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Using six moments of Boltzmann’s transport equation for device
simulation
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As has been frequently pointed out the distribution function of hot carriers in state-of-the-art devices
is insufficiently described using just the average carrier energy. In this work the distribution function
is characterized by six moments to obtain a more accurate description of hot carrier phenomena. A
transport model based on six moments is derived and compared to a previously published model. A
detailed comparison of results obtained from the model with Monte-Carlo data shows excellent
agreement provided proper models for the relaxation times are use@00® American Institute of
Physics. [DOI: 10.1063/1.1389757

I. INTRODUCTION showed that the influence of EES on substrate and gate cur-

rents was negligible. In addition impact-ionization feedback

For modern semiconductor devices nonlocal effects gaify 55 reported to change the thermal tail of the distribution
more and more importance. In the traditional drift-diffusion ¢, stion 1112

model the average carrier energy is assumed to be in equi-  Apgther important deviation from the Maxwellian shape
librium with _the glectrlc field. This as_sumpnon has bee,”occurs when hot and cold carrier populations mix, as is the
shown to be invalid as the average carrier energy lags behind,<e in the drain region of metal—oxide—semiconductor
the electric field because the carriers take some time to pich\/lOS) transistors. These populations coexist for some time
gp energy frqm the electric fie[d. In order to pbtain informa.-and can be described by a superposition of a hot and cold
tion about this nqnlocal behavior of the carrier energy, vari-\1axwellian distributiont® In those regions, the relaxation
ous hyd(r}o;jynamlc and energy-transport models have begf},es are largely determined by the average energy of the hot
proposed:” Furthermore, it was found that the average carqnation. Since the number of hot carriers is frequently
rier energy gr‘?wdega better basis foﬁr modeling parameters,,ch smaller than the number of cold carriers the average
like mobility™” and impact |or-1|ze.1t|o?1 compared 10 @p-  gnergy of the hot carriers has only negligible influence on the
proaches using the local electric field. In particular, the SYMenergy of the whole electron gas and thus models using this
metric part of the distribution function is commonly modeled energy are bound to fail.

using a heated Maxwellian shapds has been frequently Due to these deviations from the Maxwellian shape, the
pointed out, this is at best a modest approximation in stategistripution function cannot be uniquely described by the
of-the-art devices where the gradients of the electric field ar'8yverage carrier energy. For the same average energies the
large. Two main deviations from the Maxwellian shape haveisiripytion functions are completely different depending on
been reported by many authors. First, it has been observegyaiher they are taken from regions where the absolute
that after a certain .energy_the slope of the distribution f“”C'\_/aIue of the electric field increases or decred4dsAs the

tion decreases rapidly. This has been called the thermal tgjbxation times depend on the shape of the distribution func-
of the distribution function because its effective temperaturg;,, problems are to be expected when they are modeled by
equals the lattice tgmperaturg. Abramo and_ Fléghm{:ussed using only the average carrier energy. In Ref. 15 the authors
this thermal behavior of the high-energy tail which they pro-5q,e  that this might be the reason for the spurious velocity
posed to appear for energies larger thi@n/(x) with A¢(x)  gyershoots obtained by several energy-transport mtddls
being the voltage drop experienced by the carriers from the 1 areas Bordeloet al 3 propose a solution to this problem

Injecting contact up to the point. They showed that this 1,y sing two electron populations with two different tem-
thermal behavior is not a band structure effect by repmd”cperatures.

ing it with a single isotropic and parabolic band, including
only acoustic and optical phonon scattering. Furthermore,
they showed that the effective temperature of the thermal taill
is increased when electron—electron scattefilgS is taken
into account. The influence of EES has been investigated in  To find a quantitative description of the deviation from
detail by Changet al® who evaluated the influence of the the Maxwellian shape we look at the kurtogs of the dis-
band structuréparabolic versus fullbandFigure 5 in Ref. 9  tribution function which we define as
indicates that the influence of the fullband structure is small

3 (&) 4 (&

I. HHIGHER ORDER MOMENTS

and mainly influences the high-energy tail. Ghestiall® B,== . _ 1)
" 57(6% 15vk3T?

dElectronic mail: grasser@tuwien.ac.at In addition, we define a second order temperatdifeas
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Here, v denotes the carrier typ@ or p), T, is the carrier
temperature¢ is the energy, anllg is Boltzmann’s constant.
For a heated Maxwell-Boltzmann distribution and parabolic
bands we geiB,=Bus=1 and therefore® ,=T,. Thus a
B,# 1 quantifies the deviation from the Maxwellian shape in
the parabolic case. When nonparabolicity is taken into ac-
count, a different value foByg is obtained, which is close to
1 and temperature dependent. For instance, at 3000 and 600!
K, Bus evaluates to 0.97 and 0.93, respectively.

