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Using six moments of Boltzmann’s transport equation for device
simulation

Tibor Grasser,a) Hans Kosina, Markus Gritsch, and Siegfried Selberherr
Institute for Microelectronics, TU-Vienna, Gusshausstrasse 27–29, A-1040 Vienna, Austria

~Received 16 February 2001; accepted for publication 4 June 2001!

As has been frequently pointed out the distribution function of hot carriers in state-of-the-art devices
is insufficiently described using just the average carrier energy. In this work the distribution function
is characterized by six moments to obtain a more accurate description of hot carrier phenomena. A
transport model based on six moments is derived and compared to a previously published model. A
detailed comparison of results obtained from the model with Monte-Carlo data shows excellent
agreement provided proper models for the relaxation times are used. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1389757#
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I. INTRODUCTION

For modern semiconductor devices nonlocal effects g
more and more importance. In the traditional drift-diffusio
model the average carrier energy is assumed to be in e
librium with the electric field. This assumption has be
shown to be invalid as the average carrier energy lags be
the electric field because the carriers take some time to
up energy from the electric field. In order to obtain inform
tion about this nonlocal behavior of the carrier energy, va
ous hydrodynamic and energy-transport models have b
proposed.1,2 Furthermore, it was found that the average c
rier energy provides a better basis for modeling parame
like mobility3,4 and impact ionization5,6 compared to ap-
proaches using the local electric field. In particular, the sy
metric part of the distribution function is commonly model
using a heated Maxwellian shape.7 As has been frequently
pointed out, this is at best a modest approximation in st
of-the-art devices where the gradients of the electric field
large. Two main deviations from the Maxwellian shape ha
been reported by many authors. First, it has been obser
that after a certain energy the slope of the distribution fu
tion decreases rapidly. This has been called the therma
of the distribution function because its effective temperat
equals the lattice temperature. Abramo and Fiegna8 discussed
this thermal behavior of the high-energy tail which they p
posed to appear for energies larger thanqDc(x) with Dc(x)
being the voltage drop experienced by the carriers from
injecting contact up to the pointx. They showed that this
thermal behavior is not a band structure effect by reprod
ing it with a single isotropic and parabolic band, includin
only acoustic and optical phonon scattering. Furthermo
they showed that the effective temperature of the thermal
is increased when electron–electron scattering~EES! is taken
into account. The influence of EES has been investigate
detail by Changet al.9 who evaluated the influence of th
band structure~parabolic versus fullband!. Figure 5 in Ref. 9
indicates that the influence of the fullband structure is sm
and mainly influences the high-energy tail. Ghettiet al.10
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showed that the influence of EES on substrate and gate
rents was negligible. In addition impact-ionization feedba
was reported to change the thermal tail of the distribut
function.11,12

Another important deviation from the Maxwellian shap
occurs when hot and cold carrier populations mix, as is
case in the drain region of metal–oxide–semiconduc
~MOS! transistors. These populations coexist for some ti
and can be described by a superposition of a hot and
Maxwellian distribution.13 In those regions, the relaxatio
times are largely determined by the average energy of the
population. Since the number of hot carriers is frequen
much smaller than the number of cold carriers the aver
energy of the hot carriers has only negligible influence on
energy of the whole electron gas and thus models using
energy are bound to fail.

Due to these deviations from the Maxwellian shape,
distribution function cannot be uniquely described by t
average carrier energy. For the same average energie
distribution functions are completely different depending
whether they are taken from regions where the abso
value of the electric field increases or decreases.14,15 As the
relaxation times depend on the shape of the distribution fu
tion, problems are to be expected when they are modele
using only the average carrier energy. In Ref. 15 the auth
argue, that this might be the reason for the spurious velo
overshoots obtained by several energy-transport models16,17

whereas Bordelonet al.13 propose a solution to this problem
by using two electron populations with two different tem
peratures.

