next up previous contents
Next: Own Publications Up: Dissertation Hajdin Ceric Previous: B. Some Tools from

Bibliography

1
G. E. Moore, ``Cramming More Components onto Integrated Circuits,'' Electronics, April 1965, pp. 114-117.

2
K. Banarjee and A. Mehrotra, ``Coupled Analysis of Electromigration Reliability and Performance in ULSI Signal Nets,'' Proc. International Conference on Computer-Aided Design, pp. 158-164, 2001.

3
R. J. Gleixner, Modeling Electromigration and Stress-Induced Void Formation in Microelectronic Interconnect.
Dissertation, Stanford University, 1998.

4
S. Selberherr, Analysis and Simulation of Semiconductor Devices.
Springer Verlag Wien-New York, 1984.

5
J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology, Fundamentals, Practice and Modeling.
Prentice Hall, 2000.

6
Y. Nishi and R. Doering, Handbook of Semiconductor Manufactoring Technology.
Marcel Dekker AG, 2000.

7
J. J. Clement, ``Electromigration Modeling for Integrated Circuit Interconnect Reliability Analysis,'' IEEE Trans. on Dev. and Mat. Rel., vol. 1, no. 1, pp. 33-42, 2001.

8
C. L. Gan, W. Wang, C. V. Thompson, K. L. Pey, W. K. Choi, S. P. Hau-Riege, and B. Yu, ``Contrasting Failure Characteristics of Different Levels of Cu Dual-Damascene Metallisation,'' Proc. International Symposium on the Physical and Failure Analysis of Integrated Circuits, pp. 140 - 144, 2002.

9
C. Grossmann and H. G. Roos, Numerik Partieller Differentialgleichungen.
B. G. Teubner Stuttgart, 1992.

10
S. Larsson and V. Thomee, Partial Differential Equations with Numerical Methods.
Springer, 2003.

11
O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Volume 1: The Basis.
Butterworth-Heinemann, 2000.

12
R. E. Bank and D. J. Rose, ``Global Approximate Newton Methods,'' Numer. Math., vol. 37, pp. 279-295, 1981.

13
C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method.
Cambridge University Press, 1987.

14
M. Ainsworth and J. T. Oden, ``A posteriori error estimation in finite element analysis,'' Comput. Methods Appl. Mech. Engrg., vol. 172, pp. 1-88, 1997.

15
H. P. Langtangen, Computational Partial Differential Equations.
Springer, 1998.

16
P. Deuflhard, P. Leinen, and A. Yserentant, ``Concepts of an Adaptive Hierarhical Finite Element Code,'' Technical Report SC 88-5, Konrad-Zuse-Institut, 1988.

17
R. C. Ferguson and I. G. Graham, ``Multilevel Adaptive Methods for Semilinear Equations with Applications to Device Modelling,'' Proceedings of 9th International Conference on Domain Decomposition Methods, 1998.

18
P. Shewmon, Diffusion in Solids.
The Minerals, Metals and Materials Society, 1989.

19
L. Onsager, ``Reciprocal Relations in Irreversible Processes. I.,'' Phys. Rev., vol. 37, pp. 405-426, 1931.

20
P. Fahey, P. Griffin, and J. Plummer, ``Point Defects and Dopant Diffusion in Silicon,'' Rev. Modern Phys., vol. 61, no. 2, pp. 289-384, 1989.

21
S. M. Hu, ``Nonequilibrium Point Defects and Diffusion in Silicon,'' Mat. Sci. and Eng., no. 3, pp. 105-192, 1994.

22
F. F. Morehead and R. F. Lever, ``The steady-state model for coupled defect-impurity diffusion in silicon,'' J. Appl. Phys., vol. 66, pp. 5349-5352, 1989.

23
F. J. Morin and J. P. Maita, ``Electrical Properties of Silicon Containing Arsenic and Boron,'' Phys. Rev., vol. 96, no. 1, pp. 28-35, 1954.

24
R. B. Fair, Concentration Profiles of Diffused Dopants in Silicon, in Impurity Doping Processes in Silicon edited by F. F. Y. Wang.
Nord-Holland Publishing Company, 1981.

