3.1.8 Semiconductor-Insulator Interface

In the absence of surface charges at the semiconductor-insulator interface the normal component of the dielectric displacement is continuous, and so is the potential

$\displaystyle {\mathbf{n}}\cdot\varepsilon_{\mathrm{s}}\cdot{\mathbf{E}}_\mathr...
...hbf{E}}_\mathrm{ins} = 0. \hspace{5mm}\phi_{\mathrm{s}}= \varphi_{\mathrm{ins}}$ (3.59)

In the presence of surface charges along the interface the dielectric displacement obeys the law of Gauß

$\displaystyle {\mathbf{n}}\cdot\varepsilon_{\mathrm{s}}\cdot{\mathbf{E}}_\mathr...
...t\varepsilon_{\mathrm{ins}}\cdot{\mathbf{E}}_\mathrm{ins} = \sigma_\mathrm{s} .$ (3.60)

At the semiconductor-insulator interface the carrier current densities (or driving forces) and the carrier heat fluxes normal to the interface vanish

$\displaystyle {\mathbf{n}}\cdot{\mathbf{J}}_{n,p}=0,\hspace{5mm}\mathrm{i.e.}\hspace{5mm}{\mathbf{n}}\cdot{\mathbf{F}}_{n,p}=0$ (3.61)

$\displaystyle {\mathbf{n}}\cdot{\mathbf{S}}_{n,p}=0$ (3.62)

The lattice temperature at the interface is continuous.

T. Ayalew: SiC Semiconductor Devices Technology, Modeling, and Simulation