II. HIGHER ORDER MOMENTS

To find a quantitative description of the deviation fro
the Maxwellian shape we look at the kurtosisbn of the dis-
tribution function which we define as

bn5
3

5
n

^E2&

^E&2 5
4

15

^E2&
n kB

2 Tn
2 . ~1!

In addition, we define a second order temperatureQn as
9 © 2001 American Institute of Physics
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Qn5bnTn5
2

5 kB

^E2&

^E&
5

4

15

^E2&
kB

2 Tn
. ~2!

Here, n denotes the carrier type~n or p!, Tn is the carrier
temperature,E is the energy, andkB is Boltzmann’s constant
For a heated Maxwell–Boltzmann distribution and parabo
bands we getbn5bMB51 and thereforeQn5Tn . Thus a
bnÞ1 quantifies the deviation from the Maxwellian shape
the parabolic case. When nonparabolicity is taken into
count, a different value forbMB is obtained, which is close to
1 and temperature dependent. For instance, at 3000 and
K, bMB evaluates to 0.97 and 0.93, respectively.

As an example we considered ann1 –n–n1 structure
with the doping levelsND

151019cm23 and ND51018cm23

with a graded transition into a 0.3mm long lowly doped
region. This structure was simulated using a Monte-Ca
~MC! simulator employing optical and acoustic phonon sc
tering in addition to impurity scattering. Furthermore, no
parabolicity was considered using Kane’s dispers
relation.18 Both carrier temperatures, the kurtosis and typi
distribution functions are shown in Fig. 1. Note that the a
erage carrier energy at points A and D is equal whereas
distribution function looks completely different.15 This can
be clearly attributed to the kurtosis which is 0.8 at point
but 1.32 at point D. Furthermore, the shapes of the distri
tion functions for points A–C are similar, indicated by
similar value ofbn . In general it can be said that the distr
bution function is never anything like a Maxwellian, exce
for the contact regions. This clearly calls for a reinvestigat
of the assumptions underlying the hydrodynamic transp
models and the physical models used therein. Especially
relaxation times obtained from the relaxation time appro
mation are known to reflect a hysteresis when modeled
function of the average energy only.13,15,19

In this article we propose a six moments~SM! model
derived from Boltzmann’s transport equation~BTE! which
aims at modeling the kurtosis. We will also give a discre
zation and compare the results obtained by our model w
the previously published six moments model by Sono
et al.20

III. THE SIX MOMENTS MODEL

Several moment based models have been propo
which aim at obtaining some additional information abo
the distribution function to the average energy. One appro
was to split the energy range at some characteristic en
and handle both energy ranges with a two-population
two-temperature model.14,21 As these models were targete
on modeling impact ionization the band gap energy w
taken as the characteristic energy. This approach lead
various additional parameters which model the transiti
between the two energy regions. Determination of these
rameters relies on carefully set up MC simulations. Due
this specialization to impact ionization, this model wou
have to be reformulated if another energy range is of inte
as is the case for the calculation of gate currents.22 Thus, this
approach is difficult to generalize if both effects need to
captured at the same time which is the case for state-of-
Downloaded 20 Sep 2001 to 128.130.68.13. Redistribution subject to A
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art devices. A special formulation has been proposed in R
13 for those regions where the high-energy tail is heav
populatedbn.bMB . Unfortunately, this approach is limite
to those regions and cannot capture effects in the reg
with bn,bMB .

Several authors gave higher order moment equation
obtain additional accuracy; see e.g., Refs. 23 and 24. Th

FIG. 1. Carrier temperature, absolute and relative kurtosis, and distribu
functions at the five characteristics points of then1 –n–n1 structure. Note
that the energies for A and D are the same.
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equations were based on an Ansatz for the distribution fu
tion which was taken to be some expansion around a M
wellian shape. Sonodaet al.20 added two equations for th
fourth and fifth moment of the BTE to a standard energ
transport model taken from Ref. 25. This leaves the ques
open whether this results in a consistent equation set or
an issue which will be addressed in the following where
derive a six moments model using the method of momen26

without making any Ansatz for the distribution function. A
with the derivation of the energy-transport model we st
from Boltzmann’s transport equation

] t f 1u"“ r f 1sn qE"“pf 5Q~ f !. ~3!

Here, q denotes the elementary charge,sn is the carrier
charge (61), E is the electric field,u is the group velocity,
andQ the collision operator. For the following we assume
single parabolic band with effective carrier massmn . We use
the following physically motivated weight functions instea
of the powers ofk:

F051, F15p 5\ k,

F25E5
\2 k2

2 mn
, F35u E,

F45E2, F55u E2,

F65E3,

and define the moments of the distribution function as

M̂ j5^F j&5E F j f d3k. ~4!

