3.2.2 Effective Masses and Intrinsic Carrier Density

A model for the intrinsic carrier concentration requires both the electron and the hole density-of-states masses. As aforementioned, the conduction band minimum in 4H-SiC is at the M-point in the 1BZ, thus giving rise to three equivalent conduction band minima. The effective mass components $ m_{M\Gamma}$, $ m_{MK}$ and $ m_{ML}$ in the principal directions measured by the optically detected cyclotron resonance are listed in Table 3.3 [114,118] (in units of the free electron mass). The ML direction corresponds to electron motion along the hexagonal c-axis, while the directions MG and MK correspond to electron motion in a plane perpendicular to the c-axis in 1BZ (see Fig. 3.4). This leads to an electron density-of-states mass [118]

Table: Electron and hole effective mass in $ \alpha $-SiC at 300 K in units of the free electron mass. ($ a$ corresponds to the transversal mass, $ b$ to theoretical values.)
  m $ _{M\Gamma }$ m$ _{MK}$ m$ _{ML}$ m $ _{n}^{\ast }$ $ M_{\mathrm{c}}$ m $ _{p\perp
}$ m $ _{p\parallel }$ m $ _{p}^{\ast }$
4H-SiC 0.58 0.31 0.33 0.39 3 0.59 1.60 0.82
6H-SiC 0.42$ ^{a}$ 2.0 0.71 6 0.58$ ^{b}$ 1.54$ ^{b}$ 0.90$ ^{b}$


$\displaystyle m_{n}^{\ast }=\left( m_{M\Gamma}\cdot m_{MK}\cdot m_{ML}\right) ^{\frac{1}{3}}$ (3.65)

Thus, the effective density-of-states of electrons in the conduction band is calculated from [37]:

$\displaystyle N_\mathrm{c}= 2\cdot M_{\mathrm{c}}\cdot\left( \frac{2\cdot\pi\cd...
..._{n}^{\ast}\cdot{\mathrm{k_B}}\cdot T_\mathrm{L}}{h^{2}}\right) ^{\frac{3}{2}},$ (3.66)

where $ M_{\mathrm{c}}$ represents the number of equivalent energy minima in the conduction band.


Similarly, the effective density-of-states for holes in the valence band is obtained from:

$\displaystyle N_\mathrm{v}= 2\cdot\left( \frac{2\cdot\pi\cdot m_{p}^{\ast}\cdot{\mathrm{k_B}}\cdot T_\mathrm{L}}{h^{2}}\right) ^{\frac{3}{2}}.$ (3.67)

Fig. 3.6 shows the effective density-of-states as a function of temperature for $ \alpha $-SiC.


Figure 3.6: Temperature dependence of the effective density-of-states in $ \alpha $-SiC.
\includegraphics[width=0.65\linewidth]{figures/DoS.eps}
The Fermi level of an intrinsic $ \alpha $-SiC is given by [37]:

$\displaystyle E_{\mathrm{F}}=E_{\mathrm{i}}=\frac{\left(\ensuremath{E_\mathrm{c...
...\mathrm{L}}{2}\right)\cdot \ln{\left(\frac{N_\mathrm{v}}{N_\mathrm{c}}\right)}.$ (3.68)

At room temperature, the second term is much smaller than the bandgap. Hence, the intrinsic Fermi level $ E_{\mathrm{i}}$ of intrinsic $ \alpha $-SiC generally lies very close to the middle of the gap.


At electrothermal equilibrium the quasi-Fermi potentials $ \varphi$ are zero. Hence, the temperature dependent intrinsic carrier density $ n_{i}$ is determined by the fundamental energy gap $ E_{\mathrm{g}}$ and by the effective density-of-states $ N_\mathrm{c}$ and $ N_\mathrm{v}$ for the conduction and valency band, respectively.


Combining (3.29), (3.28) and (3.68) gives

$\displaystyle n\cdot p = n^2_{i},$ (3.69)

$\displaystyle n^2_{i} = N_\mathrm{c}\cdot N_\mathrm{v}\cdot \exp \left( -\frac{E_{\mathrm{g}}}{{\mathrm{k_B}}\cdot T_\mathrm{L}}\right),$ (3.70)

$\displaystyle n_{i} =\sqrt{N_\mathrm{c}\cdot N_\mathrm{v}}\cdot \exp \left( -\frac{E_{\mathrm{g}}}{2\cdot{\mathrm{k_B}}\cdot T_\mathrm{L}}\right),$ (3.71)

Figure 3.7: Temperature dependence of the intrinsic carrier concentration in $ \alpha $-SiC.
\includegraphics[width=0.55\linewidth]{figures/intrinsic.eps}
where $ E_{\mathrm{g}}=\ensuremath{E_\mathrm{c}}-E_\mathrm{v}$.


The intrinsic carrier density of 4H/6H-SiC is smaller by the order of 16-18 compared to Si due to the wide bandgap. Furthermore, the exponential dependence of $ n_{i}$ on $ E_{g}$ introduces a rather large uncertainty, so that the overall error range can hardly be estimated. Fig. 3.7 illustrates the intrinsic carrier densities in $ \alpha $-SiC as a function of temperature. T. Ayalew: SiC Semiconductor Devices Technology, Modeling, and Simulation