As an example we considered ai—n—n* structure
with the doping leveldN;=10"cm 2 and Np=10"%cm3
with a graded transition into a 0.am long lowly doped
region. This structure was simulated using a Monte-Carlo
(MC) simulator employing optical and acoustic phonon scat-
tering in addition to impurity scattering. Furthermore, non-
parabolicity was considered using Kane's dispersion
relation?® Both carrier temperatures, the kurtosis and typical
distribution functions are shown in Fig. 1. Note that the av-
erage carrier energy at points A and D is equal whereas the
distribution function looks completely differeft. This can
be clearly attributed to the kurtosis which is 0.8 at point A
but 1.32 at point D. Furthermore, the shapes of the distribu-
tion functions for points A—C are similar, indicated by a
similar value of3,,. In general it can be said that the distri-
bution function is never anything like a Maxwellian, except
for the contact regions. This clearly calls for a reinvestigation
of the assumptions underlying the hydrodynamic transport
models and the physical models used therein. Especially the
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relaxation times obtained from the relaxation time approxi-
mation are known to reflect a hysteresis when modeled as a
function of the average energy ortfy>°

In this article we propose a six momerniSM) model
derived from Boltzmann’s transport equatiOBTE) which
aims at modeling the kurtosis. We will also give a discreti-
zation and compare the results obtained by our model with
the ggeviously published six moments model by Sonoda
et al
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lll. THE SIX MOMENTS MODEL 1078

Several moment based models have been proposec
which aim at obtaining some additional information about
the distribution function to the average energy. One approach
was to split the energy range at some characteristic energy
and handle both energy ranges with a two-population and
two-temperature modéf21 As these models were targeted FIG. _1. Carrier tgmperature, gbs_olute _and relative kurtosis, and distribution

. . L functions at the five characteristics points of the—-n—n" structure. Note
on modeling impact ionization the band gap energy wasg i ine energies for A and D are the same.
taken as the characteristic energy. This approach leads to
various additional parameters which model the transitions
between the two energy regions. Determination of these paart devices. A special formulation has been proposed in Ref.
rameters relies on carefully set up MC simulations. Due tdl3 for those regions where the high-energy tail is heavily
this specialization to impact ionization, this model would populateds,> Byg - Unfortunately, this approach is limited
have to be reformulated if another energy range is of interedb those regions and cannot capture effects in the regions
as is the case for the calculation of gate curréhihus, this  with 8,<Bug -
approach is difficult to generalize if both effects need to be  Several authors gave higher order moment equations to
captured at the same time which is the case for state-of-thebtain additional accuracy; see e.g., Refs. 23 and 24. These
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equations were based on an Ansatz for the distribution funcBTE. The Knudsen number appears as scaling parameter,
tion which was taken to be some expansion around a Maxwhich represents the mean free patf relative to the de-
wellian shape. Sonodet al?° added two equations for the vice dimensiof®

fourth and fifth moment of the BTE to a standard energy-
transport model taken from Ref. 25. This leaves the question ) = )
open whether this results in a consistent equation set or not, Xo
an issue which will be addressed in the following where weygre 7, is the characteristic time between scattering events,
derive a six moments model using the method of moniénts v, denotes the velocity scale, ang is given by the size of
without making any Ansatz for the distribution function. As {he simulation domain. Carriers in a semiconductor at room
with the derivation of the energy-transport model we starkemperature can be considered a collision-dominated system,