Taking the moments of Boltzmann’s equation gives the f
lowing general moment equation:

] t^F j&1“ r•^u^ F j&2sn qE•^“p^ F j&

5E F j Q~ f ! d3k, ~5!

where ^ denotes the tensor product27 which reduces to the
normal product for the scalar weight functions (j 50,2,4).
The scattering integral is evaluated by employing the mac
scopic relaxation time approximation

E F j Q~ f ! d3k>2
^F&2^F&0

tF
. ~6!

The term^“p^ F j& evaluates for the first six moments as

“pF050, “p^ F15 Î, ~7!

“pF25u, “p^ F35
E

mn
Î1u^ u, ~8!

“pF452 E u, “p^ F55
E
2

~u2 Î14 u^ u!, ~9!

with Î being the unity tensor.
The assumptions made in the derivation of the mom

equations follow consistently from appropriately scaling t
Downloaded 20 Sep 2001 to 128.130.68.13. Redistribution subject to A
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BTE. The Knudsen number appears as scaling param
which represents the mean free patht0v0 relative to the de-
vice dimension28

l5
t0v0

x0
. ~10!

Here,t0 is the characteristic time between scattering eve
v0 denotes the velocity scale, andx0 is given by the size of
the simulation domain. Carriers in a semiconductor at ro
temperature can be considered a collision-dominated sys
for which l!1. Diffusion scaling assumes the time scale
the system to be

t05
t0

l2 . ~11!

In the limit of vanishing Knudsen number,l→0, one obtains
that convective terms of the form̂u& ^ ^u& are neglected
against̂ u^ u&, one of the consequences being that the d
kinetic energymn^u&2/2 is neglected againstkBTn , and that
in the flux equations the time derivative vanishes.

Knowing the outcome of diffusion scaling, we continu
in this work from the unscaled BTE@Eq. ~3!#, split the dis-
tribution function into its symmetric and antisymmetric pa
and apply the diffusion approximation, assuming that
symmetric part is isotropic, that is, it depends only on t
modulus ofk:

f ~k!5 f S~ uku!1 f A~k!. ~12!

This is the only assumption we need here to evaluate
tensor averages as

^u^ uEn&5
^u2En&

3
Î5

2

3

^En11&
mn

Î with n50,1,2. ~13!

Thus, we obtain the following balance equations whe
the subscriptr has been dropped for the spatial Nabla ope
tor:

F0 : ] t^1&1“"^u&50, ~14!

F2 : ] t^E&1“"^u E&2sn qE"^u&52
^E&2^E&0

tE
, ~15!

F4 : ] t^E2&1“"^u E2&2sn 2 qE"^u E&

52
^E2&2^E2&0

tQ
, ~16!

and the following flux equations:

F1 :
2

3
“^E&2sn qE ^1&52mn

^u&
tm

, ~17!

F3 :
2

3
“^E2&2sn

5

3
qE ^E&52mn

^u E&
tS

, ~18!

F5 :
2

3
“^E3&2sn

7

3
qE ^E2&52mn

^u E2&
tK

. ~19!

We now introduce new variables in analogy to t
energy-transport model which gives the following densit
and fluxes:
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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2392 J. Appl. Phys., Vol. 90, No. 5, 1 September 2001 Grasser et al.
F0 : ^1&5n, F1: ^u&5
Jn

sn q
, ~20!

F2 : ^E&5 3
2 kB n Tn , F3 : ^u E&5Sn , ~21!

F4 : ^E2&5
533

4
kB

2 n Tn Qn , F5 : ^u E2&5K n , ~22!

F6 : ^E3&5
73533

8
kB

3 n M6 . ~23!

The new variables are the second order temperatureQn and
the kurtosis fluxK n . Furthermore,M6 denotes the momen
of sixth order which has to be modeled properly to close
equation system

Jn52C1 F“~n Tn!2sn

q

kB
E nG ,

C15sn kB mn , ~24!

Sn52C2 F“~n Tn Qn!2sn

q

kB
E n TnG ,

C25
5

2

kB
2

q

tS

tm
mn , ~25!

K n52C3 F“~n M6!2sn

q

kB
E n Tn QnG ,

C35
35

4

kB
3

q

tK

tm
mn . ~26!

Here the mobilitymn5qtm /mn is introduced. The balanc
equations read

“"Jn52sn q ~] tn1Rn!, ~27!

“"Sn52C4 ] t~n Tn!1E"Jn2C4 n
Tn2TL

tE
1GEn

, ~28!

