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Abstract—Electron quantum optics offers fascinating insights
into the dynamic electron evolution processes governed by
quantum effects, attractive for novel electronic processing or
sensing devices. A key requirement for these developments is
to coherently and electromagnetically confine and control the
electron evolution process and the ability to correctly describe
the manifesting quantum effects related to the wave nature of
the electron, e.g., interference. This work provides an overview of
research conducted on using specifically shaped electric and mag-
netic fields to influence the electron evolution in nanostructures.
The Wigner based quantum transport modeling approach is used
to simulate the transport and to highlight quantum effects.

Index Terms—Electron quantum optics, Single-electron elec-
tronics, Wigner transport equation, Electron quantum transport,
Electromagnetic fields, Quantum interference, Entangletronics

I. INTRODUCTION

The astonishing developments in electronics led to con-
tinuous reductions in feature sizes over the past decades, a
process which is still ongoing. Significant efforts are devoted
to evolve electronics into the single-electron regime enabled
by substantial nanotechnological advancements, promising re-
duced power consumption and even higher integration densi-
ties [1]. A first important stepping stone was single-electron
electronics [2], which, aside from introducing the single-
electron tunneling transistor [3], also yielded the first single-
electron sources, focusing on charge transfer [4]. Later, the
single-electron source has been further advanced towards
generating coherent single electrons [5] and is still advanced
today (e.g. [6]): The generated electrons have well-defined
wave-functions (e.g. Gaussian form [7]), enabling to engineer
coherent manipulations of electrons similar as in the optical
world. In addition to advanced electron sources, the ability to
confine and control single electrons in nanostructures [8] and
to characterize quantum-coherent circuits [9] further advanced
the field of coherent single-electron devices and circuits. Ul-
timately, these developments gave rise to the field of electron
quantum optics [10][11][12][13][14].

Making use of the wave nature of electrons proved vital
for many fields of applications, such as quantum informa-
tion processing (e.g. flying electron qubits [8][15]), quantum
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sensing [16], and quantum metrology [17]. Although facing
significant challenges with shorter coherence times compared
to photonic approaches, the ability to fabricate single-electron
quantum circuits based on advanced but well-understood solid-
state technologies with sub-micron to single-digit nanometer
feature scales offers the potential for very high integration
densities and large-scale mass production via today’s well-
matured semiconductor electronics industries. As such, quan-
tum circuits offer an attractive path towards efforts regarding
Beyond CMOS and solid-state based quantum information
processing in general [1].

As hinted previously, what is essential to all of the above
advancements is the ability to coherently control the electron
evolution (for a review see [8]). Typical approaches are
based on quantum dots [18] and nanotubes [19] whereas
other approaches are based on quantum point contacts with
magnetic [20] or electrostatic focusing [21]. Related to these
findings, another approach to coherently control electrons,
aiming at advanced logic devices and systems as part of our
efforts in entangletronics [22][23], is to control the electron
coherence to realize quantum interference devices. We present
quantum transport simulations in phase space to predict the
involved physical phenomena (see Section II). This control is
motivated by Young-like double-slit structures and Aharonov-
Bohm rings; both are fundamental to control the interference
pattern of electrons. Alternatively and at the center of our
research, electron control can be established by specifically
shaped electric and magnetic fields, which can manipulate the
state of a single electron in specific ways.

In the following, we first summarize our modeling approach,
which is followed by discussing key findings regarding electric
and magnetic coherent control of electrons.

II. MODELING APPROACH
We use a signed-particle Wigner transport model [24], im-

plemented in VIENNAWD1 [25][26], to stochastically describe
the dynamic quantum transport processes of individual elec-
trons in two-dimensional devices and structures. In general,
the underlying Wigner function has found broad application in
science and engineering [27], in particular in recent years [28],
due to its unique properties: The Wigner function fW is a real
function, which can have negative values, but retains the basic
properties of the classical statistical distribution; the Wigner
function is thus referred to as a quasi-distribution function.
Physical averages can be obtained from the Wigner function
in the same way as in classical statistics.

1www.iue.tuwien.ac.at/software/viennawd/
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In particular, the most important property of the Wigner
function is that the mean value of a physical quantity A is
given by

〈A(t)〉 =

∫ ∫
A(p, r)fW (p, r, t)dpdr , (1)

where p is the momentum, r the position ((p, r) spans the
phase space), and t the time.

The Wigner function is modeled by stochastic numerical
particles, which evolve in phase space, bearing most of
the properties of the classical particle model (Boltzmann
transport), like Newtonian trajectories and ensemble averag-
ing. However, additional properties and mechanisms, such
as particle sign and evolution rules (i.e. particle generation
and annihilation), are introduced to account for the quantum
information in the system.

