next up previous contents
Next: 6. Applications Up: 5.3 Two-Dimensional Vector Finite Previous: 5.3.1 Linear Vector Shape   Contents

5.3.2 Assembling

The two-dimensioanl case leads to a linear equation system similar to (5.37). The sub-matrix $ [A]$ is written in the form (5.67). With $ \gamma$ constant in each element $ [S]^e$ is given by

\begin{displaymath}\begin{split}S_{ij}^e & = \frac{1}{\gamma}\int_{\mathcal{A}_e...
...times\vec{N}_j^e\right)F_e, i\in[1;3], j\in[1;3], \end{split}\end{displaymath} (5.82)

where the rotor terms are calculated in the following manner

$\displaystyle \vec{\nabla}\times\vec{N}_1^e = 2l_{12}\left(\vec{\nabla}\lambda_...
..._e}\times\frac{\vec{r}_{31}\times\vec{e}_z}{2F_e} = \frac{l_{12}}{F_e}\vec{e}_z$ (5.83)

$\displaystyle \vec{\nabla}\times\vec{N}_2^e = \frac{l_{23}}{F_e}\vec{e}_z      \vec{\nabla}\times\vec{N}_3^e = \frac{l_{31}}{F_e}\vec{e}_z.$ (5.84)

Thus $ [S]^e$ becomes

$\displaystyle S_{11}^e$ $\displaystyle = \frac{1}{\gamma}\left(\vec{\nabla}\times\vec{N}_1^e\right) \cdot\left(\vec{\nabla}\times\vec{N}_1^e\right)F_e = \frac{l_{12}^2}{\gamma F_e}$ (5.85)
$\displaystyle S_{21}^e = S_{12}^e$ $\displaystyle = \frac{l_{12}l_{23}}{\gamma F_e}$ (5.86)
$\displaystyle S_{31}^e = S_{13}^e$ $\displaystyle = \frac{l_{12}l_{31}}{\gamma F_e}$ (5.87)
$\displaystyle S_{22}^e$ $\displaystyle = \frac{l_{23}^2}{\gamma F_e}$ (5.88)
$\displaystyle S_{32}^e = S_{23}^e$ $\displaystyle = \frac{l_{23}l_{31}}{\gamma F_e}$ (5.89)
$\displaystyle S_{33}^e$ $\displaystyle = \frac{l_{33}^2}{\gamma F_e}.$ (5.90)

For element-wise constant $ \mu$ the entries from $ [M]^e$ are obtained from

$\displaystyle M_{ij}^e = \mu\int_{\mathcal{A}_e}\vec{N}_i^e\cdot\vec{N}_j^e \mathrm{d}A, i\in[1;3], j\in[1;3].$ (5.91)

One entry calculation is demonstrated in detail

\begin{displaymath}\begin{split}M_{11}^e & = \mu\int_{\mathcal{A}_e}\vec{N}_1^e\...
..._e}\left(\lambda_2^e\right)^2 \mathrm{d}A \right]. \end{split}\end{displaymath}    

The arrising integrals are solved as follows

\begin{displaymath}\begin{split}\int_{\mathcal{A}_e}\left(\lambda_1^e\right)^2 ...
...(1-\lambda_1^e\right) d\lambda_1^e = \frac{F_e}{6} \end{split}\end{displaymath} (5.92)

\begin{displaymath}\begin{split}\int_{\mathcal{A}_e}\lambda_1^e\lambda_2^e \mat...
...da_1^e\right)^2}{2} d\lambda_1^e = \frac{F_e}{12}, \end{split}\end{displaymath} (5.93)

using the integral domain transformation Appendix A. Generally it can be written

$\displaystyle \int_{\mathcal{A}_e}\lambda_i^e\lambda_j^e \mathrm{d}A = \left\{...
...}{12} & \mathrm{for} i \neq j \end{array} \right.    j\in[1;3], j\in[1;3].$ (5.94)

In a similar manner all entries of $ [M]^e$ are given

$\displaystyle M_{11}^e$ $\displaystyle = \frac{\mu l_{12}^2}{24 F_e}\left(\vec{r}_{23}\cdot\vec{r}_{23} - \vec{r}_{23}\cdot\vec{r}_{31} + \vec{r}_{31}\cdot\vec{r}_{31}\right)$ (5.95)
$\displaystyle M_{21}^e = M_{12}^e$ $\displaystyle = \frac{\mu l_{12} l_{23}}{48 F_e}\left(\vec{r}_{31}\cdot\vec{...
..._{31} - 2 \vec{r}_{23}\cdot\vec{r}_{12} + \vec{r}_{23}\cdot\vec{r}_{31}\right)$ (5.96)
$\displaystyle M_{31}^e = M_{13}^e$ $\displaystyle = \frac{\mu l_{12} l_{31}}{48 F_e}\left(\vec{r}_{23}\cdot\vec{...
...{r}_{12} - \vec{r}_{23}\cdot\vec{r}_{23} + \vec{r}_{23}\cdot\vec{r}_{12}\right)$ (5.97)
$\displaystyle M_{22}^e$ $\displaystyle = \frac{\mu l_{23}^2}{24 F_e}\left(\vec{r}_{12}\cdot\vec{r}_{12} - \vec{r}_{12}\cdot\vec{r}_{31} + \vec{r}_{31}\cdot\vec{r}_{31}\right)$ (5.98)
$\displaystyle M_{32}^e = M_{23}^e$ $\displaystyle = \frac{\mu l_{23} l_{31}}{48 F_e}\left(\vec{r}_{23}\cdot\vec{...
..._{12} - 2 \vec{r}_{23}\cdot\vec{r}_{31} + \vec{r}_{31}\cdot\vec{r}_{12}\right)$ (5.99)
$\displaystyle M_{33}^e$ $\displaystyle = \frac{\mu l_{31}^2}{24 F_e}\left(\vec{r}_{12}\cdot\vec{r}_{12} - \vec{r}_{12}\cdot\vec{r}_{23} + \vec{r}_{23}\cdot\vec{r}_{23}\right).$ (5.100)

