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Abstract—Continuous miniaturization brought the silicon 

technology to the nanometer scale where performance 
enhancement cannot be easily achieved by further feature 
size reduction. The use of new material with advanced 
properties has become mandatory to meet the needs for 
higher performance at reduced power. Topological 
insulators possess highly conductive topologically protected 
edge states insensitive to scattering and thus suitable for 
energy efficient high speed devices. Here, we evaluate the 
subband structure in a nanoribbon of 1T’-MoS2 by 
applying an effective k.p Hamiltonian in a confined 
geometry.  

Keywords - Topological insulators, topologically protected 
edge states, nanoribbons, subbands, k.p Hamiltonian 

Topological insulators (TIs) belong to a new class of 
semiconducting materials with highly conductive surface 
states. Recent progress in fabrication and investigation of 
two-dimensional (2D) TIs [9] demonstrates the potential 
of these materials for further use in microelectronics. 
These edge states lie in the band gap of the bulk 
insulating material. In order to allow the states within the 
gap, the bulk host material must possess an inverted band 
structure with the valence band edge lying above the 
conduction band edge. The standard band order is 
restored at the edge where the host material is interfaced 
with a normal dielectric (air). The edge states then 
possess a linear Dirac-like energy dispersion. The edge 
states in 2D TIs are topologically protected by time-
reversal symmetry, which results in electron propagation 
without backscattering. This property makes them 
attractive as a material for high conductive transistor 
channels.  

Having highly robust conductive channels is not 
sufficient to make a good transistor switch as one has to 
have a possibility to suppress the current through the 
channels. A plausible option is to close the gap in the host 
bulk material. In this case scattering between the 
protected edge and the non-protected electron-hole bulk 
states results in strong scattering, which effectively 
reduces the current through the edge states [2]. In the case 
when the normal gap in the bulk material is created by 
restoring the order of the bands, there are no edge states 
allowed within the gap, and the current is stopped 
completely. 

Recently it was discovered that if the well-known 2D 
material MoS2 which has a high promise for future 
microelectronic devices [3] is grown in a 1T’ phase, it 
becomes a TI [4]. The inverted band structure is well 
described by the parabolic conduction and valence bands 
with the masses 𝑚𝑚𝑦𝑦(𝑥𝑥)

𝑑𝑑(𝑝𝑝) [4].  
Without spin-orbit interaction included, the material 

is a semi-metal. The spin-orbit interaction opens a gap at 
the intersection of the valence and conduction bands, 

which appears at a finite value of the momentum ky along 
the quantization axis OY perpendicular to the nanoribbon 
(Fig.1, green). In the nanoribbon topologically protected 
highly conductive edge states must exist within the gap.  

By applying an electric field Ez along the OZ axis 
perpendicular to the nanoribbon the gap at one of the 
minima can be reduced, closed (Fig.1, red), or even open 
again (Fig.1, blue) at large electric fields. The gap at large 
electric fields becomes a direct gap, so no edge states are 
allowed within the bulk gap. 

In order to investigate transport and scattering 
through a nanoribbon, the subband structure and the 
wave functions must be evaluated first. We parametrize 
the energy in units of the band inversion gap 2δ at ky=0, 

while ky(x) in units of 𝑘𝑘0 = �2 δ
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to write the 

4x4 k.p Hamiltonian H [4] in dimensionless units. By 
applying a unitary transformation, the Hamiltonian H is 
re-written in a block-diagonal form [5] 

 
               H = �

𝐻𝐻(𝐤𝐤) 0
0 𝐻𝐻∗(−𝐤𝐤)�.                                     (1) 

The possibility to express the Hamiltonian in the form 
(1) is a consequence of the time-reversal symmetry. It 
then follows that, if allowed, at every edge there are two 
topologically protected modes propagating in opposite 
directions with opposite spins. The 2x2 Hamiltonian 
𝐻𝐻(𝐤𝐤),𝐤𝐤 = (𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦) in dimensionless units has the form: 
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where 𝑚𝑚 =
𝑚𝑚𝑦𝑦
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𝑝𝑝 and v1(2) are the dimensionless Fermi-

velocities. 
Let us consider a nanoribbon with the width in OY 

direction d=40/k0. To evaluate the subband structure, we 
look for the solution 𝜓𝜓𝑘𝑘𝑥𝑥(𝑦𝑦) = ∑ 𝐴𝐴𝑖𝑖4

𝑗𝑗=1 exp (𝑖𝑖𝑘𝑘𝑗𝑗y), where 
Ai is a two-component constant spinor. We obtain the 
subbands eigenenergies and wave functions by setting 
the wave function to zero at both edges. The dispersion 
equation is solved numerically, in a complete analogy to 
the problem of finding the eigenenergies and 
eigenfunctions for a 2-band k.p Hamiltonian in silicon 
films [6]. 

Fig.2 displays the subband energies as a function of 
kx , for several lowest subbands. The peculiar feature 
which distinguishes the subband structure from that in 
silicon films is the presence of the subband with a nearly 
linear dispersion. The energy of the subband is lying 
within the bulk band gap (Fig.1). This solution 
corresponds to the topologically protected edge mode, 



69 

which is confirmed by the complex values of the 
solutions for 𝑘𝑘𝑗𝑗 . A close inspection demonstrates that a 
very small gap is opened at 𝑘𝑘𝑥𝑥 = 0 reflecting the fact that 
the topological states located at the two opposite edges of 
the nanoribbon are not independently propagating and 
start interaction at small 𝑘𝑘𝑥𝑥. At larger 𝑘𝑘𝑥𝑥 the coupling 
between the edge states becomes insignificant as the edge 
states are moving in opposite direction. 

The gap between the bulk bands is altered by the out-
of-nanoribbon electric field Ez. By increasing Ez the gap 
can be reduced, closed, and open again as a direct gap at 
one of the minima, Fig.1. This leads to the gap between 
the lowest subbands opening (Figs 3,4), and the linear 
dispersion becomes more quadratic close to the subband 
minimum. At the same time the edge mode delocalises 
from the edge as two of 𝑘𝑘𝑗𝑗 become real, which leads to 
increased scattering and results in a reduced current. 
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Fig.1. Bulk energy dispersion in 1T’-MoS2 two-dimensional 
material. Green dispersion displays the gaps at ky=k0 in the 
inverted band structure at Ez=0. Increasing the electric field to 
Ez=-v2  closes the gap (red curve) and reopens it again as a direct 
gap (Ez=-2v2 , blue curve). 

 
Fig.2. Subbands in a nanoribbon of the width d=40/k0. Ez=0. The 
subband with an almost linear dispersion corresponding to the 
topologically protected edge state is clearly seen. 

 

 
Fig.3. Subband energies at Ez=-v2, when the gap at ky=k0 is 
closed, see Fig.1, red curve. 

 

Fig.4. Subband energies at Ez=-2v2, when the gap at ky=k0 is 
closed, see Fig.1, blue curve. 
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