At the core of modeling quantum electron evolution is the
equation of motion for the Wigner function (fW ) – the Wigner
transport equation [29][30].[

∂

∂t
+

p

m
· ∂
∂r

+ e
p

m
×B · ∂

∂p

]
fW (p, r, t) =∫

dp′VW (p− p′, r)fW (p′, r, t) (2)

B is the magnetic field, m the effective electron mass,
e the elementary charge, and VW the Wigner potential. The
electric component E of the Lorentz force is embodied in the
Wigner potential VW , allowing to describe quantum effects
(e.g. non-locality) via higher order derivatives of the classical
electric potential. Therein lies an attractive, natural ability of a
Wigner based transport modeling approach: Only considering
the first derivative of the electric potential in the Wigner
potential calculation allows to switch to a classical description
– the Wigner transport equation reduces to the Boltzmann
transport equation. Moreover, Wigner transport modeling al-
lows to consider boundary conditions [31][32] and scattering
processes [33].

In the here presented studies, an electron is modeled as a
minimum uncertainty wave packet, which is described by a
Wigner distribution representing an admissible Wigner pure
state [34]

fW (r,k) = Nexp{− |r − r0|2 /(2σ2)}exp{− |k − k0|2 2σ2} ,
(3)

where N is a normalization constant and the wave vector
k is related to the momentum variable via k = p/h̄. The
minimum uncertainty wave-packet, with a standard deviation
σ, is characterized by a Gaussian distribution of the momen-
tum with constant variance determined by the variance of the
corresponding components in the position space.

III. ELECTROSTATIC LENSE
A first investigation studied the influences of a specifically-

shaped electric potential lense (i.e. a potential distribution
which focuses the electron) on the electron evolution including
phonon scattering in a 200× 120 nm2 structure [22]. To fully
investigate coherent transport, a deeper understanding of the
scattering-induced transition to classical transport is essential.

Fig. 1: Difference between the coherent and phonon-affected
electron densities [a.u.] after 150 fs evolution for a specifically
shaped electric lense and open boundary conditions. Reprinted
with permission from Ellinghaus et al. [22]. © 2017 WILEY-
VCH.

Both, coherent processes and scattering-caused transitions to
classical dynamics were unified by a scattering-aware particle
model of the lense-controlled state evolution. The approach
bridges the theory of coherence with the Wigner signed-
particle model. Fig. 1 shows the difference of the coherent and
phonon-modified electron densities for the investigated electric
lense (indicated by the white isoline). The regions where
scattering dominates (i.e. negative difference) are colored in
blue. The spread of the phonon-aware density is restricted as
compared to the quantum counterpart, clearly demonstrating
the scattering-induced localization.
IV. SINGLE BARRIER: CLASSICAL/QUANTUM TRANSPORT

In other work, an analysis of the quantum coherent pro-
cesses involved in the electron evolution in a quantum wire
(20×30 nm2) which hosts a centrally placed repulsive potential
barrier was investigated [35]. The barrier is modeled by means
of a screened Coulomb potential. Fig. 2 shows the classical
and quantum current density with lateral reflecting boundary
conditions and a peak barrier level of 0.35 eV, indicated by
the circular isolines. In the quantum case the current density
path is much more closed around the barrier than in the
corresponding classical case, which is due to the joint action of
non-locality, tunneling, and repulsion, including the influence
of the boundary condition associated with the quantum wire.

V. SINGLE BARRIER: WIGNER FUNCTION NEGATIVITY
In follow up work, a unique feature of the Wigner function

– the negativity – was further investigated with respect to
highlighting quantum effects in electron quantum transport
hosting a repulsive Coulomb potential barrier [36]. Analyzing
Wigner function negativity and establishing relationships to
quantum effects is widely applied in other fields [27][28]. The
quantum distribution reveals a clear negative part behind the
potential barrier between the two correlated branches (Fig. 3).
In contrast, the classical distribution does not show such
negative excursions.

VI. DOUBLE WELLS: INTERFERENCE EFFECTS
An analysis of interference effects as a result of the electron

evolution within a coherent transport medium hosting two
Coulomb potential wells (i.e. attractive) was investigated [37].
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Fig. 2: Classical (left) and quantum (right) current density
[a.u.] with lateral reflecting boundaries for a quantum wire
and a centrally placed repulsive Coulomb potential barrier.
Reprinted with permission from Ballicchia et al. [35]. © 2018
Authors, licensed under the Creative Commons Attribution 3.0
Unported License.

Fig. 3: Classical (left) and quantum (right) sum of Wigner
phase space distributions taken from representative locations
in the momentum sub-space. A rotated viewport relative to
Fig. 2 is used. Reprinted with permission from Ballicchia
et al. [36]. © 2019 Authors, licensed under the Creative
Commons Attribution 4.0 International License.