The entries of $ [B]$ are expressed as

$\displaystyle B_{ij}^e = - \jmath\omega\mu\int_{\mathcal{A}_e}\vec{N}_i^e\cdot\vec{\nabla}\lambda_j^e \mathrm{d}A,  i\in[1;3], j\in[1;3].$ (5.101)

The entry $ B_{11}^e$ is calculated in detail as

\begin{displaymath}\begin{split}B_{11}^e & = - \jmath\omega\mu\int_{\mathcal{A}_...
...nt_{\mathcal{A}_e}\lambda_2^e \mathrm{d}A \right). \end{split}\end{displaymath} (5.102)

For the integral terms the integral domain transformation from Appendix A is used again to obtain

$\displaystyle \int_{\mathcal{A}_e}\lambda_i^e \mathrm{d}A = \frac{F_e}{3}, i\in[1;3].$ (5.103)

Thus $ [B]^e$ is given by

$\displaystyle B_{11}^e$ $\displaystyle = - \jmath\omega\mu{}l_{12} \left(\frac{\vec{r}_{23}\times\vec{e}...
...e}_z}{2F_e}\cdot\frac{\vec{r}_{23}\times\vec{e}_z}{2F_e} \right)\frac{F_e}{3} =$ (5.104)
  $\displaystyle = - \jmath\omega\frac{\mu{}l_{12}}{12F_e} \left( \vec{r}_{23}\cdot\vec{r}_{31} - \vec{r}_{23}\cdot\vec{r}_{23} \right)$    
$\displaystyle B_{12}^e$ $\displaystyle = - \jmath\omega\frac{\mu{}l_{12}}{12F_e} \left( \vec{r}_{31}\cdot\vec{r}_{31} - \vec{r}_{31}\cdot\vec{r}_{23} \right)$ (5.105)
$\displaystyle B_{13}^e$ $\displaystyle = - \jmath\omega\frac{\mu{}l_{12}}{12F_e} \left( \vec{r}_{12}\cdot\vec{r}_{31} - \vec{r}_{12}\cdot\vec{r}_{23} \right)$ (5.106)
$\displaystyle B_{21}^e$ $\displaystyle = - \jmath\omega\frac{\mu{}l_{23}}{12F_e} \left( \vec{r}_{23}\cdot\vec{r}_{12} - \vec{r}_{23}\cdot\vec{r}_{31} \right)$ (5.107)
$\displaystyle B_{22}^e$ $\displaystyle = - \jmath\omega\frac{\mu{}l_{23}}{12F_e} \left( \vec{r}_{31}\cdot\vec{r}_{12} - \vec{r}_{31}\cdot\vec{r}_{31} \right)$ (5.108)
$\displaystyle B_{23}^e$ $\displaystyle = - \jmath\omega\frac{\mu{}l_{23}}{12F_e} \left( \vec{r}_{12}\cdot\vec{r}_{12} - \vec{r}_{12}\cdot\vec{r}_{31} \right)$ (5.109)
$\displaystyle B_{31}^e$ $\displaystyle = - \jmath\omega\frac{\mu{}l_{31}}{12F_e} \left( \vec{r}_{23}\cdot\vec{r}_{23} - \vec{r}_{23}\cdot\vec{r}_{12} \right)$ (5.110)
$\displaystyle B_{32}^e$ $\displaystyle = - \jmath\omega\frac{\mu{}l_{31}}{12F_e} \left( \vec{r}_{31}\cdot\vec{r}_{23} - \vec{r}_{31}\cdot\vec{r}_{12} \right)$ (5.111)
$\displaystyle B_{33}^e$ $\displaystyle = - \jmath\omega\frac{\mu{}l_{31}}{12F_e} \left( \vec{r}_{12}\cdot\vec{r}_{23} - \vec{r}_{12}\cdot\vec{r}_{12} \right).$ (5.112)

Analogously to (4.49) for the element matrix $ \left[C\right]^e$ one obtains:

$\displaystyle C_{11}^e$ $\displaystyle = -\jmath\omega\frac{\mu}{4F_e} \vec{r}_{23}\cdot\vec{r}_{23}$ (5.113)
$\displaystyle C_{12}^e = C_{21}^e$ $\displaystyle = -\jmath\mu\frac{\mu}{4F_e} \vec{r}_{23}\cdot\vec{r}_{31}$ (5.114)
$\displaystyle C_{13}^e = C_{31}^e$ $\displaystyle = -\jmath\mu\frac{\mu}{4F_e} \vec{r}_{23}\cdot\vec{r}_{12}$ (5.115)
$\displaystyle C_{22}^e$ $\displaystyle = -\jmath\omega\frac{\mu}{4F_e} \vec{r}_{31}\cdot\vec{r}_{31}$ (5.116)
$\displaystyle C_{23}^e = C_{32}^e$ $\displaystyle = -\jmath\omega\frac{\epsilon}{4F_e} \vec{r}_{31}\cdot\vec{r}_{12}$ (5.117)
$\displaystyle C_{33}^e$ $\displaystyle = -\jmath\omega\frac{\mu}{4F_e} \vec{r}_{12}\cdot\vec{r}_{12}.$ (5.118)


next up previous contents
Next: 6. Applications Up: 5.3 Two-Dimensional Vector Finite Previous: 5.3.1 Linear Vector Shape   Contents

A. Nentchev: Numerical Analysis and Simulation in Microelectronics by Vector Finite Elements