Notation

$ x$ ... Scalar
$ \ensuremath{\mathitbf{x}}$ ... Vector
$ \ensuremath{{\underline{A}}}$ ... Matrix
$ A_{ij}$ ... Elements of the matrix $ {\underline{A}}$
$ {\,\mathrm{tr}\left(\ensuremath{{\underline{A}}}\right)}$ ... Trace of the matrix $ {\underline{A}}$
$ \ensuremath{{\mathrm{\hat{X}}}}$ ... Tensor
     
$ \ensuremath{\mathitbf{x}} \ensuremath{\cdot}\ensuremath{\mathitbf{y}}$ ... Scalar (in) product
$ \ensuremath{\mathitbf{x}} \ensuremath{\times}\ensuremath{\mathitbf{y}}$ ... Vector (ex) product
$ \ensuremath{\mathitbf{x}} \ensuremath{\otimes}\ensuremath{\mathitbf{y}}$ ... Tensor product
     
$ \partial_t(\cdot)$ ... Partial derivative with respect to $ t$
$ \ensuremath{\ensuremath{\mathitbf{\nabla}}}$ ... Nabla operator
$ \ensuremath{\ensuremath{\ensuremath{\mathitbf{\nabla}}}}x$ ... Gradient of $ x$
$ \ensuremath{\ensuremath{\ensuremath{\mathitbf{\nabla}}}\ensuremath{\cdot}}\ensuremath{\mathitbf{x}}$ ... Divergence of $ \ensuremath{\mathitbf{x}}$
     
$ \ensuremath{\langle \! \langle \cdot \rangle \! \rangle}$ ... Statistical average
$ \ensuremath{\langle \cdot \rangle}$ ... Normalized statistical average
     
$ \Gamma(\cdot)$ ... Gamma function
$ f(\mathbf{r},\mathbf{k},t)$ ... Distribution function
$ \ensuremath{\mathcal{Q}(\cdot)}$ ... Collision operator
$ \ensuremath{{\cal{H}}}$ ... Hamiltonian operator
$ \ensuremath{\mathrm{s}_\nu}$ ... Carrier charge sign
     
$ \ensuremath{\{\cdot,\cdot\}}$ ... Poisson bracket

M. Wagner: Simulation of Thermoelectric Devices