The introduction of an additional potential well introduces new
quantum effects caused by the non-locality of the action of the
quantum potential, leading to pronounced interference effects.
Fig. 4 shows the electron density for all absorbing boundary
conditions in the classical and in the quantum case. The green
isolines indicate the location of the wells. In the classical
case, no interference pattern can be recognized beyond the
wells as the action of the electric force is local. The effect
of the two potential wells is, however, noticeable behind the
wells: Right behind each well, the symmetry of the density
distribution reflects the symmetry of the Coulomb force. In
the quantum case, the non-locality action of the quantum
potential of the wells affects the injected electrons right after
injection. In the lower part, the density follows the symmetry
of the individual Coulomb potentials: Two channel-like density
maxima are formed. In the upper half and fundamentally
different to the classical case, an intricate interference pattern
manifests, establishing a similarity to double-slit experiments.

VII. DOUBLE WELLS: MAGNETIC FIELD

In follow up work, the influence of a uniform magnetic field
on the evolution process was investigated [38][39], requiring a
full electromagnetic description. Fig. 5 shows Wigner function
negativity maps for an asymmetric well configuration and for
the symmetric case with an applied magnetic field.

Fig. 4: Classical (left) and quantum (right) electron density
[a.u.] with lateral absorbing boundaries for a quantum wire and
two centrally placed dopant potentials (0.365eV). Reprinted
with permission from Weinbub et al. [37]. © 2018 Authors,
licensed under the Creative Commons Attribution 4.0 Interna-
tional License.

Fig. 5: Wigner function negativity map for asymmetric poten-
tial wells and no magnetic field (left) and symmetric potential
wells and applied magnetic field (right); green isolines indi-
cate potential wells. Reprinted with permission from Ferry
et al. [38]. © 2020 Authors, licensed under the Creative
Commons Attribution 4.0 International License.

The results reveal three important conclusions: (1) reducing the
left well’s peak potential level pushes the interference pattern
to the right; (2) the magnetic field has a similar effect; (3) con-
trary to the pure electric field based manipulation, the influence
of the magnetic field significantly reduces the negativity of the
Wigner function, indicating a loss of coherence.

VIII. SUMMARY
The Wigner based quantum transport modeling approach

allows to predict dynamic quantum and classical transport
processes, enabling to investigate the transition from the
quantum coherent domain to the scattering-induced classical
domain. In addition, the ability to investigate the negativity
of the Wigner function provides yet another tool to identify
quantum effects. As was shown, specifically shaped potential
barriers or wells allow to design the electron transport and by
extension the arising quantum effects, most importantly the
interference pattern. Although using magnetic fields provides
an alternative way of electron control, the negativity and as
such the coherence is destroyed as well.
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J. Nygård, K. Flensberg, and L. P. Kouwenhoven, “Quantum Transport
in Carbon Nanotubes,” Reviews of Modern Physics, vol. 87, no. 3, pp.
703–764, July 2015, doi:10.1103/RevModPhys.87.703.

[20] T.-M. Chen, M. Pepper, I. Farrer, D. A. Ritchie, and G. A. C.
Jones, “Magnetic Focusing with Quantum Point Contacts in the Non-

Equilibrium Transport Regime,” Applied Physics Letters, vol. 103, no. 9,
p. 093503, August 2013, doi:10.1063/1.4819489.

[21] J. Freudenfeld, M. Geier, V. Umansky, P. W. Brouwer, and S. Ludwig,
“Coherent Electron Optics with Ballistically Coupled Quantum Point
Contacts,” Physical Review Letters, vol. 125, no. 10, p. 107701, Septem-
ber 2020, doi:10.1103/PhysRevLett.125.107701.

[22] P. Ellinghaus, J. Weinbub, M. Nedjalkov, and S. Selberherr, “Analy-
sis of Lense-Governed Wigner Signed Particle Quantum Dynamics,”
Physica Status Solidi RRL, vol. 11, no. 7, p. 1700102, May 2017,
doi:10.1002/pssr.201700102.

[23] M. Benam, M. Ballicchia, J. Weinbub, S. Selberherr, and M. Nedjalkov,
“A Computational Approach for Investigating Coulomb Interaction
using Wigner-Poisson Coupling,” Journal of Computational Electronics,
vol. 20, no. 2, p. 775–784, Jan 2021, doi:10.1007/s10825-020-01643-x.

[24] M. Nedjalkov, P. Schwaha, S. Selberherr, J. M. Sellier, and D. Vasileska,
“Wigner Quasi-Particle Attributes – An Asymptotic Perspective,” Ap-
plied Physics Letters, vol. 102, no. 16, p. 163113, April 2013,
doi:10.1063/1.4802931.

