3.3.1 FERMI-DIRAC Distribution

In equilibrium the energy distribution function of electrons or holes is given by the FERMI3.2-DIRAC3.3 statistics

$\displaystyle f({\mathcal{E}}) = \frac {1} {1 + \exp \left( \displaystyle \frac...
...thcal{E}}-\ensuremath{{\mathcal{E}}_\mathrm{f}}}{{\mathrm{k_B}}T} \right) } \ ,$ (3.15)

which can be derived from statistical thermodynamics [100]. Separating the longitudinal and transversal energy components $ {\mathcal{E}}= {\mathcal{E}}_x +
{\mathcal{E}}_\rho$ and splitting the integral in (3.14) $ N({\mathcal{E}}_x) =
\xi_1({\mathcal{E}}_x) - \xi_2({\mathcal{E}}_x)$ the values of $ \xi_1$ and $ \xi_2$ become

$\displaystyle \xi_i = \displaystyle \int_0^\infty f_i({\mathcal{E}}) \,\ensurem...
...}T} \right)}\,\ensuremath {\mathrm{d}}{\mathcal{E}}_\rho \qquad\qquad i=1,2 \ .$ (3.16)

This expression can be integrated analytically using

$\displaystyle \int \frac{\ensuremath {\mathrm{d}}x}{1+\exp(x)} = \ln \left( \frac{1}{1 + \exp(-x)} \right) + C \ ,$ (3.17)

so expression (3.16) evaluates to

$\displaystyle \xi_i = \displaystyle {\mathrm{k_B}}T\ln\left( 1 + \exp \left( -\...
...athcal{E}}_{\mathrm{f},i}}}{{\mathrm{k_B}}T} \right) \right) \qquad\qquad i=1,2$ (3.18)

and the total supply function (3.14) becomes

$\displaystyle N({\mathcal{E}}_x)={\mathrm{k_B}}T\ln\left( \frac{\displaystyle 1...
...- \ensuremath{{\mathcal{E}}_\mathrm{f,2}}}{{\mathrm{k_B}}T}\right)} \right) \ .$ (3.19)

A. Gehring: Simulation of Tunneling in Semiconductor Devices