaN substrates having a low dislocation density. Vertical GaN power rectifiers grown on bulk GaN substrates having a low dislocation density $\left(\sim 10^{3} \mathrm{~cm}^{-2}\right)$ can be a viable technology for high-power switching applications. In this work, we demonstrate $1130 \mu \mathrm{~m}$ diameter GaN p-i-n rectifiers having a blocking voltage (BV) of 1.2 kV and an ON -state current drive of 10 A . Ion implantation using nitrogen ions as used for device definition and electrical isolation. The epitaxial layers for GaN $p-i-n$ rectifiers were grown using a close-coupled-showerhead AIXTRON 6x2" MOCVD system on bulk GaN substrates and fabricated using ion-implanted device isolation. The epitaxial layer growth consisted of the following layers: $1.0 \mu \mathrm{~m}$ thick n-GaN:Si layer $\left(n \sim 7 \times 10^{18} \mathrm{~cm}^{-3}\right), 4.0 \mu \mathrm{~m}$ thick $n-\mathrm{GaN}$:Si layer $\left(n \sim 2.5 \times 10^{16} \mathrm{~cm}^{-3}\right), 6.0 \mu \mathrm{~m}$ thick undoped-GaN, $0.45 \mu \mathrm{~m}$ thick $p-\mathrm{GaN}: \mathrm{Mg}$ layer $\left(p \sim 6 \times 10^{17} \mathrm{~cm}^{-3}\right)$. This epitaxial structure was designed for a target reverse-bias breakdown voltage of 1.2 kV . The MOCVD growth employed ammonia $\left(\mathrm{NH}_{3}\right)$ and trimethylgallium (TMGa) as primary precursors and
biscyclopentadienemagnesium $\left(\mathrm{Cp}_{2} \mathrm{Mg}\right)$ and silane $\left(\mathrm{SiH}_{4}\right)$ as dopants. The freecarrier concentration and resistivity of the doped layers were evaluated by Halleffect characterization. Secondary ion mass spectrometry (SIMS) measurements were performed to confirm the doping profile of the layers. X-ray diffraction (XRD) was used for the characterization of the crystallographic quality of the PIN structure. The full width at half maximum of the rocking curve derived from (002) and (102) diffraction exhibit values of 90 and 130 arc-sec, respectively, primarily determined by the properties of the GaN substrate. Atomic force microscopy (AFM) was used to study the surface morphology and the corresponding root-mean-square (RMS) of the GaN $p-i-n$ rectifier epitaxial structures. The RMS values for scanning area of $5 \times 5 \mu \mathrm{~m}^{2}$ is $\sim 2.0 \mathrm{~nm}$ for the typical case. The rectifier device fabrication employed a
backside n-metal contact formation of a Ti/Al-based metal stack, followed by a $\mathrm{Ni} / \mathrm{Ag}$-based p-metal contact on the front side of the wafer. Ion implantation of nitrogen ion species were used to provide device isolation. The evaluated devices have the diameters of 280,830 , and $1130 \mu \mathrm{~m}$ and the reverse-biased characteristics of these devices were measured. A BV of 1.2 kV was measured for $1130-\mu \mathrm{m}$-dia. devices, defined as the voltage where reverse current density $\mathrm{J}_{\mathrm{R}}=10^{-2} \mathrm{~A} / \mathrm{cm}^{2}$. A slightly higher BV was measured for smaller device sizes. A BV of 1.3 kV was observed for devices with $280 \mu \mathrm{~m}$ dia. At a forward bias of 6.2 V , a forward current $>11 \mathrm{~A}$ was achieved for $1130-\mu \mathrm{m}-\mathrm{dia}$. devices. A current drive of 10 A was achieved at a forward bias of $\sim 7 \mathrm{~V}$ for $830 \mu \mathrm{~m}$ dia devices. For $p-i-n$ rectifiers with $280-\mu \mathrm{m}$ dia., a value of R-ON of $0.28 \mathrm{~m} \Omega$. cm^{2} was measured at $\mathrm{I}=3.2 \mathrm{~A}\left(\mathrm{~J}=5.2 \mathrm{kA} / \mathrm{cm}^{2}\right)$. In this talk, we will further describe the MOCVD growth, device processing, and rectifier electrical characteristics.