“"K n52C5 ] t~n Tn Qn!12 sn q E"Sn

2C5 n
Tn Qn2TL

2

tQ
1GQn

, ~29!

C45 3
2kB C55 15

4 kB
2. ~30!

Compared to energy-transport models, two additional re
ation times are needed, namely the relaxation time of
second order temperaturetQ , and the kurtosis flux relax
ation timetK . Although the equation system could also
expressed in terms ofbn instead ofQn , the formulation with
Qn proved to be numerically more stable.

The boundary conditions assumed in the following sim
lations were of Dirichlet type for the contacts~n5n* , Tn

5TL , and Qn5TL! and of Neumann type~Jn•n50, Sn•n
50, andK n•n50! at the remaining boundaries.

Note that Eqs.~24!, ~25!, ~27!, and~28! give a standard
energy-transport model whenQn is set equal toTn in Eq.
~25!.
Downloaded 20 Sep 2001 to 128.130.68.13. Redistribution subject to A
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To close the equation system, the sixth momentM6 still
appearing in Eq.~26! has to be approximated using the low
order moments. From a Maxwellian distribution function a
parabolic bands we know thatM65Tn

3 . As we have the sec
ond order temperatureQn available, we considered the fo
lowing empirical closure relations:

M65Tn
3 S Qn

Tn
D c

with c50, 1, 2, 3. ~31!

The ratio M6
MC/M6 is shown in Fig. 2. As can be seen,c

53 gives the smallest deviation from the desired value, o
In additionc53 proved to be numerically more stable tha
other versions. Especially forc51, which corresponds to
closing the system with a Maxwellian20 the Newton proce-
dure failed to converge in most cases.

Sonodaet al.20 proposed a similar six moments transpo
model. One difference is that they used a microscopic re
ation time approximation as proposed by Stratton,1 whereas
in this work we assume the macroscopic relaxation time
proximation ~6!. Sonodaet al. follow very closely the ap-
proach of Stratton, in that they assume a heated Maxwel
shape for the symmetric part of the distribution functio
This assumption looks contradictory in that on one hand
additional moment of the distribution function is sought, a
on the other hand, no additional degree of freedom is gi
to the distribution function. In this way, they introducetwo
closure relations, one for the fourth moment and one for
sixth moment. Therefore, their equation system gets dec
pled into Stratton’s energy transport model and an additio
equation for the fourth moment. The role of the neglec
coupling is elaborated in the example section where a
tailed comparison with our model is given.

IV. DISCRETIZATION

For the discretization of the flux quantities we make u
of the observation that all three fluxesJn , Sn , andK n can be
written in a general form as

F52CF F“~j TF!2sn

q

kB
E ~j TF!

1

TF
G ~32!

FIG. 2. Comparison of the different closure relations with the sixth mom
from the MC simulation.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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with

Jn : j5n, TF5Tn , ~33!

Sn : j5n Tn , TF5Qn , ~34!

K n : j5n Tn Qn , TF5
Qn

2

Tn
5Taux. ~35!

Assuming that the projected flux between two gridpoints
constant and that the temperature associated to each fluTF

varies linearly on the edge gives the following Scharfette
Gummel type discretization29 form of the flux

Fi , j52
CF

Dx

DTF

ln~TF j /TF i !
@j j B~YF!2j i B~2YF!#, ~36!

YF52
ln~TF j /TF i !

DTF
S sn

q

kB
Dc1DTFD , ~37!

whereB is the Bernoulli function. The inner productsE"Jn

andE"Sn in Eqs.~28! and~29! are discretized in the follow-
ing way. For any fluxF, the inner product can be written a

E"F52“~c2c ref!"F52“@~c2c ref!F#

2~c2c ref! “"F. ~38!

Here an arbitrary constant offset in the potential is int
duced, which, of course, does not change the electric fi
Evaluating the inner product at grid pointi using the local
potential as reference (c ref5c i) gives

E"F ux5xi
52“@~c2c i !F# ~39!

which in turn is handled in a standard way by employing
box integration method.30

V. EXAMPLE AND DISCUSSION

To evaluate these six moments equations appropr
models for the relaxation times are needed. As expected
relaxation times show a strong hysteresis when plotted o
Downloaded 20 Sep 2001 to 128.130.68.13. Redistribution subject to A
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the average energy with the position as parameter~cf. Figs. 3
and 4!. Nevertheless, in this article we assume for simplic
the following constant valuestE50.33 ps, tb50.2 ps,
tS /tm50.8, and tK /tm50.7. More accurate expression
will be published elsewhere. The mobility is modeled usi
the MINIMOS mobility model.31