25
R. B. Fair and J. Tsai, ``A Quantitative Model for the Diffusion of Phosphorous in Silicon and the Emitter Dip Effect,'' J. Electrochem. Soc., vol. 124, pp. 1107-1117, 1977.

26
P. Fahey, R. W. Dutton, and S. M. Hu, ``Supersaturation of Self-Interstitials and Undersaturation of Vacancies During Phosphorus Diffusion in Silicon,'' Appl. Phys. Lett., vol. 44, pp. 777-787, 1984.

27
A. E. Michel, W. Rausch, and P. A. Ronsheim, ``Implantation Damage and the Anomalous Transient Diffusion of Ion-Implanted Boron,'' Appl. Phys. Lett., vol. 51, no. 7, pp. 487-489, 1984.

28
A. Lin, D. Antoniadis, and R. Dutton, ``The Growth of Oxidation Stacking Faults and the Point Defect Generation at the Si-SiO2 Interface During Thermal Oxidation of Silicon,'' J. Electrochem. Soc, vol. 128, pp. 1131-1138, 1981.

29
B. J. Mulvaney and W. B. Richardson, ``A Model for Defect-Impurity Pair Diffusion in Silicon,'' Appl. Phys. Lett, vol. 51, no. 18, pp. 1439-1441, 1987.

30
S. T. Dunham, A. H. Gencer, and S. Chakravarthi, ``Modeling of Dopant Diffusion in Silicon,'' IEICE Trans. Electron., vol. 82, no. 1, pp. 800-813, 1998.

31
M. Mandurah, K. Saraswat, C. Helmes, and T. Kamis, ``Dopant Segregation in Polycrystalline silicon,'' J. Appl. Phys., vol. 51, pp. 5755-5763, 1981.

32
D. Antoniadis, M. Rodoni, and R. Dutton, ``Impurity Redistribution in SiO2-Si During Oxidation: A numerical Solution Including Interfacial Fluxes,'' J. Electrochem. Soc., Solid-State Sci. techn., vol. 126, pp. 1939-1945, 1979.

33
S. Mizuo and H. Higuchi, ``Anomalous Diffusion of B and P in Si Directly Masked with Si3N4,'' Jpn. J. Appl. Phys., vol. 21, no. 2, pp. 281-286, 1982.

34
S. M. Hu, ``The Shrinkage and Growth of Oxidation Stacking Faults in Silicon and the Influence of Bulk Oxygen,'' J. Appl. Phys., vol. 51, no. 7, pp. 3666-3671, 1980.

35
M. D. Giles, ``Transient Phosphorus Diffusion from Silicon and Aragon Implantation Damage,'' Appl. Phys. Lett., vol. 62, no. 16, pp. 1940-1942, 1993.

36
A. Gencer, S. Chakravarthi, and S. Dunham, ``Physical Modeling of Transient Enhanced Diffusion and Dopant Deactivation via Extended Defect Evolution,'' Proc. Simulation of Semiconductor Processes and Devices, pp. 77-80, 1997.

37
S. T. Dunham, S. Chakravarthi, and A. H. Gencer, ``Beyond TED: Understanding B Shallow Junction Formation,'' Proc. International Electron Devices Meeting, 1998.

38
J. Crank, The Mathematics of Diffusion.
Oxford Science Publications, 1989.

39
R. Wittmann, A. Hössinger, and S. Selberherr, ``Statistical Analysis for the Three-Dimensional Monte Carlo Simulation of Ion Implantation,'' Proc. Industrial Simulation Conference, pp. 159 - 163, 2003.

40
R. Wittmann, A. Hössinger, and S. Selberherr, ``Improvement of the Statistical Accuracy for the Three-Dimensional Monte Carlo Simulation of Ion Implantation,'' Proc. European Simulation Symposium, pp. 35 - 40, 2003.

41
D. Krueger, H. Ruecker, B. Heinemann, V. Melnik, R. Kurps, and D. Bolze, ``Diffusion and Segregation of Shallow As and Sb Junctions in Silicon,'' J. of Vac. Sci. Tech., vol. 22, no. 1, pp. 455-458, 2004.