SESSION D: 2D Devices
Session Chair: Kevin Daniels
Session Hosts: Qiang Guo and Michael Spencer Wednesday Morning, June 24, 2020

Location: ZoomRoom 4

11:30 AM D01
Low Variability and 10^{10} On/Off Current Ratio in Flexible MoS FETs with $\mathrm{Al}_{2} \mathrm{O}_{3}$ Encapsulation Improved by Parylene \mathbf{N} Yury Illarionov ${ }^{1,2}$, Theresia Knobloch ${ }^{1}$, Michael Waltl ${ }^{1}$, Sayani Majumdar ${ }^{3}$, Miika Soikkeli ${ }^{3}$, Wonjae Kim ${ }^{3}$, Stefan Wachter ${ }^{4}$, Dmitry Polyushkin ${ }^{4}$, Sanna Arpiainen ${ }^{3}$, Mika Prunnila ${ }^{3}$, Thomas Mueller ${ }^{4}$ and Tibor Grasser ${ }^{1}$; ${ }^{1}$ TU Wien, Austria; ${ }^{2}$ Ioffe Institute, Russian Federation; ${ }^{3}$ VTT Technical Research Centre, Finland; ${ }^{4}$ Institute for Photonics, TU Wien, Austria

Introduction: Encapsulation of MoS_{2} FETs presents an important step towards top-gated devices which are required for circuit integration. This is because
insulators employed to protect the channel from the ambient can be subsequently scaled and used as top gate insulators. However, encapsulation layers themselves can as a side effect also degrade the device performance. For example, the encapsulation can increase device-to-device variability, reduce the mobility, or cause negative shifts of the threshold voltage which is often observed in MoS_{2} FETs protected with $\mathrm{Al}_{2} \mathrm{O}_{3}[1,2]$. Thus, possible limitations of different encapsulation schemes have to be understood prior to the next step, fabricating top-gated devices. Devices: We examine flexible CVD-MoS2 FETs with 30 nm thick $\mathrm{Al}_{2} \mathrm{O}_{3}$ grown by ALD as a gate insulator. The devices were encapsulated using four different schemes, namely $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Al}_{2} \mathrm{O}_{3} /$ Parylene N , Parylene $\mathrm{N} / \mathrm{Al}_{2} \mathrm{O}_{3} /$ Parylene N and Parylene $\mathrm{C} / \mathrm{Al}_{2} \mathrm{O}_{3} /$ Parylene N . In all cases the growth of $\mathrm{Al}_{2} \mathrm{O}_{3}$ was performed at $200^{\circ} \mathrm{C}$, while Parylene N or C was deposited after 3 hours annealing at $130^{\circ} \mathrm{C}$ followed by 12 hours pumping. Experimental technique: We measure static $I_{\mathrm{D}}-V_{\mathrm{G}}$ characteristics using the autorange mode and the hysteresis using different sweep rates S and times t_{sw}. The hysteresis dynamics is expressed by $\Delta V_{\mathrm{H}}\left(1 / t_{\mathrm{sw}}\right)$ traces [3], where ΔV_{H} is the hysteresis width extracted near the threshold voltage $V_{\text {th }}$. To verify the stability of our devices, we perform our measurements in the ambient and in vacuum before during and after annealing at $165^{\circ} \mathrm{C}$. For each encapsulation scheme we examine tens of devices to benchmark their variability. Results: Similar to previous literature reports [1,2], our results show that the $I_{\mathrm{D}}-V_{\mathrm{G}}$ characteristics of MoS_{2} FETs with $\mathrm{Al}_{2} \mathrm{O}_{3}$ encapsulation have a strongly negative $V_{\text {th }}$ due to an n-type doping of the channel by positive charges inside $\mathrm{Al}_{2} \mathrm{O}_{3}$. At these negative V_{G} there is a substantial thermionic gate leakage current, which leads to a reduced on/off current ratio of only about 10^{6}. The use of Parylene N/ $\mathrm{Al}_{2} \mathrm{O}_{3} /$ Parylene N encapsulation makes $V_{\text {th }}$ considerably more positive and thus allows achieving values up to 10^{10}. A Parylene C layer underneath the $\mathrm{Al}_{2} \mathrm{O}_{3}$ also suppresses the negative shift of $V_{\text {th }}$. However, the ON current is a few orders of magnitude lower as compared to Parylene N devices. Also, the mobility in MoS_{2} FETs with Parylene C encapsulation is much smaller than in their counterparts with Parylene N , which is likely due to scattering of carriers at Cl atoms in Parylene C .
We also found that the use of Parylene $\mathrm{N} / \mathrm{Al}_{2} \mathrm{O}_{3} /$ Parylene N encapsulation makes the $I_{\mathrm{D}}-V_{\mathrm{G}}$ characteristics of our $\mathrm{MoS}_{2} \mathrm{FETs}$ non-sensitive to the ambient environment and annealing at $165^{\circ} \mathrm{C}$, while leading to the smallest device-todevice variability in performance parameters and hysteresis dynamics. However, the hysteresis in these devices is still sizable, which is caused in part by oxide defects in the $\mathrm{Al}_{2} \mathrm{O}_{3}$ and in part by adsorbates introduced during fabrication. The contribution coming from adsorbates is pressure-dependent [4], which results in a decreased hysteresis when measuring in vacuum. Conclusions: We performed a systematic study on the impact of encapsulation on the $I_{\mathrm{D}}-V_{\mathrm{G}}$ characteristics and hysteresis in flexible MoS_{2} FETs We found that a highly stable Parylene $\mathrm{N} / \mathrm{Al}_{2} \mathrm{O}_{3} /$ Parylene N encapsulation allows to efficiently suppress the negative shift of $V_{\text {th }}$ and to achieve an on/off current ratio of up to 10^{10}, while maintaining low device-to-device variability. Further steps should be to optimize device processing by avoiding air exposure in between device fabrication and encapsulation, which is expected to reduce the number of adsorbates and further suppress the hysteresis.
References: [1] J. Na et al, Nanoscale, 6, 433 (2014).; [2] N. Liu et al, ACS Appl. Mater. \& Interfaces, 9, 42943 (2017).; [3] Y. Illarionov et al, 2D Mater., 3, 035004 (2016).; [4] A. Di Bartolomeo et al, 2D Mater., 5, 015014 (2017).

