Bibliography

[1]   Adachi, S. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors. John Wiley & Sons, 2009.

[2]   Akasaki, I., and Amano, H. Breakthroughs in improving crystal quality of GaN and invention of the pn junction blue-light-emitting diode. Jpn. J. Appl. Phys. (2006), 9001.

[3]   Albrecht, M., Nikitina, I., Nikolaev, A., Melnik, Y., Dmitriev, V., and Strunk, H. Dislocation reduction in AlN and GaN bulk crystals grown by hvpe. Phys. Stat. Sol. 176, 1 (1999), 453458.

[4]   Balluffi, R. W. Introduction to Elasticity Theory for Crystal Defects. cambridge university press, 2012.

[5]   Belabbas, I., Bere, A., Chen, J., A., S. P. M., Belkhir, Ruterana, P., and Nouet, G. Atomistic modeling of the (a+c)-mixed dislocation core in wurtzite GaN. Phys. Rev. B: Condens. Matter 75 (2007), 115201.

[6]   Bethoux, J.-M., and Venngus, P. Ductile relaxation in cracked metal-organic chemical-vapor-deposition-grown AlGaN films on GaN. J. Appl. Phys. 97 (2005), 123504.

[7]   Cantu, P., Wu, F., Waltereit, P., Keller, S., Romanov, A., Debars, S., and Speck, J. Role of inclined threading dislocations in stress relaxation in mismatched layers. J. Appl. Phys. 97, 10 (2005), 103535.

[8]   Coppeta, R., Holec, D., Ceric, H., and Grasser, T. Evaluation of dislocation energy in thin films. Philos. Mag. A (2015).

[9]   Cottrell, A. H. The Mechanical Properties of Matter. John Wiley & Sons, 1964.

[10]   Dridi, Z., Bouhafs, B., , and Ruterana, P. First-principles calculation of structural and electronic properties of wurtzite AlxGa1-xN, InxGa1-xN, and InxAl1-xN random alloys. phys. stat. sol. 1 (2002), 315–319.

[11]   Edgar, J. H. Properties of Group III Nitrides. INSPEC, the institution of electrical engineers, 1994.

[12]   Eifert, B. Some representative crystal structures. http://demonstrations.wolfram.com/SomeRepresentativeCrystalStructures/, 2011.

[13]   Eshelby, J. D. The continuum theory of lattice defects. Solid State Phys. 3 (1956), 79–303.

[14]   Feltin, E., Beaumont, B., Lagt, M., de Mierry, P., Venngus, P., Leroux, M., and Gibart, P. Crack-free thick GaN layers on silicon (111) by metalorganic vapor phase epitaxy. Phys. Stat. Sol. (a) 188, 2 (2001), 531535.

[15]   Floro, J. A., Follstaedt, D. M., Provencio, P., Hearne, S. J., and Lee, S. R. Misfit dislocation formation in the AlGaN/GaN heterointerface. Appl. Phys. Lett. 94 (2003), 1565.

[16]   Follstaedt, D., Lee, S., P.P. Provence, A. A., Floro, J., and Crawford, M. Relaxation of compressively-strained algan by inclined threading dislocations. J. Appl. Phys. 87, 12 (2014), 121112.

[17]   Freund, L. B. The stability of a dislocation threading a strained layer on a substrate. J. Appl. Mech. 54 (1987), 554.

[18]   Freund, L. B. A criterion for arrest of a threading dislocation in a strained epitaxial layer due to an interface misfit dislocation in its path. J. Appl. Phys. 68 (1990), 2073.

[19]   Freund, L. B., and Suresh, S. Thin Film Materials. Cambridge University Press, 2003.

[20]   Gherasimova, M., Cui, G., Ren, Z., Su, J., Wang, X.-L., Han, J., Higashimine, K., and Otsuka, N. Heteroepitaxial evolution of AlN on GaN grown by metal-organic chemical vapor deposition. J. Appl. Phys. 95 (2004), 2921.

[21]   Gibarth, P. MOVPE of GaN and lateral overgrowth. Rep. Prog. Phys. (2004).

[22]   Harame, D., Boquet, J., Ostling, M., Yee, Y., Masini, G., Caymax, M., Krishnamohan, T., Tillack, B., Bedell, S., Miyazaki, S., Reznicek, A., and Koester, S. SiGe, Ge, and Related Compounds 4: Materials, Processing, and Devices, vol. 33 of 6. The Electrochemical Society, 2003.