[25] P. Ellinghaus, J. Weinbub, M. Nedjalkov, S. Selberherr, and I. Dimov,
“Distributed-Memory Parallelization of the Wigner Monte Carlo Method
Using Spatial Domain Decomposition,” Journal of Computational Elec-
tronics, vol. 14, no. 1, pp. 151–162, March 2015, doi:10.1007/s10825-
014-0635-3.

[26] P. Weinbub, Josefand Ellinghaus and M. Nedjalkov, “Domain Decompo-
sition Strategies for the Two-Dimensional Wigner Monte Carlo Method,”
Journal of Computational Electronics, vol. 14, no. 4, pp. 922–929,
December 2015, doi:10.1007/s10825-015-0730-0.

[27] D. K. Ferry and M. Nedjalkov, The Wigner Function in Science and
Technology. Bristol: Institute of Physics Publishing, November 2018,
doi:10.1088/978-0-7503-1671-2.

[28] J. Weinbub and D. K. Ferry, “Recent Advances in Wigner Function
Approaches,” Applied Physics Reviews, vol. 5, p. 041104, October 2018,
doi:10.1063/1.5046663.

[29] M. Nedjalkov, J. Weinbub, P. Ellinghaus, and S. Selberherr, “The Wigner
Equation in the Presence of Electromagnetic Potentials,” Journal of
Computational Electronics, vol. 14, no. 4, pp. 888–893, December 2015,
doi:10.1007/s10825-015-0732-y.

[30] M. Nedjalkov, J. Weinbub, M. Ballicchia, S. Selberherr, I. Dimov, and
D. K. Ferry, “Wigner Equation for General Electromagnetic Fields: The
Weyl-Stratonovich Transform,” Physical Review B, vol. 99, no. 1, p.
014423, January 2019, doi:10.1103/PhysRevB.99.014423.

[31] W. Frensley, “Boundary Conditions for Open Quantum Systems Driven
Far from Equilibrium,” Reviews of Modern Physics, vol. 62, no. 3, pp.
745–791, July 1990, doi:10.1103/RevModPhys.62.745.

[32] I. Knezevic, “Decoherence Due to Contacts in Ballistic Nanostruc-
tures,” Physical Review B, vol. 77, no. 12, p. 125301, March 2008,
doi:10.1103/PhysRevB.77.125301.

[33] M. Nedjalkov, P. Ellinghaus, J. Weinbub, T. Sadi, A. Asenov, I. Dimov,
and S. Selberherr, “Stochastic Analysis of Surface Roughness Models
in Quantum Wires,” Computer Physics Communications, vol. 228, pp.
30–37, July 2018, doi:10.1016/j.cpc.2018.03.010.

[34] D. Querlioz, P. Dollfus, and M. Mouis, The Wigner Monte Carlo Method
for Nanoelectronic Devices. Hoboken-London: Wiley-ISTE, February
2010, doi:10.1002/9781118618479.

[35] M. Ballicchia, J. Weinbub, and M. Nedjalkov, “Electron Evolution
Around a Repulsive Dopant in a Quantum Wire: Coherence Ef-
fects,” Nanoscale, vol. 10, no. 48, pp. 23 037–23 049, November 2018,
doi:10.1039/C8NR06933F.

[36] M. Ballicchia, D. Ferry, M. Nedjalkov, and J. Weinbub, “Investigating
Quantum Coherence by Negative Excursions of the Wigner Quasi-
Distribution,” Applied Sciences, vol. 9, no. 7, p. 1344, March 2019,
doi:10.3390/app9071344.

[37] J. Weinbub, M. Ballicchia, and M. Nedjalkov, “Electron Interference in a
Double-Dopant Potential Structure,” Physica Status Solidi RRL, vol. 12,
no. 7, p. 1800111, July 2018, doi:10.1002/pssr.201800111.

[38] D. K. Ferry, M. Nedjalkov, J. Weinbub, M. Ballicchia, I. Welland, and
S. Selberherr, “Complex Systems in Phase Space,” Entropy, vol. 22,
no. 10, September 2020, doi:10.3390/e22101103.

[39] M. Ballicchia, M. Nedjalkov, and J. Weinbub, “Single Electron Con-
trol by a Uniform Magnetic Field in a Focusing Double-Well Po-
tential Structure,” in Proceedings of the IEEE International Con-
ference on Nanotechnology (NANO), September 2020, pp. 73–76,
doi:10.1109/NANO47656.2020.9183565.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on May 26,2021 at 05:08:24 UTC from IEEE Xplore.  Restrictions apply. 


		2021-05-23T16:50:55-0400
	Preflight Ticket Signature