11:45 AM D02

New Methods and Observations in Contact Scaling for 2D FETs Zhihui Cheng ${ }^{1,2,3}$, Hattan Abuzaid ${ }^{1}$, Yifei Yu ${ }^{4}$, Shreya Singh ${ }^{1}$, Linyou Cao ${ }^{4}$, Curt Richter ${ }^{2}$ and Aaron D. Franklin ${ }^{1,1} ;{ }^{1}$ Duke University, United States; ${ }^{2}$ National Institute of Standards and Technology, United States; ${ }^{3}$ Purdue University, United States; ${ }^{4}$ North Carolina State University, United States

Introduction: Atomically thin two-dimensional (2D) crystals are promising channel materials for extremely scaled field-effect transistors (FETs). For devices at the sub-10 nm technology nodes, both channel length (distance from source to drain contacts) and contact length (distance that the contacts overlap the 2D channel) must be scaled. However, contacting 2D materials at scaled contact lengths ($L_{\mathrm{c}}<30 \mathrm{~nm}$) has rarely been pursued or studied in-depth ${ }^{1}$. In this work, we experimentally scaled the L_{c} for MoS_{2} 2D FETs and found that, contrary to most previous reports, top contacts can be scaled down to $\sim \mathbf{2 5} \mathbf{~ n m}$ without noticeable degradation in contact resistance. We also observed significant self-heating in scaled contacts in the saturation regime. While the first observation is promising for extremely scaled FET technologies, the second illustrates that current crowding in metal-2D contacts is a challenge toward the development for future scaled devices. Contact scaling: Ni contacts with L_{c} ranging from $\sim 110 \mathrm{~nm}$ to $\sim 25 \mathrm{~nm}$ were fabricated on the same bilayer MoS_{2}. Note that the channel length, $\sim 460 \mathrm{~nm}$, is identical between these devices. The $I_{\mathrm{D}}-V_{\mathrm{GS}}$ curves of the devices show that although they have different threshold voltage $\left(V_{\mathrm{TH}}\right)$, their performance is similar after considering the overdrive voltage $V_{\mathrm{OV}}=V_{\mathrm{GS}}-V_{\mathrm{TH}}$. Since the only difference in the devices is L the variation in V_{TH} is caused by the change of L_{c} and the mechanism behind it ${ }^{\mathrm{c}}$ merits further investigation. Accounting for the V_{TH} shift, we analyzed the I_{D} V_{DS} curves and confirmed the very similar contact resistance and on-current across different L_{c} as the source. A slight negative differential resistance (NDR) is observed for devices with an $L_{\mathrm{c}} \approx 25 \mathrm{~nm}$ source at a relatively high carrier density of $7.2 \times 10^{12} \mathrm{~cm}^{-2}$, suggesting self-heating. Self-heating and early saturation: To further explore the self-heating phenomenon, we also fabricated devices with asymmetrical contacts-one side of the contacts with $L_{\mathrm{c}} \approx 110 \mathrm{~nm}$ and the other side with $L_{\mathrm{c}} \approx 25 \mathrm{~nm}$. When the source contact is 25 nm, NDR is