[23]   Hirth, J. P., and Lothe, J. Theory of Dislocations. Krieger Publishing Company, 1982.

[24]   Holec, D. Critical thickness calculations for InGaN/GaN systems, june 2006.

[25]   Holec, D. Multi-scale modelling of III-nitrides: from dislocations to the electronic structure, july 2008.

[26]   Holec, D., Costa, P. M. F. J., Kappers, M. J., and Humphreys, C. J. Critical thickness calculations for InGaN/GaN. J. Cryst. Growth 303, 1 (May 2007), 314–317.

[27]   Holec, D., and Humphreys, C. J. Calculations of equilibrium critical thickness for non-polar wurtzite InGaN/GaN systems. Mater. Sci. Forum.

[28]   Holec, D., Zhang, Y., Rao, D. V. S., Kappers, M., McAleese, C. J., and Humphreys, C. J. Equilibrium critical thickness for misfit dislocations in III-nitrides. J. Appl. Phys. 104, 12 (2008), 123514.

[29]   Hopcroft, M. A., Nix, W., and Kenny, T. What is the youngs modulus of silicon?. J. Microelectromech. S. 19, 2 (2010), 229.

[30]   Houghton, D. C., Gibbings, C. J., Tuppen, C. G., Lyons, M. H., and Halliwell, M. A. G. Equilibrium critical thickness for SiGe strained layers on (100)Si. Appl. Phys. Lett. 56 (1990), 460.

[31]   Hu, S. Misfit dislocations and critical thickness of heteroepitaxy. J. Appl. Phys. 69, 11 (1991), 7901–7903.

[32]   Hull, D., and Bacon, D. J. Introduction to Dislocations. Butterworth-Heinemann, 2011.

[33]   Jahnen, B., Albrecht, M., Dorsch, W., Christiansen, S., Strunk, H. P., Hanser, D., and Davis, R. F. Pinholes, dislocations and strain relaxation in InGaN. MRS Internet J. Nitride Semicond. Res. 3 (1998), 39.

[34]   Jasinski, J., and Liliental-Weber, Z. Extended defects and polarity of hydride vapor phase epitaxy GaN. J. Electron. Mater. 31, 5 (2002), 429436.

[35]   K. Krishnamurthy, T. Driver, R. V. J. M. 100W GaN HEMT power amplifier module with >60% efficiency over 100-1000 MHz bandwidth. Microwave Symposium Digest (MTT), 2010 IEEE MTT-S International (2010), 940 – 943.

[36]   Kaiser, F., Jakob, M., Zweck, J., Gebhardt, W., Ambacher, O., Dimitrov, R., Schremer, A. T., Smart, J. A., and Shealy, J. R. High-electron-mobility AlGaN/GaN heterostructures grown on Si(111) by molecular-beam epitaxy. Appl. Phys. Lett 18 (2000), 733.

[37]   Kioseoglou, J., Komninou, P., and Karakostas, T. Core models of a-edge threading dislocations in wurtzite III(Al,Ga,In)-nitrides. Phys. Status Solidi A 206, 8 (2009), 1931.

[38]   Koblmüller, G., Chu, R. M., Raman, A., Mishra, U. K., and Speck, J. S. High-temperature molecular beam epitaxial growth of AlGaN/GaN on GaN templates with reduced interface impurity levels. J. Appl. Phys. 107 (2010), 043527.

[39]   Kravchuk, K. S., Mezhennyi, M. V., and Yugova, T. G. Determination of the types and densities of dislocations in gan epitaxial layers of different thicknesses by optical and atomic force microscopy. Crystallogr. Rep. 57, 2 (2012), 277–282.

[40]   Landau, L. D., and Lifshitz, E. M. Theory of elasticity. Pergamon Press, 1959.

[41]   Lee, S. R., Koleske, D. D., Cross, K. C., Floro, J. A., Waldrip, K. E., Wise, A. T., and Mahajan, S. In situ measurements of the critical thickness for strain relaxation in AlGaN/GaN heterostructures. J. Appl. Phys. 85 (2004), 6164.

[42]   Li, G., Meng, Q., Yang, L., and Li, C. Molecular dynamics study on the 60 dislocation in silicon. J. Atom. Molec. Phys. (2006), 71–74.

[43]   Li, L., Li, D., Wei, Q., Chen, W., Yang, Z., Zhang, G., and Hu, X. Inclined dislocation generation in compressive-strain-enhanced Mg-doped GaN/Al0.15Ga0.85N superlattice with AlN interlayer. Appl. Phys. Express 6 (2013), 061002.