42
R. Kasnavi, Y. Sun, R. Mo, P. Pianetta, P. B. Griffin, and J. D. Plummer, ``Characterization of Arsenic Dose Loss at the Si/SiO$ _2$ Interface,'' J. Appl. Phys., vol. 87, no. 5, pp. 2255-2260, 2000.

43
A. Shima, T. Jinbo, N. Natsuaki, J. Ushio, J. H. Oh, K. Ono, and M. Oshima, ``A Model for the Segregation and Pileup of Boron at the SiO$ _2$/Si Interface During the Formation of Ultrashallow $ p^{+}$ Junctions,'' J. Appl. Phys., vol. 89, no. 6, pp. 3458-3463, 2001.

44
A. Hössinger, R. Minixhofer, and S. Selberherr, ``Full Three-Dimensional Analysis of a Non-Volatile Memory Cell,'' Proc. Simulation of Semiconductor Processes and Devices, pp. 129-132, 2004.

45
A. Hössinger, T. Binder, W. Pyka, and S. Selberherr, ``Advanced Hybrid Cellular Based Approach for Three-Dimensional Etching and Deposition Simulation,'' Proc. Simulation of Semiconductor Processes and Devices, pp. 424-427, 2001.

46
S. Pindl, M. Biebl, E. Hammerl, H. Schäfer, and H. von Philipsborn, ``Oxidation Enhanced Diffusion of Boron on Silicon-on-Insulator Substrates,'' J. Electrochem. Soc., vol. 144, no. 11, pp. 4022 - 4026, 1997.

47
I. A. Blech and C. Herring, ``Stress Generation by Electromigration,'' J. Appl. Phys., vol. 29, no. 3, pp. 131-133, 1976.

48
I. A. Blech, ``Electromigration in Thin Aluminum Films on Titanium Nitride,'' J. Appl. Phys., vol. 47, no. 4, pp. 1203-1208, 1976.

49
I. A. Blech and K. L. Tai, ``Measurement of Stress Gradients Generated by Electromigration,'' Appl. Phys. Lett, vol. 30, no. 8, pp. 387-389, 1976.

50
R. Kirchheim, ``Stress and Electromigration in Al-Lines of Integrated Circuits,'' Acta Metallurg. Mater., vol. 40, no. 2, pp. 309-323, 1992.

51
M. A. Korhonen, P. Borgesen, K. N. Tu, and C. Y. Li, ``Stress Evolution due to Electromigration in Confined Metal Lines,'' J. Appl. Phys., vol. 73, no. 8, pp. 3790-3799, 1993.

52
A. S. Oates, ``Electromigration Failure of Contacts and Vias In Sub-Micron Integrated Circuit Metallisations,'' Microelectron. Reliab., vol. 36, no. 7, pp. 925-953, 1996.

53
B. H. Jo and R. W. Vook, ``In-Situ Ultra-High Vacuum Studies of Electromigration in Copper Films,'' Thin Solids Films, vol. 262, no. 1, pp. 129 - 134, 1995.

54
E. Arzt, O. Kraft, W. D. Nix, and J. E. Sanchez, ``Electromigration Failure by Shape Change of Voids in Bamboo Lines,'' J. Appl. Phys., vol. 76, no. 3, pp. 1563-1571, 1994.

55
M. A. Meyer, M. Herrmann, E. Langer, and E. Zschech, ``In Situ SEM Observation of Electromigration Phenomena in Fully Embedded Copper Interconnect Structures,'' Microelectronic Engineering, vol. 64, pp. 375-382, 2002.

56
M. Mahadevan and R. Bradley, ``Simulations and Theory of Electromigration-Induced Slit Formation in Unpassivated Single-Crystal Metal Lines,'' Phys. Rev. B, vol. 59, no. 16, pp. 11037-11046, 1999.

57
M. Mahadevan and R. Bradley, ``Phase Field Model of Surface Electromigration in Single-Crystal Metal Thin Films,'' Physica D, vol. 126, no. 3, pp. 201-213, 1999.

58
M. Mahadevan, R. Bradley, and J. M. Debierre, ``Simulation of an Electromigration-Induced Edge Instability in Single-Crystal Metal Lines,'' Europhys. Lett., vol. 45, pp. 680-685, 1999.

