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Summary. We propose a new mesh coarsening method

for performance-critical topography simulations of semi-

conductor fabrication processes. The underlying algorithm

takes advantage of important domain-specific surface prop-

erties. Our method is well suited for Monte Carlo flux calcu-

lations and geometric distances are considerable improved

compared to references.

1 Introduction

Process technology computer-aided design (TCAD)

tools are used to simulate fabrication processes of

semiconductor devices whereby one of the aspects is

to simulate the evolution of the topography. In such

simulations the surface of a semiconductor device is

typically represented implicitly by a level set function

on a grid. The surface evolution is described by solv-

ing the level set equation, which is a partial differen-

tial equation [8]. Simulating the surface evolution by

etching or deposition using physically based models

consists of the following repeated steps: surface flux

calculation, surface velocity calculation, and surface

advection. The flux calculation is the computationally

most expensive step. There exist efficient algorithms

originating from the field of computer graphics (e.g.

ray tracing), which, however, require an explicit rep-

resentation of the surface. Therefore, using an explicit

surface for flux calculations is an attractive alterna-

tive [6].

The explicit representation of a surface is usually

realized via a so-called triangle surface mesh, hence-

forth referred to as mesh. Such meshes are made of el-

ements (triangles), vertices (points), and edges (lines

between vertices). The run-time of simulations us-

ing these meshes are often bound by the number of

vertices and hence by the number of elements in the

mesh. Therefore, to improve the performance of the

flux calculation, reducing the number of mesh ele-

ments is required whilst simultaneously keeping the

geometric features of the simplified mesh as close to

the original geometry as possible.

1.1 Related Work

Several methods for surface mesh simplification can

be found in literature [1,3–5]. However, some of these

methods try to simplify the geometry as equally as

possible [3, 5] or use very computationally expensive

metrics [1, 4]; both approaches are unfit for the prob-

lem investigated in this work. Since the mesh simplifi-

cation has to be conducted at every time step of a sim-

ulation it is important that the simplification process

offers high performance but also, as already hinted,

maintains the features of the geometry as detailed as

possible.

2 Surface Mesh Simplification

The simplification method presented in this work is

based on the Lindstrom-Turk algorithm. Our new method

uses the mean curvature of each vertex to modify the

amount of edges the simplification algorithm can re-

move. To calculate the mean curvature of each vertex

we use the method proposed in [7]. The mean cur-

vature is calculated by approximating the Laplace-

Beltrami operator

1

2
∑

j∈N1(i)

(cotαi j − cotβi j)(xi −x j),

which is calculated for every vertex and averaged with

the area around a given vertex. Furthermore, as the

calculation of the mean curvature is a computationally

expensive operation, the curvature of each vertex is

calculated only once during each simplification step.

Our method divides the mesh into several regions.

The feature region, the transition region, and the flat

region. These are identified with the help of user-

defined parameters: threshold, range, and step length.

The threshold specifies the minimum mean curva-

ture value which is considered to contain information

about the geometry. The feature region is simplified

with the minimal value of the provided range. Sub-

sequently, in the transition region the boundary con-

ditions are gradually increased by the provided step

length until they reach the maximum value of the pro-

vided range, which is the flat region. This iterative ap-

proach allows the mesh to retain a higher resolution

near parts of the mesh that contain more information

about the geometry and assures that the quality of the

triangles doesn’t deteriorate.
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Fig. 1. Simplified mesh created by our algorithm (left) and the Lindstom-Turk algorithm (right). Both meshes where simpli-

fied to have the same number of vertices. The colors represent the calculated flux values (in arbitrary units).

3 Results

Figure 1 shows exemplary meshes created by our

method and by the reference Linstrom-Turk algorithm

as well as the respective flux values (as computed by

a Monte Carlo flux algorithm [2]). Our simplification

method maintains a lower Hausdorff distance [9] to

the original mesh than the Lindstrom-Turk simplifica-

tion, see Fig. 2. Furthermore, the additional computa-

tions that have to be done to calculate the curvatures

and regions only increase the required simplification

time by 12%. Figure 3 shows a comparison of conver-

gence measures of the Monte Carlo estimates of the

flux. Low relative error of the estimates signifies fast

convergence. Our method provides a reduced number

of mesh elements, a higher resolution in curved areas,

and fast convergence.
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Fig. 2. Accumulated Hausdorff distance to the original ge-

ometry for our method and the Lindstrom-Turk algorithm

4 Conclusion

A surface mesh simplification method tailored to the

needs of topography simulations for process TCAD

has been introduced that selectively simplifies areas

of a mesh with high and low geometric information.

We investigate the impact on the flux calculation and

show that the convergence of the Monte Carlo esti-

mates is similar to a mesh simplified with the ref-

erence Lindstrom-Turk algorithm while at the same

time maintaining a good resolution of flux values

in areas of high curvature. Future work will inves-

tigate automatisms for determining the three region-

defining parameters.
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Fig. 3. Histogram of relative errors of the Monte Carlo es-

timates after surface flux calculation with 224 samples dis-

tributed uniformly over the whole source plain of the simu-

lation domain.
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