[44]   Liu, R., Mei, J., Srinivasan, S., Ponce, F. A., Omiya, H., Narukawa, Y., and Mukai, T. Generation of misfit dislocations by basal-plane slip in InGaN/GaN heterostructures. Appl. Phys. Lett., 89 (2006), 201911.

[45]   Love, A. E. H. A treatise on the mathematical theory of elasticity. Cambridge University Press, 1904.

[46]   Lü, W., Li, D. B., Li, C. R., and Zhang, Z. Generation and behavior of pure-edge threading misfit dislocations in InxGa1-xN/GaN multiple quantum wells. J. Appl. Phys., 96 (2004), 5267.

[47]   Manuel, J., Morales, F., Garcia, R., Aidam, R., Kirste, L., and Ambacher, O. Threading dislocation propagation in AlGaN/GaN based hemt structures grown on Si(111) by plasma assisted molecular beam epitaxy. J. Electron. Mater. 357 (2012), 3541.

[48]   Markov, I. V. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy. Singapore: World Scientific, 1995.

[49]   Mathis, S., Romanov, A., Chen, L., Beltz, G., Pompe, W., , and Speck, J. Modeling of threading dislocation reduction in growing GaN layers. J. Cryst. Growth 231, 3 (2001), 371390.

[50]   Matthews, J. W., and Blakeslee, A. E. Defects in epitaxial multilayers, 1. misfit dislocations. J. Cryst. Growth 27 (1974), 118.

[51]   Metzger, T., Hopler, R., Born, E., Ambacher, O., and Stutzmann, M. Defectstructure of epitaxial GaN films determined by transmission electron microscopy and triple-axis x-ray diffractometry. Phil. Mag., A77 (1998), 1013.

[52]   Moore, A., and Jimenez, J. GaN RF for technology. John Wiley & Sons, 2014.

[53]   Morkoc, H. Handbook of Nitride - Semiconductors and Devices, vol. 1. WILEY-VCH Verlag, 2008.

[54]   Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Burns, M. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 76, 3 (1994), 1363.

[55]   Nabarro, F. R. N. Dislocations in Solids: Dislocations in crystals. North-Holland Publishing Company, 1979.

[56]   Nakamura, S., and Krames, M. R. History of gallium-nitride-based light-emitting diodes for illumination. Proceedings of the IEEE (2013), 0018–9219.

[57]   Nye, J. F. Physical Properties of Crystals – Their Representation by Tensors and Matrices. Clarendon Press Oxford, 1985.

[58]   Oliver, R. A., Kappers, M. J., Sumner, J., Datta, R., and Humphreys, C. J. Highlighting threading dislocations in movpe grown GaN using an in-situ treatment with silane and ammonia. J. Cryst. Growth (2006), 289.

[59]   Pankove, J. I., and Moustakas, T. D. Gallium Nitride (GaN) II, semiconductors and semimetals, vol. 57. INSPEC, the institution of electrical engineers, 1999.

[60]   Parker, C. A., Roberts, J. C., Bedair, S. M., Reed, M. J., Liu, S. X., and El-Masry, N. A. Determination of the critical layer thickness in the InGaN/GaN heterostructures. Appl. Phys. Lett. 75 (1999), 2776.

[61]   Reeber, R. R., and Wang, K. High temperature elastic constant prediction of some group iii- nitrides. MRS Internet J. Nitride Semicond. Res. 6 (2001), 1–5.

[62]   Reed, M. J., and El-Masry, N. A. Critical layer thickness determination of GaN/InGaN/GaN double heterostructures. Appl. Phys. Lett. 77 (2000), 4121.

[63]   Remediakis, I. N., Jesson, D. J., and Kelires, P. C. Probing the structure and energetics of dislocation cores in SiGe alloys through Monte Carlo Simulations. Phys. Rev. Lett. 97 (2006), 255502.

[64]   Romanov, A. E., Pompe, W., Beltz, G. E., and Speck, J. S. An approach to threading dislocation reaction kinetics. J. Appl. Phys. 69 (1996), 3342.

[65]   Romanov, A. E., Pompe, W., Beltz, G. E., and Speck, J. S. Modeling of threading dislocation density reduction in heteroepitaxial layers. Phys. Stat. Sol. (b) 198 (1996), 599.

[66]   Romanov, A. E., Pompe, W., Mathis, S., Beltz, G. E., and Speck, J. S. Threading dislocation reduction in strained layers. J. Appl. Phys. 85, 1 (1999), 182–191.