ToVo

(10

from Boltzmann's transport equation for which A<1. Diffusion scaling assumes the time scale of
af+u-v f+s,qE-V f=Q(f). 3) the system to be
Here, g denotes the elementary charge, is the carrier t0=T—g. (11)
A

charge (- 1), E is the electric fieldu is the group velocity,

a_ndQ the coIIi_sion operator. For_the foII_owing We assume a\n the |imit of vanishing Knudsen numbev;—0, one obtains
single parabolic band with effective carrier mass. We use  that convective terms of the forrfu)®(u) are neglected
the following physically motivated weight functions instead againstu®u), one of the consequences being that the drift

of the powers ok: kinetic energym,(u)?/2 is neglected again&iT,, and that
bo=1, ®,=p =k, in the qux_ equations the time (?ieri\{ative vqnishes. .
Knowing the outcome of diffusion scaling, we continue
h2 K2 in this work from the unscaled BTEEQq. (3)], split the dis-
bo=E=5— Ps=ué, tribution function into its symmetric and antisymmetric part,
’ and apply the diffusion approximation, assuming that the
b=, dg=u&? symmetric part is isotropic, that is, it depends only on the
modulus ofk:
(I)ng y
f(k)=fs(|k])+fa(k). (12)

and define the moments of the distribution function as . :
This is the only assumption we need here to evaluate the

tensor averages as
<u25n>’\ 2 <5n+l>?

n\ ; —
(u@uém) = 3 I 3 I with n=0,1,2. (13

Mj:<q>,—>=J d; f dk. (4)

Taking the moments of Boltzmann’s equation gives the fol-
lowing general moment equation:

v

Thus, we obtain the following balance equations where

I(Pj)+V, - (ue®j)—s,qE-(V,@D)) the subscript has been dropped for the spatial Nabla opera-
tor:

_ f ®, Q(F) Pk, (5) Bo: A1)+ V(u)=0, (14)
where® denotes the tensor prodétwhich reduces to the _ 3 _ ({80
normal product for the scalar weight functions=0,2,4). Cz (EFVHUE =S, qE(u)= Te (15
The scattering integral is evaluated by employing the macro- _ ) )
scopic relaxation time approximation Gy I(E)TV(UE)—S,2qE(ué)

£)—(&%)
(@)~ (®) __ &
f @, Q(f ) k= — "2, () o (16
7o
The term(V,@ ®;) evaluates for the first six moments as and the following flux equations:
. 2 (u)
qu)OZOa Vp®cl)l:|r (7 Dy §V<5>_quE<1>:_mVT_! (17
m
E .
_ - 2 5 ué
qu)z—u, Vp®CD3—mV|+u®u, (8) CI)S: §V<52>_SV§qE<6>:_mV<TS>, (18)
_ _E o 2 7 (u ?)
qu)4—25U, Vp®q)5—§( |+4U®U), (9) (1)5: §V<53>_SV§QE<52>:_mV - ] (19)
K
with T being the unity tensor. We now introduce new variables in analogy to the

The assumptions made in the derivation of the momenénergy-transport model which gives the following densities
equations follow consistently from appropriately scaling theand fluxes:
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Dy: (L)=v, Oy <u>— q (20) =3 ol
® =2 *
Dy ()= 3FkgrT,, P31 (u&)=S,, (21 " o=t
* =0 14
. 5%X3 , ) o 1ooes
Dy (5)=TkaTV®V, dy: (UE)=K,, (22 S ./%w
O 1 sesseessevens s tH -
S oo.oooooooooo:
7X5x%3 S _____.......;\/
Dg: ()= —k3 v M. (23) PRt
The new variables are the second order tempera&yrand
the kurtosis fluxK, . FurthermoreM ¢ denotes the moment
of sixth order which has to be modeled properly to close the
equation system 0.1 L " 1 .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

distance [pm]

q
J,=—-C; V(VT,,)—S,,k—E 14
- B FIG. 2. Comparison of the different closure relations with the sixth moment
from the MC simulation.