59
D. N. Bhate, A. Kummar, and A. F. Bower, ``Diffuse Interface Model for
Electromigration and Stress Voiding,'' J. Appl. Phys., vol. 87, no. 4, pp. 1712-1721, 2000.

60
D. R. Fridline and A. F. Bower, ``Influence of Anisotropic Surface Diffusivity on Electromigration Induced Void Migration and Evolution,'' J. Appl. Phys., vol. 85, no. 6, pp. 3168-3174, 1999.

61
Z. Suo and W. Wang, ``Diffusive Void Bifurcation in Stressed Solid,'' J. Appl. Phys., vol. 76, no. 6, pp. 3410-3421, 1994.

62
H. Ceric and S. Selberherr, ``An Adaptive Grid Approach for the Simulation of Electromigration Induced Void Migration,'' Proc. Simulation of Semiconductor Processes and Devices, pp. 253-257, 2002.

63
P. S. Ho, ``Motion of Inclusion by a Direct Current and a Temperature Gradient,'' J. Appl. Phys., vol. 41, no. 1, pp. 64-68, 1970.

64
M. R. Gungor and D. Maroudas, ``Theoretical Analysis of Electromigration-Induced Failure of Metallic Thin Films due to Transgranular Void Propagation,'' J. Appl. Phys., vol. 85, no. 4, pp. 2233-2246, 1999.

65
R. H. Tu and E. Rosenbaum, ``Berkeley Reliability Tools-BERT,'' IEEE Trans. on Computer Aided Design of IC and Sys., vol. 12, no. 10, pp. 1524-1534, 1993.

66
www.synopsys.com

67
C. C. Teng, Y. K. Cheng, E. Rosenbaum, and S. M. Kang, ``iTEM: A Temperature-Dependent Electromigration Reliability Diagnosos Tool,'' IEEE Trans. on Computer Aided Design of IC and Sys., vol. 16, no. 8, pp. 882-893, 1993.

68
B. K. Liew, N. W. Cheung, and C. Hu, ``Projecting Interconnect Electromigration Lifetime for Arbitrary Current Waveforms,'' IEEE Trans. Elec. Dev., vol. 37, no. 5, pp. 1343-1351, 1990.

69
G. Reimbold, O. Sicardy, L. Arnaud, F. Fillot, and J. Torres, ``Mechanical Stress Measurments in Damascene Copper Interconnects and Influence on Electromigration Parameters,'' Proc. International Electron Devices Meeting, pp. 745-748, 2002.

70
M. E. Sarychev and Y. V. Zhitnikov, ``General Model for Mechanical Stress Evolution During Electromigration,'' J. Appl. Phys., vol. 86, no. 6, pp. 3068 - 3075, 1999.

71
R. Sorbello, A. Lodder, and S. Hoving, ``Finite-Cluster Description of Electromigration,'' Phys. Rev. B, vol. 25, no. 10, pp. 6178-6187, 1982.

72
P. R. Rimbey and R. S. Sorbello, ``Strong-Coupling Theory for the Driving Force in Electromigration,'' Phys. Rev. B, vol. 21, no. 6, pp. 2150-2161, 1980.

73
P. S. Ho and T. Kwok, ``Electromigration in Metals,'' Rep. Prog. Phys., vol. 52, no. 3, pp. 301-348, 1989.

74
J. Dekker, A. Lodder, and J. van Ek, ``Theory for the Electromigration Wind Force in Dilute Alloys,'' Phys. Rev. B, vol. 56, no. 19, pp. 12167 - 12177, 1997.

75
J. R. Black, ``Mass Transport of Aluminum by Momentum Exchange With Conducting Electrons,'' Proc. Annual Reliability Physic Symposium, pp. 148-159, 1967.

76
R. Sabelka, Dreidimensionale Finite Elemente Simulation von Verdrahtungsstrukturen auf Integrierten Schaltungen.
Dissertation, Technische Universität Wien, 2001.

77
E. Liniger, L. Gignac, C. Hu, and S. Kaldor, ``In Situ Study of Void Growth Kinetics in Electroplated Cu Lines,'' J. Appl. Phys., vol. 92, no. 4, pp. 1803-1810, 2002.