[67]   Runton, D. W., Trabert, B., Shealy, J. B., and Vetury, R. History of GaN. Microwave Magazine, IEEE 14 (2013), 82 – 93.

[68]   Schremer, A. T., Smart, J. A., Wang, Y., Ambacher, O., MacDonald, N. C., , and Shealy, J. R. High electron mobility AlGaN/GaN heterostructure on (111)Si. Appl. Phys. Lett 76, 6 (2000), 733.

[69]   Semond, F., Lorenzini, P., Grandjean, N., and Massies, J. High-electron-mobility AlGaN/GaN heterostructures grown on Si(111) by molecular-beam epitaxy. Appl. Phys. Lett 78 (2001), 335.

[70]   Sokolnikoff, I. S. Mathematical theory of elasticity. McGraw-Hill, 1956.

[71]   Srinivasan, S., Geng, L., Liu, R., Ponce, F. A., Narukawa, Y., and Tanaka, S. Slip systems and misfit dislocations in InGaN epilayers. Appl. Phys. Lett. 83 (2003), 5187.

[72]   Steeds, J. W. Introduction to anisotropic elasticity theory of dislocations. Clarendon Press, 1973.

[73]   T. Li, M. Mastro, A. D. III-V compound semiconductor – integration with silicon-based microelectronics. CRC Press, 2011.

[74]   Ting, T. C. T. Anisotropic Elasticity, Theory and Applications. Oxford university press, 1996.

[75]   Ubukataa, A., Ikenaga, K., Akutsua, N., Yamaguchia, A., Matsumoto, K., Yamazakia, T., and Egawab, T. GaN growth on 150-mm-diameter (111)Si substrates. Journal of Crystal Growth 298 (2007), 198201.

[76]   Vegard, L. Die konstitution der mischkristalle und die raumfllung der atome. Zeitschrift fr Physik 5 (1921), 17–26.

[77]   Vennéguès, P., Bougrioua, Z., Bethoux, J. M., Azize, M., and Tottereau, O. Relaxation mechanisms in metal-organic vapor phase epitaxy grown Al-rich (Al,Ga)N/GaN heterostructures. J. Appl. Phys. 97 (2005), 024912.

[78]   Wang, C., Pan, X., and Ruhle, M. Silicon nitride crystal structure and observations of lattice defects. J. Mater. Sci. 31 (1996), 5281.

[79]   Ward, T., Snchez, A., Tang, M., Wu, J., Liu, H., Dunstan, D. J., and Beanland, R. Design rules for dislocation filters. J. Appl. Phys. 116 (2014), 063508.

[80]   Warnes, W. Changing dislocation type along a single dislocation line. http://oregonstate.edu/instruct/engr322/Exams/Previous/S98/ENGR322MT2.html, 1998.

[81]   Webb, J. B., Tang, H., Rolfe, S., and Bardwell, J. A. Semi-insulating C-doped GaN and high-mobility AlGaN/GaN heterostructures grown by ammonia molecular beam epitaxy. Appl. Phys. Lett. 75 (1999), 953–955.

[82]   Willis, J. R., Jain, S., and Bullough, R. The energy of an array of dislocations - implications for strain relaxation in semiconductor heterostructures. Philos. Mag. A A 62 (1990), 115.

[83]   Wu, Y.-F., Saxler, A., Moore, M., Wisleder, T., Mishra, U., and Parikh, P. Field-plated GaN HEMTs and amplifiers. Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC 2005. (2005), 170 – 172.

[84]   Yoshida, S., Katoh, S., Takehara, H., Takehara, Y., Li, J., Ikeda, N., Hataya, K., and Sasaki, H. Investigation of buffer structures for the growth of a high quality AlGaN/GaN heterostructure with a high power operation FET on Si substrate using MOCVD. Phys. Stat. Sol. (a) 203, 7 (2006), 1739 1743.

[85]   Zhe, L., Xiao-Liang, W., Jun-Xi, W., Guo-Xin, H., Lun-Chun, G., and Jin-Min, L. The influence of AlN/GaN superlattice intermediate layer on the properties of GaN grown on Si(111) substrates. Chin. Phys. 16, 5 (2007), 1467–05.

[86]   Zolper, J. C. Wide bandgap semiconductor microwave technologies: From promise to practice. International Electron Devices Meeting, 1999. IEDM 1999 (1999), 389 – 392.