C].:SV kB My, (24)

To close the equation system, the sixth momdatstill
appearing in Eq(26) has to be approximated using the lower
order moments. From a Maxwellian distribution function and
parabolic bands we know thdtg= T3 As we have the sec-
S kB Ts (25) ond order temperatur® , available, we considered the fol-

S,=-C, V(VT 0, SEEVT

2727 T lowing empirical closure relations:
q a9 _
:_CS V(VM6) S EVT ® } M6_TV T_,, with c=0,1,2,3. (31)
35k3 The ratioM /Mg is shown in Fig. 2. As can be seen,
= — K ~u, (26) =3 gives the smallest deviation from the desired value, one.
4 qd ™m In additionc=3 proved to be numerically more stable than

other versions. Especially for=1, which corresponds to
closing the system with a Maxwelli&hthe Newton proce-
dure failed to converge in most cases.
V-J,=-s,q(dv+R,), (27) Sonodaet al?° proposed a similar six moments transport
model. One difference is that they used a microscopic relax-
ation time approximation as proposed by Straftavhereas

in this work we assume the macroscopic relaxation time ap-
proximation (6). Sonodaet al. follow very closely the ap-

Here the mobilityx,=q7,/m, is introduced. The balance
equations read

TV_TL
V'S,,z _C4 ﬁt(VTV)‘FE'JV_C;l 14 +Ggy, (28)

VK,=—C50,(vT,0,)+2s,qE-S, proach of Stratton, in that they assume a heated Maxwellian
T 2 shape for the symmetric part of the distribution function.
Gyt L, o (29) This assumption looks contradictory in that on one hand an
) v additional moment of the distribution function is sought, and
. 15 2 on the other hand, no additional degree of freedom is given
Cs=2ks Cs5=7kg. (B0 to the distribution function. In this way, they introdut&o

Compared to energy-transport models, two additional relaXclosure relations, one for the fourth moment and one for the

ation times are needed, namely the relaxation time of thg'xth moment. Therefore, their equation system gets decou-
second order temperatljr@) and the kurtosis flux relax- pled into Stratton’s energy transport model and an additional

ation time 7« . Although the equation system could also beequat.ion _for the fourth moment. The role O.f the neglected
expressed in terms ¢, instead of® ,, the formulation with cqupllng 'S elgboratgd in the exarnpl'e section where a de-
®, proved to be numerically more stable. tailed comparison with our model is given.

The boundary conditions assumed in the following simu-1V. DISCRETIZATION

lations were of Dirichlet type for the contacts=»*, T, For the discretization of the flux quantities we make use
=T, and®,=T,) and of Neumann typ€J,-n=0, S,-N of the observation that all three fluxas, S,, andK , can be
=0, andK ,-n=0) at the remaining boundaries. written in a general form as

Note that Eqs(24), (25), (27), and(28) give a standard
energy-transport model whe@, is set equal tor, in Eq. F=—Cp|V(£Tp)—s ﬂE(gT )i (32)
(25) F F % F T
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with

JV: fz v, TF_T,,, (33)
SV: g_VTV) TF=®V’ (34) E
N
@2
K,: é&=vT,0,, T,:=T—V=Taux. (35)

Assuming that the projected flux between two gridpoints is
constant and that the temperature associated to each flux
varies linearly on the edge gives the following Scharfetter—
Gummel type discretizatiéi form of the flux
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Grasser et al. 2393

L T T
‘M o
)
[N
" ‘\\\ A
LT iadnde dl LT R rm——
D
Tg -
———— TB
-~
VAN oo
/ S~lA
~3L
nl \\\
LN T~
—————— - ——— T~
——
D
1 ' I
1000 2000 3000 4000
Ty [K]

FIG. 3. Relaxation times as a function of the carrier temperature.

the average energy with the position as paramefeFigs. 3
and 4. Nevertheless, in this article we assume for simplicity

the following constant valuesr.=0.33ps, 75,=0.2ps,
s/ 7,=0.8, and ¢ /7,,=0.7. More accurate expressions

_ Ce  AT:

Fi'j__Hm[gj B(Ye)— & B(—Yg)], (36)
IN(Te/Tei) q

YF:_Z]—TFF<Snk_BAw+ATF)’ (37)

where 3 is the Bernoulli function. The inner producisJ,
andE-S, in Egs.(28) and(29) are discretized in the follow-
ing way. For any flux~, the inner product can be written as

will be published elsewhere. The mobility is modeled using
the MINIMOS mobility model*!