We now compare the results obtained by the SM mo
to MC simulations. Furthermore, we consider two simplifi
SM models obtained by assumingQn5Tn in Eq. ~25!, which
gives a decoupling of the equations as discussed before
the simplified SM model SSM3 we used the closure relatio
~31! with c53, as in the SM model, whereas in the mod
SSM1 we usedc51 which corresponds to the closure us
by Sonodaet al.For the SSM models, the equation system
decoupled and consists of an energy-transport model an
additional constitutive equation for the second order te
perature.

FIG. 3. Relaxation times as a function of the carrier temperature.

FIG. 4. Relaxation times ratios as a function of the carrier temperatu
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Simulation results of then1 –n–n1 structure are shown
in Fig. 5. Since the moment equations are derived for pa
bolic bands we used a parabolic band structure in the
simulations to allow for a fair comparison. The princip
difference between the models is that due to the miss
coupling term in the SSM models, the profile of the seco
order temperature slightly drifts away from the temperat

FIG. 5. Comparison of the results delivered by the SM, SSM3, and the
SSM1 model with the parabolic MC results and constant relaxation tim
~excluding mobility!.
Downloaded 20 Sep 2001 to 128.130.68.13. Redistribution subject to A
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profile whereas in the SM modelQn and Tn stay tightly
coupled. We observed an even stronger separation in
simulation of realistic MOS transistors. The SM mod
shows a better agreement with the MC simulations than
SSM models~cf. Fig. 5!. For the moment equations consta
relaxation times were used, except for the mobility whi
was calculated with the MINIMOS mobility model.31 These

FIG. 6. Comparison of the results delivered by the SM, SSM3, and the
SSM1 model with the parabolic MC results and MC relaxation times~in-
cluding mobility!.
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constant relaxation times were approximated using the
in Figs. 3 and 4, but no fitting for any of the models w
performed. The results show the correct tendency, but th
is still some discrepancy.

To estimate the influence of the relaxation times, we
rectly used the relaxation times obtained from the MC sim
lation, including the mobility. To do this, the device and M

FIG. 7. Improvement of the accuracy by taking the MC relaxation times
the SM, SSM3, and the SSM1 model.
Downloaded 20 Sep 2001 to 128.130.68.13. Redistribution subject to A
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simulators were coupled to perform a self-consistent itera
where the potential distribution for the MC simulation w
taken from the device simulator and the relaxation times
the device simulator from the last MC solution. Note tha
large number of scattering events had to be processe
obtain smooth relaxation times with small variance. A co
parison of simulation results is shown in Fig. 6 for the S
SSM3, and SSM1 models, respectively. The SM very acc
rately conforms with the MC simulations whereas the dec
pled models do not reach the maximum temperature va
and start decreasing too early. The SSM3 overestimates the
second order temperature in then–n1 junction but fits the
MC results quite well otherwise. On the other hand, t
SSM1 reproduces the maximum value ofQn while it de-
creases too sharply in then1 region. In Fig. 7 the kurtosisbn

is shown for all three models. Each subfigure shows the
provement due to the use of the MC relaxation times
compared with the constant relaxation times. Again,bn de-
creases too rapidly in then1 region for the SSM1 model. An
obvious shortcoming of the constant relaxation times can
seen in the contact regions. There we would expect a M
wellian distribution (bn51) which is not accurately repro
duced by the constant relaxation times as their values h
been taken from the high-energy regions. To improve
accuracy of the model, the relaxation times need to be m
eled more carefully which will be the subject of forthcomin
research.

VI. CONCLUSIONS

It has been frequently pointed out that the distributi
function of carriers in state-of-the-art devices is insufficien
described by a Maxwellian distribution, which has the me
energy as only parameter. In this work we propose the us
of six moments of the distribution function, to allow for
more accurate description of hot-electron phenomena.
moment equations are derived from the Boltzmann equat
and different closure relations are investigated.

To eliminate the uncertainties introduced by the rela
ation time models we extracted the relaxation times from
Monte-Carlo simulator which was coupled to the six m
ments model in a self-consistent manner. This compari
showed an excellent agreement of the six moments mo
with the MC results.
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