78
C. Herring, ``Diffusional Viscosity of a Polycrystalline Solid,'' J. Appl. Phys., vol. 21, no. 5, pp. 437-445, 1950.

79
C. Herring, ``Some Theorems on the Free Energies of Crystal Surfaces,'' Phys. Rev., vol. 82, no. 1, pp. 87-93, 1951.

80
M. Shatzkes and J. R. Lloyd, ``A Model for Conductor Failure Considering Diffusion Concurrently with Electromigration Resulting in a Current Exponent of 2,'' J. Appl. Phys., vol. 59, no. 11, pp. 3890-3893, 1986.

81
G. L. Povirk, ``Numerical Simulations of Electromigration and Stress-Driven Diffusion in Polycrystalline Interconnects,'' Proc. Mater. Res. Soc. Symp., vol. 473, pp. 327-342, 1997.

82
S. Rzepka, M. A. Korhonen, E. R. Weber, and C. Y. Li, ``Three-Dimensional Finite Element Simulation of of Electro and Stress Migration Effects in Interconnect Lines,'' Proc. Mater. Res. Soc. Symp., vol. 473, pp. 329-335, 1997.

83
S. R. deGroot, ``Phenomenological Theory of the Soret Effect,'' Physica, vol. 9, pp. 923-924, 1942.

84
H. Ye, C. Basaran, and D. Hopkins, ``Numerical Simulation of Stress Evolution During Electromigration in IC Interconnect Lines,'' IEEE Trans. on Comp. and Pack., vol. 26, no. 3, pp. 673 - 681, 2003.

85
J. Blowey and C. Elliott, ``The Chan-Hilliard Gradient Theory for Phase Separation with Non-Smooth Free Energy, Part II: Numerical Analysis,'' European Journal of Applied Mathematics, vol. 3, pp. 147-179, 1992.

86
J. Blowey and C. Elliott, ``The Chan-Hilliard Gradient Theory for Phase Separation with Non-Smooth Free Energy, Part I: Mathematical Analysis,'' European Journal of Applied Mathematics, vol. 2, pp. 233-279, 1991.

87
Z. Suo, W. Wang, and M. Yang, ``Electromigration Instability: Transgranular Slits in Interconnects,'' Appl. Phys. Lett, vol. 64, no. 15, pp. 1944-1946, 1994.

88
C. Elliot and J. Ockendon, Weak and Variational Methods for Moving Boundary Problems.
Pitman Publishing Inc., 1981.

89
I. Kossacky, ``A Recursive Approach to Local Mesh Refinement in Two and Three Dimensions,'' J. Comput. Appl. Math., vol. 55, no. 3, pp. 275-288, 1994.

90
J. D. Jackson, Klassiche Elektrodynamik.
Walter de Gruyter Verlag Berlin-New York, 2002.

91
C. Harlander, R. Sabelka, R. Minixhofer, and S. Selberherr, ``Three-Dimensional Transient Electro-Thermal Simulation,'' in Proc. Foreword contributions from thermal investigations of ICs and systems, pp. 169-172, 1999.

92
S. H. Kang and E. Shin, ``A Three-Dimensional Nonlinear Analysis of Electromigration-Induced Resistance Change and Joule Heating in Microelctronics Interconnects,'' Solid-State Electronics, vol. 45, pp. 341-346, 2001.

93
E. Baer, J. Lorenz, and H. Ryssel, ``Simulation of the Influence of Via Sidewall Tapering on Step Coverage of Sputter-Deposited Barrier Layers,'' Microelectr. Eng., vol. 64, no. 1, pp. 321 - 328, 2002.

94
``DEVISE User Manual, Release 10.0,'' Synopsys Switzerland Ltd., Switzerland, 2004.

95
N. Meier, T. Marieb, P. Flinn, R. Gleixner, and J. Bravman, ``In Situ Studies of Electromigration Voiding in Passivated Copper Interconnects,'' Proc. American Institute of Physics Conference, pp. 180-185, 1999.


next up previous contents
Next: Own Publications Up: Dissertation Hajdin Ceric Previous: B. Some Tools from

H. Ceric: Numerical Techniques in Modern TCAD