We now compare the results obtained by the SM model
to MC simulations. Furthermore, we consider two simplified

SM models obtained by assumifig, =T, in Eq. (25), which
gives a decoupling of the equations as discussed before. For
the simplified SM model SSMwe used the closure relation
(31) with c=3, as in the SM model, whereas in the model

SSM, we usedc=1 which corresponds to the closure used
by Sonodeet al. For the SSM models, the equation system is

E-F=—V(y—thren) F=—V[(4~ the) F]

—( I/ ‘/’ref) V-F. (38)

Here an arbitrary constant offset in the potential is intro-
duced, which, of course, does not change the electric field
Evaluating the inner product at grid pointusing the local

potential as reference/fe= ;) gives 1.1

E-Flx—x == VI(#—¢)F] (39

0.9
which in turn is handled in a standard way by employing the

box integration methotf’ 0.8

0.7

V. EXAMPLE AND DISCUSSION 0.6

To evaluate these six moments equations appropriate
models for the relaxation times are needed. As expected, al

decoupled and consists of an energy-transport model and an
additional constitutive equation for the second order tem-
perature.

"'S/"'m

—-=- i/ |

4000

relaxation times show a strong hysteresis when plotted overFIG. 4. Relaxation times ratios as a function of the carrier temperature.
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FIG. 5. Comparison of the results delivered by the SM, §Skhd the

FIG. 6. Comparison of the results delivered by the SM, §Skhd the
SSM, model with the parabolic MC results and constant relaxation timesSSM, model with the parabolic MC results and MC relaxation tinfes
(excluding mobility.

cluding mobility).

Simulation results of the*—n—n" structure are shown profile whereas in the SM modd), and T, stay tightly
in Fig. 5. Since the moment equations are derived for paracoupled. We observed an even stronger separation in the
bolic bands we used a parabolic band structure in the MGimulation of realistic MOS transistors. The SM model
simulations to allow for a fair comparison. The principal shows a better agreement with the MC simulations than the
difference between the models is that due to the missingSM modelgcf. Fig. 5. For the moment equations constant
coupling term in the SSM models, the profile of the secondelaxation times were used, except for the mobility which
order temperature slightly drifts away from the temperaturevas calculated with the MINIMOS mobility mod&t. These
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simulators were coupled to perform a self-consistent iteration
where the potential distribution for the MC simulation was
taken from the device simulator and the relaxation times for
the device simulator from the last MC solution. Note that a
large number of scattering events had to be processed to
obtain smooth relaxation times with small variance. A com-
parison of simulation results is shown in Fig. 6 for the SM,
SSM;, and SSM models, respectively. The SM very accu-
rately conforms with the MC simulations whereas the decou-
pled models do not reach the maximum temperature values
and start decreasing too early. The SSdferestimates the
second order temperature in the-n™ junction but fits the
MC results quite well otherwise. On the other hand, the
SSM, reproduces the maximum value @F, while it de-
creases too sharply in tlme" region. In Fig. 7 the kurtosig,
is shown for all three models. Each subfigure shows the im-
provement due to the use of the MC relaxation times as
compared with the constant relaxation times. Ag#p,de-
creases too rapidly in the* region for the SSNimodel. An
obvious shortcoming of the constant relaxation times can be
seen in the contact regions. There we would expect a Max-
wellian distribution (8,,=1) which is not accurately repro-
duced by the constant relaxation times as their values have
been taken from the high-energy regions. To improve the
accuracy of the model, the relaxation times need to be mod-
eled more carefully which will be the subject of forthcoming

research.

VI. CONCLUSIONS

It has been frequently pointed out that the distribution
function of carriers in state-of-the-art devices is insufficiently
described by a Maxwellian distribution, which has the mean
energy as only parameter. In this work we propose the usage
of six moments of the distribution function, to allow for a
more accurate description of hot-electron phenomena. Six
moment equations are derived from the Boltzmann equation,
and different closure relations are investigated.

To eliminate the uncertainties introduced by the relax-
ation time models we extracted the relaxation times from a
Monte-Carlo simulator which was coupled to the six mo-
ments model in a self-consistent manner. This comparison
showed an excellent agreement of the six moments model

with the MC results.
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