5.3 Implant Model Calibration



next up previous contents index
Next: 5.3.1 Dual Pearson Distribution Up: 5 TCAD Simulators Calibration Previous: 5.2.2 Results

5.3 Implant Model Calibration

The modeling of ion implantation is of critical importance for process   simulators as the as-implanted profiles form the starting conditions for all subsequent processing steps. Whereas Monte Carlo simulation is the only   physical based method for calculating the implanted atoms distribution, its computational demands restrict its use in practical applications. An alternative empirical modeling approach consists of adjusting the parameters of an analytical distribution function to fit measured profiles. Different implant characteristics such as energy, dose, tilt and rotation angles, affect the final distribution of ions. By carefully selecting the parameter values of the fitted implants, the distribution resulting from different implant parameters can be calculated by interpolation over a wide range of conditions.

The single Pearson IV function is one type of distribution functions   normally used for representing the implanted impurity atoms. It has been shown, that due to channeling, the distributions of Boron and BF cannot   be adequately modeled by the single Pearson IV function [107][78]. Rather, a dual Pearson approach was proposed [102] whereby the randomly scattered implanted profile and the channeled component are each represented by one of the two Pearson profiles respectively. The determination of the parameters of a dual Pearson IV distribution to achieve good agreement between experimentally determined and SUPREM3 [38] simulated profiles is discussed in this section.





Martin Stiftinger
Tue Aug 1 19:07:20 MET DST 1995